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ABSTRACT

This project evaluated the use of emerging spintronic memory devices for robust and efficient variational
inference schemes. Variational inference (VI) schemes, which constrain the distribution for each weight
to be a Gaussian distribution with a mean and standard deviation, are a tractable method for calculating
posterior distributions of weights in a Bayesian neural network such that this neural network can also be
trained using the powerful backpropagation algorithm. Our project focuses on domain-wall magnetic
tunnel junctions (DW-MTJs), a powerful multi-functional spintronic synapse design that can achieve low
power switching while also opening the pathway towards repeatable, analog operation using fabricated
notches .

Our initial efforts to employ DW-MTJs as an all-in-one stochastic synapse with both a mean and standard
deviation didn’t end up meeting the quality metrics for hardware-friendly VI. In the future, new device
stacks and methods for expressive anisotropy modification may make this idea still possible. However , as
a fall back that immediately satisfies our requirements, we invented and detailed how the combination of a
DW-MTJ synapse encoding the mean and a probabilistic Bayes-MTJ device , programmed via a ferroelectric
or ionically modifiable layer, can robustly and expressively implement VI. This design includes a physics-
informed small circuit model, that was scaled up to perform and demonstrate rigorous uncertainty
quantification applications, up to and including small convolutional networks on a grayscale image
classification task, and larger (Residual) networks implementing multi-channel image classification.

Lastly, as these results and ideas all depend upon the idea of an inference application where weights
(spintronic memory states) remain non-volatile, the retention of these synapses for the notched case
was further interrogated. These investigations revealed and emphasized the importance of both notch
geometry and anisotropy modification in order to further enhance the endurance of written spintronic
states. In the near future, these results will be mapped to effective predictions for room temperature
and elevated operation DW-MTJ memory retention, and experimentally verified when devices become
available.
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1. INTRODUCTION

The powerful ability of deep neural networks (DNNs) to generalize has driven their wide proliferation
in the last decade to many applications. However, particularly in applications where the cost of a wrong
prediction is high, there is a strong desire for algorithms that can reliably quantify the confidence in their
predictions [2]. Bayesian neural networks (BNNs) can provide the generalizability of DNNs, while also
enabling rigorous uncertainty estimates by encoding their parameters as probability distributions learned
through Bayes’ theorem such that predictions sample trained distributions [3]. Probabilistic weights can
also be viewed as an efficient form of model ensembling, reducing overfitting [4]. In spite of this, the
probabilistic nature of BNNs makes them slower and more power-intensive to deploy in conventional
hardware, due to the large number of random number generation operations required [5]. Some proposals
to increase the energy efficiency of digital BNNs via pipelining have been made [6], but ultimately these
approaches hit an efficiency wall due to the serial nature of random number generation. In contrast,
emerging memory devices pose an attractive set of possible options for true random number generators
(TRNGs) at a less than 1 pJ /bit energy footprint [7].

In recent years, in-memory computing has also emerged to enable orders-of-magnitude more efficient
processing of data-intensive DNN algorithms. These systems alleviate the memory wall problem in
conventional architectures, while also leveraging the efficiency and parallelism of analog computation
[8, 9]. A variety of computational memory devices have been proposed as artificial synapses for DNNs:
resistive random access memories (ReRAM) [10, 11], phase change memories [12, 13], electrochemical
memories [14–17], designer ionic/electronic thin films [18], magnetic memories [19], and others. However,
these synaptic devices cannot directly implement BNN weights, which are not static but are sampled from
trained probability distributions.

Spintronic devices possess properties that make them promising for data storage, in-memory computing
for DNNs, and probabilistic computing. Spintronic devices typically use the magnetic tunnel junction
(MTJ) as the building block [20] and have demonstrated high energy efficiency, scalability, and endurance
[21–23]. Magnetic spin textures such as domain walls [24–27] and skyrmions [28, 29] can implement
complex, tunable behaviors that can realize higher-order neurons and synapses. Spintronic devices also have
unique intrinsic stochastic properties [30–32]. Recently, stochasticity in MTJs has been experimentally
demonstrated to produce conductance noise due to thermal fluctuations in magnetization experienced
by the free ferromagnetic layer. Importantly, the distribution of conductance noise is dictated by the
magnetic energy landscape, which can be manipulated using a variety of methods including magnetic
field [33], spin transfer torque [34], spin orbit torque [35], and voltage-controlled magnetic anisotropy
(VCMA) [36, 37]. As a result, the tunable random bitstream readout of stochastic MTJs can be used to
implement Boltzmann machines for probabilistic computing [38]. While proposals for spin-based BNNs
have been made [39, 40], they relied upon either streaming generated RNGs from the periphery into each
array or using digital circuitry to fully compose the weight used in the sampling step. These decisions
majorly reduce the efficiency of a hardware spintronic BNN design by increasing the energy cost of the
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basic sampling operation. Lastly, ReRAM devices have also been used to implement probabilistic weights
[41–43], but required many devices per weight since the weight’s mean and standard deviation cannot be
independently encoded at the device level.

In this work, we introduce a novel array design for efficient probabilistic matrix-vector multiplication
(MVM) sample steps with the inference operation fully supported by in-situ analog spintronic device
electrical operation . We target BNNs that are trained using the variational inference method to represent
each weight as a normal distribution with a trained mean (µ) and standard deviation (σ). The BNNs are
deployed on a spintronic system where each weight is encoded by a domain-wall memory with multi-
bit precision in µ, and a stochastic spintronic memory that independently encodes σ with multi-bit
precision. The devices are directly integrated in the same array, and are used together in a probabilistic
MVM. The accuracy and quality of uncertainty predictions from the proposed hardware are evaluated
using realistic in-memory computing simulations, based on stochastic device properties obtained from
micromagnetic simulations. We show that the proposed spintronic implementations of BNNs give
accurate, well-calibrated uncertainty estimates for complex classification and regression problems that
match software BNN implementations, and are superior to comparable DNNs. These BNN predictions
require 10-100× less energy than conventional hardware by efficiently combining the RNG and MVM
operations in the analog domain.

1.0.1. Bayesian Neural Networks

A Bayesian neural network uses probabilistic weights to make predictions with a quantified uncertainty.
Though there are other ways to quantify uncertainty, a BNN produces well-calibrated uncertainties by
learning the weight probability distributions using Bayes’ theorem [3]:

P(Θ|D) =
P(D|Θ)P(Θ)

P(D)
(1.1)

P(Θ|D) is known as the posterior distribution of the model’s weights Θ after it has been exposed to
the training data D. After training, the distributions are fixed. When evaluated on new data, multiple
predictions are made using different samples of the posterior weight distribution, and the statistics of
these predictions is used to quantify the uncertainty. In this work, BNNs are trained in software, then
their effectiveness on unseen data is evaluated using simulations of the proposed spintronic hardware.

During the training phase, computing the right-hand side of this equation is computationally expensive.
Furthermore, the posterior distribution for a weight can be an arbitrarily complex distribution that is
difficult to implement in analog hardware. For these reasons, we approximate Bayes’ theorem using
variational inference (VI) [44]. VI is used to constrain the distribution for each weight to be a Gaussian
distribution N (µ,σ), parameterized by a mean µ and a standard deviation σ , as shown in Fig. 3-3A. These
parameters can be efficiently trained using the backpropagation algorithm [45]. We use the Tensorflow
Probability framework and the Flipout method [46] to implement BNN training with VI. Our proposed
hardware is compatible with Gaussian-distributed weights trained using any method. As a baseline, the
trained BNNs are compared to iso-topology deep neural networks (DNNs) with deterministic weights.
DNNs were trained using Tensorflow Keras. Details on the specific trained networks are given in Sections
3.0.4 and 3.0.5.
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2. NOTCH-ENCODABLE NOISE SOURCES

Based on our desire for an all-in-one stochastic synapse, our initial project plan led us to explore the limits
for expressing both a mean and standard deviation within an individual DW-MTJ device. Effectively, as
shown in Fig 1, the mean is represented by the notch that the device is programmed to, and the mean is
represented by the natural jitter of the weight within the given notch. Therefore, for the application of
bayesian inference, the width of the notch is extended as compared to the standard neural network case
(where minimizing the sigma or movement of the notch is advantageous to limit extraneous inference
noise).

Figure 2-1. (A) Lateral view of our chosen spintronic nanosynapse where the top visualizing shows
how programming (notch selection) can be makde using a large current (voltage) across the track;
then subsequently the device can be read out non-destructively via the large top electrode. (B) Basic
conceptual design for a notched all-in-one stochastic synapse is given and distinguished relative to
non-stochastic sister device. As visualized, the larger (wider) notches allow for natural encoding of
the σ value. In addition, the notch shape can also represent a designer distribution shape if desired.

2.0.1. Mechanisms for intrinsic stochasticity modifications

As the inherent stochasticity of the domain due to thermal effects is an open question in nanophysics,
the domain wall-magnetic tunnel junction device was analyzed through the context of micromagnetic
simulations that emulate the elementary motion of the chiral domain-wall (DW) structure based on
fundamental properties of the thin films as well as applied current. Early on, we realized that besides
temperature itself (not a feasible tunable approach), an electrically feasible way to alter the magnitude of
the random domain wall motion would be the voltage-controlled magnetic anisotropy (VCMA) effect.
VCMA modification of DW jitter can be accomplished either by a) applying strain via a piezoelectric
substrate , b) or by applying voltage to an oxide layer on top of the free layer with the domain wall. Some
possible contacting schemes utilizing a piezoelectric are presented in Fig 2(a). However, this scheme suffers
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from a complicated contacting scheme. In order to maintain an array-usable three terminal structure,
voltage-based VCMA is preferable . However, the effect must be also be made non-volatile (that is, different
voltages applied to every synapse during inference would be an unacceptable energy cost. For that reason, a
second option was considered: magneto-ionic modification of the active layer. Magneto-ionic modification
induces an anisotropy or stiffness change in the material through the introduction of oxygen ions (anionic
motion) into the free layer [47]. Specifically, the migration of oxygen into the free layer reduces magnetic
order and reduces anisotropy or stiffness. One example set of material stacks that would realize this effect
are shown in Fig2(b). Analogously to the normal DW-MTJ programming mode, the anisotropy effects
could be realized during a separated ‘anisotropy programming mode’ ; then, during inference time, the
modified synapses would continue to realize their appropriate mean and jitter values.

Figure 2-2. (A) Birds-eye view of several iterations of a contacting scheme, where black wires help to
apply piezoelectric effect via applied current to enable non-volatile modification of anisotropy. In the
two left schemes notches are still fabricated as before, whereas in the right figure the application
points constitute notches. (B) Alternative magneto-ionic modification approach. Two iterations of
this stack are given, where the ionic reservoir is either above or below the free layer (where domain
wall propagates). The top stack is more analogous to the current DW-MTJ approach with the injection
of oxygen ions across the green active layer leading to a broad range anisotropy values.

The micromagnetics solver mumax3 is also used to measure the variation in domain wall position over a
period of time, done for various levels of anisotropy that can be modulated using magneto-ionics. From
the collected data, we discovered there is an approximately 3.5:1 ratio in maximum to minimum amount
of noise in the system. This effect also works for multiple notch positions. While this ratio is somewhat
sufficient to implement toy uncertainty quantification problems such as the one shown in Fig. 2-4, which
is only a 1 dimensional mapping, we discovered using our CrossSim software that at least 5x+ is necessary
to effectively encode the gaussian standard deviation spreads on more complicated tasks . This result is
echoed in the next section as well (Fig. 3-5).

14



Figure 2-3. (A) MuMax simulations demonstrating the effect of the anisotropy modification upon the
spread of domain-wall sampled over time within a single notc, where the plus and minus distances
are computed with respect to the center of the notch. (B) Sigma values for the computed histogram
from (A) as a function of the Anisotropy. Colors for each of the points correspond to the color in the
left pane.

Figure 2-4. (A)MuMax simulations showing verification of modifiable sigma values within several
weights/notches along a single track, with the width of the two curves color-corresponding to the
respective anisotropy value pictured above the pane. As visible, the lower anisotropy (less stiff) track
allows the DW to wander more, increasing the width of the quasi-Gaussian spread (B) Demonstration
of how anisotropically modified DW jitter over this range can be used on a simple neural network
trained to predict the sine function over a small range. As visible, at this ratio/range, the out-of-
domain region (out of−0.5 < x < 0.5 ) does demonstrate some increase in variance after sampling the
small neural network.
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3. COMBINED SPINTRONIC BIT CELL FOR ROBUST
UNCERTAINTY QUANTIFICATION

To encode a BNN’s weight probability distributions, our fully spintronic Bayesian artificial synapse
compactly integrates a tunable noise source with a programmable artificial synapse that encodes the
mean component of the weight. The tuning range of the conductance noise should ideally cover a large
range in order to encode both wide (highly noisy) and narrow (nearly deterministic) weight probability
distributions. The proposed Bayes-MTJ utilizes the physical stochasticity and voltage controllability of
magnetic materials to realize this functionality, and further uses magneto-ionics to ensure that the encoded
noise properties are non-volatile.

The Bayes-MTJ structure is shown in Fig. 3-1A, and is based on a cylindrical in-plane MTJ. Both of the in-
plane axes (i.e. the x-y plane) are easy axes for the free layer’s magnetization, and thus thermal fluctuations
can readily cause random changes in the free layer’s in-plane magnetization. These fluctuations generate
noise in the conductance across the MTJ, and this noise fully spans the range between the maximum
conductance state (free and reference layers parallel) and the minimum conductance state (free and
reference layers anti-parallel). Experiments validating this effect in cylindrical in-plane magnetic systems
have been shown previously [48]. Since the noise always spans the full conductance range of the device, the
magnitude of conductance noise can be controlled by modulating the MTJ’s tunnel magnetoresistance
(TMR) ratio via the voltage-controlled magnetic anisotropy (VCMA) effect. Modulation of the TMR ratio
using an applied voltage across the oxide layer has has been demonstrated previously, both experimentally
and theoretically [49–52].

An externally applied voltage is not an efficient implementation of tunable noise because each device
encodes a unique probability distribution and thus would require an independent VCMA voltage during
an inference operation. However, there are at least two ways that non-volatile encoding of the noise
magnitude can be accomplished. Firstly, a ferroelectric or multiferroic layer can be introduced to the stack
to induce a polarization field at the interface, implementing an effective electric field that can be modulated
to an appropriate state using applied voltage [53–55]. Another option is to introduce an ion-conductive
layer to reversibly modulate the oxidation state of the free layer. Ion migration is induced using an electric
field, resulting in non-volatile changes in magnetic properties such as the magnetic anisotropy [56–59]
and magnetoresistance [60–62]. Oxidation of the free layer has been shown to reduce the TMR of MTJ
stacks[63]. In this paper, these effects will be approximated using an effective built-in voltage Vbi across
the MgO tunnel barrier that is set during programming.

The Bayes-MTJ can be represented by a macrospin Landau-Lifshitz-Gilbert (LLG) model described as
follows [49]:

m
t

= −γµ0m×Heff +αm× m
t
− βPJSTTm× (m×mr) (3.1)
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Simulated noise in the Bayes-MTJ conductance. The applied voltage modulates the TMR and the
magnitude of the noise via the VCMA effect. (C) Structure of a notched DW-MTJ synapse. Bottom
shows the distribution of DW position over 25 ns after being initialized in each of 16 notches.

where m and mp are the magnetization unit vector of the free and reference layers respectively, γ is the
Gilbert gyromagnetic ratio, α is the damping parameter, P is the spin polarization, and JSTT is applied
spin transfer torque current density. β = γh̄/2etFMs, where h̄ is the reduced Planck constant, e is electron
charge, tF is the thickness of the free layer, and Ms is saturation magnetization. Additionally, a random
vector representing thermal fluctuations at finite temperature is added to each time step into the effective
field term, similar to the implementation in MuMax3 [64]:

Htherm = η

s
2µ0αkBT
MsγV∆t

(3.2)

where η is a random vector from a standard normal distribution updated every time step, µ0 is vacuum
permeability, kB is the Boltzmann constant, T is the absolute temperature, V is the cell volume, and ∆t is
the simulation time step. Relevant simulation values for an in-plane anisotropy CoFeB/MgO/CoFeB
system are presented in Table 1.

The VCMA effect modulates the anisotropy field as well as the resistance when a voltage is applied. The
anisotropy field is modeled with the following:

ẑHk =
2Ki

tfreeMsµ0
− 2κsVbi

µ0Mstoxtfree
(3.3)
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where Ki is the anisotropy energy, tfree and tox are the thickness of the free layer and oxide layer respectively,
κs is the VCMA coefficient, and Vbi is the built-in voltage. The resistance of the MTJ can be expressed
as:

R = Rp
1 + (Vbi

Vh
)2 +TMR

1 + (Vbi
Vh

)2 + 1
2TMR(1 + sinθ cosϕ)

(3.4)

where Rp is resistance when the magnetizations of free and reference layers are parallel, Vh is the voltage at
which the TMR ratio is halved, and θ and ϕ are the polar coordinates for the unit vector magnetization of
the free layer.

In Fig. 3-1B, the conductance of the Bayes-MTJ device is sampled for 100 ns at a VCMA voltage of 0V,
0.5V, and 1V. In each case, the conductance varies randomly and continuously between the fully parallel
and fully anti-parallel states of the MTJ. Increasing the VCMA voltage decreases the TMR ratio, which
narrows the range of allowed output conductance and thus reduces the magnitude of conductance noise.
This device acts as a tunable noise source that is used by the cell design in Section 3.0.2 to encode the
standard deviation of a probability distribution.

3.0.1. Domain Wall Static Weight Encoder

To encode the static or mean value of a weight probability distribution, we use a domain wall-magnetic
tunnel junction (DW-MTJ) artificial synapse [26, 32]. This three-terminal device has previously been
shown to have extremely low read and write noise, an important feature for the precise encoding of
static weights. The DW-MTJ device contains a ferromagnetic rectangular wire that produces a magnetic
domain wall (DW). The wire lies underneath a tunnel barrier and a reference magnetic layer to form an
MTJ. The DW-MTJ can encode multiple conductance states based on the DW position, which controls
the proportion of the free layer that is parallel or anti-parallel to the reference layer. Notches are also
lithographically defined along the edges of the wire to provide linearly spaced, repeatable states and
reduce drift of the DW due to thermal fluctuations. A write operation is performed by passing current
in the direction of the desired DW motion, in-plane to the stack, while a read operation is performed by
measuring resistance perpendicular to the stack (through the tunnel barrier). DW motion is mediated by
spin transfer torque (STT) and an additional spin orbit torque (SOT) component provided by the heavy
metal layer underneath the free layer. A top-down schematic of the device is shown in Fig. 3-1C.

To model the more complicated physical dynamics of the DW in the free layer, the MuMax3 micro-
magnetics solver is used [64]. The finite temperature LLG equation described previously is solved for
each timestep for a multi-spin system. The constants used for the perpendicular magnetic anisotropy
CoFeB/MgO/CoFeB system in this simulation are shown in Table 2. To characterize the intrinsic noise
of a DW-MTJ, a DW is created at a notch within the track and the position of the DW is sampled over
25 ns at 300 K. This is repeated for all 16 levels to characterize the variation in DW position, shown in
Fig. 3-1C. On average, the DW-MTJ’s conductance noise is approximately 0.335% of the full conductance
range dictated by its TMR.
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3.0.2. Probabilistic In-Memory Matrix-Vector Multiplication

We propose a novel cell design shown in Fig. 3-2A to combine the Bayes-MTJ tunable noise source with a
DW-MTJ static weight, collectively encoding the trained weight probability distributions in BNNs. The
cell uses the difference in conductance of two DW-MTJs to represent both positive and negative weight
means. All three devices are connected on one end to the same metal column so that their output currents
add. The fabrication challenges of simultaneously integrating both types of devices are important to note.
Since the proposed cell centers around the use of the in-plane magnetization Bayes-MTJ, one solution is
to use in-plane magnetization DW-MTJ devices [65] to enable monolithic integration of both devices on
the same material stack. However, when scaling and energy efficiency is a concern, out-of-plane magnetic
systems are typically desired for the DW-MTJ device. This is because in-plane domain walls are generally
wider and more sensitive to track roughness [66], limiting scaling in contrast to out-of-plane systems. In
this case, heterogenous integration of two different magnetic material stacks is necessary. One solution is
for different stacks to be grown in different areas of the wafer for integration during the growth phase
[67]. Another possibility is to use flip chip integration, allowing devices to be fabricated on two different
magnetic substrates before being bonded together for final integration [68].

To realize independent control of the weight means by the DW-MTJs and the weight standard deviations
by the Bayes-MTJ, the time-averaged conductance of the Bayes-MTJ must be canceled out so that the
device contributes only zero-centered random noise. To accomplish this, a bipolar volage pulse is applied
to the Bayes-MTJ device consisting of two pulses of equal duration and amplitude but opposite polarity.
The resulting bipolar current is integrated over the full duration on a capacitor at the bottom of a column,
using a current conveyor (CC) circuit. The CC acts as a current buffer with large output resistance while
maintaining a virtual ground on the column [69]. The time-averaged conductance of the Bayes MTJ
contributes equal but opposite currents during the two halves of the pulse, and gets canceled out in
the final capacitor charge so that only the noise contribution remains. An important advantage of this
approach is that the cancellation does not depend on the value of the time-averaged conductance, so that
device-to-device MTJ variations can be tolerated.

Figure 3-2B shows the accumulated charge from the output of a Bayes-MTJ alone during a read pulse with
length tread = 2 ns, for five independent pulses. The dashed black line depicts the output of a deterministic
resistor with Rp = 2 kΩ. Each run with a Bayes-MTJ is an independent sample from the encoded weight
probability distribution. There is a clear difference in the noise distribution at different applied voltage,
where the final accumulated charge has a much tighter distribution around 0C when 2V is applied due
to the reduced TMR. Fig. 3-2C shows the distribution of the charge noise after 2 ns for two effective
Vbi, with 20,000 samples each. The distribution is not Gaussian, but can effectively approximate BNNs
trained with normally distributed weights, as shown in the next section.

The integrated charge Q from a Bayes-MTJ can then be converted to an effective conductance noise via
δGBMTJ = Q/Vread tread, where Vread is the read voltage (note that Q scales linearly with Vread so δGBMTJ
is independent of Vread). The dependence of the conductance noise standard deviation on built-in voltage
is shown in Fig. 3-2D, for tread = 2 ns. The range of modulation between maximum and minimum noise
standard deviation is 38.9:1. Fig. 3-2E shows how the noise standard deviation depends on the pulse length
at 0V built-in voltage. A 2 ns sample time is chosen to maximize the cycle-to-cycle fluctuations in capacitor
charge. A longer integration time averages out the effective conductance noise.
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Figure 3-2. (A) Probabilistic cell with one Bayes-MTJ and two DW-MTJ devices to encode a pro-
grammable Gaussian distribution. The third DW-MTJ terminal is used only during programming.
Currents on a column are integrated on a capacitor. (B) Charge on the capacitor Q vs. time due to the
Bayes-MTJ current at two values of Vbi. Each run is an independent read using a 2ns bipolar volage
pulse. (C) Distribution of the final capacitor charge Q(T = 2ns)induced by noise in the Bayes-MTJ,
at two values of Vbi with 20,000 samples each. (D) Standard deviation of Q(T = 2ns) vs. Vbi on the
Bayes-MTJ, (E) Q(T ) vs. the total pulse length T at Vbi = 0V.

The two DW-MTJs are driven by unipolar pulses of the same amplitude and total duration as the bipolar
pulse: one positive and one negative, so that their currents are subtracted. Currents from multiple cells of
this type can be summed on the same column, and the same read pulses can be broadcast to a row of cells.
This implements a fully analog, in-memory MVM where every matrix element is sampled simultaneously
from an independent probability distribution. The amplitude of the three pulses applied to each row is
proportional to the corresponding element of the input vector. The integrated charge can be read out as a
capacitor voltage that represents the final probabilistic matrix-vector product.

3.0.3. Mapping BNNs to Bayes-MTJ Arrays

For each probabilistic weight in the trained BNNs, the mean µ is mapped to the difference in conductance
(GDW+ −GDW−) of a DW-MTJ device pair. The standard deviation σ is encoded in the effective conduc-
tance noise of the Bayes-MTJ tunable noise source, defined in Section 3.0.2. The simulated Bayes-MTJ
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noise distribution in Fig. 3-2C does not exactly follow a Gaussian distribution. The Bayes-MTJ noise
distribution is zero-symmetric, strictly bounded, and has the same shape regardless of Vbi, which controls
the width of the distribution. To compactly model this distribution for large arrays, the following analytical
distribution is used, up to a normalization constant:

P(x) =
π
2
A sin

�π
2

(x+ 1)
�

+
1−A
B
√

2π
exp
�
−
� x
B

�2
�

(3.5)

where A = 0.9298 and B = 0.0367 are fitting parameters, and x is a random variable in the range (−1,+1).
For a desired value of σ , a random value x is sampled from this distribution and is converted to a conduc-
tance fluctuation by:

δGBMTJ (x) = 61.06S×
�

σ
µmax

�
×2.379x (3.6)

where 61.06 µS is the maximum Bayes-MTJ effective conductance noise at Vbi = 0V (using Vread = 0.1V,
tread = 2 ns, and Rp = 2 kΩ). The constant 2.379 accounts for the difference in the standard deviation
between P(x) and the standard normal N (0,1). The σ value is normalized by µmax, the largest absolute
value of µ for the layer, which is mapped to the parallel resistance of the DW-MTJ in Table II. The value
of Rp,DW was tuned to fit the BNN’s σ values inside the available conductance noise range.

Fig. 3-3B shows the simulated Bayes-MTJ noise distribution at a voltage of 0.5V alongside its analytical
distribution (blue) and a Gaussian distribution with the same standard deviation (red). Fig. 3-3C shows
the distribution of σ , expressed in terms of the target Bayes-MTJ conductance standard deviation, for a
five-layer Fashion MNIST BNN to be described in Section ??. The range between the green dashed lines
represents the σ values that can be encoded by the Bayes-MTJ having Vbi between 0V and 5V, which will
be the range used through the rest of the paper unless otherwise stated. Excluding the first layer, the vast
majority (99.5%) of the σ values in the BNN can be encoded by the Bayes-MTJ, with outliers clipped to
the nearest value inside the range. The first layer’s σ values are almost entirely zero, so it is implemented by
a standard array where no read pulses are delivered to the Bayes-MTJ rows.

For the spintronic hardware simulations of BNNs in the following sections, we extend the CrossSim mod-
eling framework [70] for analog accelerators to model in-memory computations with tunable stochastic
elements. The Bayes-MTJ is modeled using the analytical distribution above. The µ values were linearly
quantized to be compatible with four bits of precision in each DW-MTJ conductance (16 notches), and
the σ values were nonlinearly quantized to support four bits of precision in the VCMA voltage.

3.0.4. Quantifying Classification Uncertainty

For classification problems, a DNN typically has a softmax output layer, which can be interpreted as a
vector of probabilities p for every class. The information entropy of this vector measures the amount of
uncertainty in a given prediction: H(p) = −∑i pi logpi, where i indexes the class.

The uncertainty of a BNN is based on sampling N predictions, each yielding a probability vector p. The
overall prediction and confidence are based on the expectation value of the probability vector formed from
the N samples: E[p]. Multiple sampling of the probabilistic weights also allows the predicted uncertainty
for a given input to be decomposed into an aleatoric and epistemic uncertainty [71]:

Htotal = Haleatoric +Hepistemic (3.7)
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implemented without activating the Bayes-MTJ.

where
Htotal = H(E[p]), Haleatoric = E[H(p)] (3.8)

Aleatoric uncertainty Haleatoric originates from randomness or ambiguity inherent in the data, and the
epistemic uncertainty Hepistemic originates from the model’s lack of knowledge [72]. Aleatoric uncertainty
tends to be high when the input data is noisy, while epistemic uncertainty tends to be high if the input
is out of distribution, i.e. has properties that are distinct from the training data. Epistemic uncertainty
is particularly useful in enabling the neural network to make safe extrapolations to out-of-distribution
data [73]. Thus, the BNN offers two potential advantages over the DNN baseline: (1) better calibrated
uncertainty estimates, and (2) meaningful decomposition of uncertainty.

The loss function used for variational inference is a sum of the prediction’s categorical cross entropy and
the Kullback-Leibler (KL) divergence of each posterior distribution with the prior, aggregated over all
the weights. The KL divergence term is responsible for approximating Bayes’ theorem [45], while for the
DNN baseline only the categorical cross entropy loss is used.

A DNN and a BNN were trained on the Fashion MNIST dataset [74] with ten classes, both using the
LeNet-5 architecture [75], but with sigmoids replaced by Rectified Linear Unit (ReLU) activations and
average pooling replaced by max pooling. The DNN has 61.7K parameters and the BNN has 123.2K
parameters, since each weight has two parameters (µ and σ). The bias weights in the BNN are left
deterministic so that they can be implemented digitally within the accelerator. The same optimizer
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Figure 3-4. Distribution of predicted uncertainty (kernel density estimation) by the software DNN,
software BNN, and BNN simulated on spintronic hardware, on (A) the Fashion MNIST test set, and (B)
the EMNIST-Letters test set. Both the DNN and BNN were trained on Fashion MNIST. Uncertainties are
in units of information entropy. (C) Uncertainty calibration curve of the three cases on the Fashion
MNIST test set. Note that most of the predictions lie in the highest confidence bands.

(Adam), number of epochs (20), and learning rate (10−3) are used for both models. Fig. 3-3C shows the
distribution of trained σ values in the BNN for each layer.

First, both networks were evaluated on the Fashion MNIST test set (10,000 images) and the EMNIST-
Letters test set (10,000 images) of handwritten letters [76], representing out-of-distribution data where
the network should predict high uncertainty. The BNN was evaluated both in software and simulated
on the spintronic hardware, and was sampled 100 times unless otherwise specified. Fig. 3-4A and B show
that all cases predict low uncertainty on Fashion MNIST and higher uncertainty on EMNIST-Letters.
However, the DNN still has a prominent peak at low uncertainty for letters, whereas the BNN has a much
higher uncertainty overall, as expected.

To more quantitatively assess the quality of these uncertainty estimates, a calibration curve [77] is used,
shown in Fig. 3-4C. For each network, the Fashion MNIST test set is split into bins based on the confidence
of the prediction. If the uncertainty is well calibrated, the confidence should match the accuracy of the
images in the bin: e.g. for images where the network has 50% confidence, it should ideally be correct 50% of
the time. Fig. 3-4C shows that the BNN is better calibrated than the DNN, which is over-confident, and
that the spintronic BNN closely implements the software BNN despite the limited noise range, limited
noise precision, and the difference in distribution shape. An overall metric for the quality of the uncertain
estimate is the expected calibration error [77]:

ECE =
M

∑
m

Nm

Ntest
|acc(xm)− conf (xm)| (3.9)

where xm is the set of images in the mth confidence bin, Nm is the number of images in this bin, and
Ntest = 10,000 is the size of the test set. The accuracy and ECE for the three cases are shown in Table 3.

We further probe the differences between the BNN and DNN by experimenting with images that are
linear superpositions of Fashion MNIST clothing items and EMNIST letters. This is parameterized by
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the letter fraction, where 0% is a Fashion MNIST image and 100% is a letter image, as shown in Fig. 3-5A.
Fig. 3-5B shows the ECE vs letter fraction, where 1000 random clothing-letter pairs were generated for
each letter fraction from 0% to 90%, separated by 10% intervals. The label for each image is the original
Fashion MNIST label. The ECE is less meaningful at very high letter fractions where the image is very
weakly related to its label. The BNNs, including the spintronic implementation, have lower ECE at all
values of the letter fraction, indicating better calibrated uncertainties. Fig. 3-5C shows how the spintronic
hardware’s ECE changes as the noise On/Off ratio of the Bayes-MTJ is decreased below what can be
achieved with Vbi = 5V (see Fig. 3-2D). A ratio larger than 10 can accurately capture the small σ values in
the network.

Finally, Fig. 3-5D and E compare the decomposed uncertainty components of the DNN and spintronic
BNN, respectively. The DNN baseline is deterministic, so it cannot predict a non-zero epistemic uncer-
tainty. For both models, the aleatoric uncertainty peaks at an intermediate letter fraction, though this is
more evident in the BNN. This is hypothesized to be due to the fact that images with near-equal mixtures
of letters and clothing items have the greatest number of overlapping spatial features and thus appear more
noisy. Meanwhile, the BNN’s predicted epistemic uncertainty increases nearly monotonically with letter
fraction, which matches the fact that a higher letter fraction means that the image is farther away from the
training distribution. The epistemic uncertainty is important for increasing the BNN’s uncertainty for
images with large letter fraction where the original Fashion MNIST label is harder to predict.

3.0.4.1. CIFAR-100 Experiments

To demonstrate the feasibility of the spintronic BNN accelerator on a more complex problem and a larger-
scale algorithm, deep residual networks (ResNets) [78] were trained on the CIFAR-100 image classification
dataset with 100 classes [79]. The ResNet topology in Fig. 3-6A was used to train both a DNN and a BNN
having 1.25M and 2.50M parameters, respectively. To improve accuracy, both networks were trained with
data augmentation (random horizontal flips, random horizontal shifts ≤10%, and random vertical shifts
≤10%) applied to the training images. Both networks were trained for 100 epochs with the same optimizer
(Adam) and learning rates. Fig. 3-6B shows the distribution of σ values in the BNN for each layer. To
facilitate mapping to the Bayes-MTJ, a maximum value constraint was imposed on σ during training.

The spintronic hardware implementation of the BNN used the same assumptions as for Fashion MNIST,
except that we represent µ values with eight bits of precision using bit slicing [9]: each µ value uses two pairs
of DW-MTJ devices with 16 notches per device. One pair encodes the higher four bits and is integrated
with the Bayes-MTJ that encodes the 4-bit σ value. The other pair encodes the lower four bits in a separate
array where the Bayes-MTJ rows are left unused. The Bayes-MTJ is not used for the first convolution layer
where most of the σ values are near zero. To improve energy efficiency, the batch normalization operation
is folded into the convolution µ and σ values [80].

The ECEs of the trained ResNets on the CIFAR-100 test set (see Table 3) are larger than for Fashion
MNIST due to the greater complexity of the task: correct predictions with high confidence were less
dominant in CIFAR-100. The BNN reduces the ECE by 7×, at a cost of just 0.41% in top-1 accuracy. Fig.
3-6C shows the calibration curves. The spintronic implementation of the BNN tends to be more confident
than the software BNN. We hypothesize that this is because the analog accelerator resamples the Bayes-
MTJ noise on every probabilistic MVM, and thus each instance of weight re-use in a convolution layer
independently resamples the posterior weight distributions. Averaged across the ResNet, a given weight is
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Figure 3-5. (A) Continuous transformation from Fashion MNIST to EMNIST-Letters images by varying
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(δGBMTJ,max/δGBMTJ,min). The maximum value of Vbi needed to achieve the On/Off ratio is labeled. (D)
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units of information entropy and the shaded regions contain the middle 50% of 100 FMNIST-to-Letters
transformations tested.

re-sampled 51× per image in the analog accelerator. By contrast, the software (TensorFlow Probability)
implementation only resamples weights once per batch of 32 images to reduce RNG overheads. The much
more frequent resampling allows for greater cancellation of the noise in the subsequent layer, reducing
the overall variance in the network’s predictions and leading to greater confidence.

Fig. 3-6D shows that by varying the weighting factor on the KL divergence loss term relative to categorical
cross entropy, BNNs can be trained at different points along the trade-off between accuracy and ECE. The
ECE does not directly track this hyperparameter but rather has a minimum; the BNN is over-confident to
the left of the minimum and under-confident to the right. The ECE minimum lies further to the right for
the spintronic implementation. This is because the analog hardware is slightly more confident, so it tends
to be well-calibrated where the software BNN is slightly under-confident.

As with Fashion MNIST, uncertainties far away from the training set were evaluated by continuously
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blending CIFAR-100 images with a different dataset: the Street View House Numbers (SVHN) dataset
[81], which uses 32×32 RGB images similar to CIFAR-100. The ECE vs SVHN fraction is shown in Fig. 3-
6E. The ResNet BNN and its spintronic hardware implementation produce significantly better-calibrated
uncertainties on out-of-distribution data than a conventional classification ResNet.
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Figure 3-6. (A) ResNet topology for CIFAR-100 image classification, used for both the DNN and BNN.
An asterisk denotes a stride of two. Convolutions other than layers 6, 9, and 12 are followed by batch
normalization. (B) Distribution of trained σ values for each layer of the ResNet, mapped to Bayes-MTJ
conductance noise. (C) Comparison of uncertainty calibration curves for the ResNet DNN, BNN, and
BNN simulated on spintronic hardware, for the CIFAR-100 test set. (D) Accuracy and ECE on the
CIFAR-100 test set for various BNNs trained with different weighting factors on the KL divergence
term of the loss function. Each network is evaluated both in software and simulated on the spintronic
accelerator. (E) ECE vs SVHN fraction for CIFAR-100 images continuously mixed with SVHN images.
Results in (C) and (E) used a BNN with a KL divergence weighting factor of 0.2 and 100 samples per
prediction. Results in (D) are based on 25 samples per prediction.

3.0.5. Quantifying Regression Uncertainty

The proposed spintronic BNN accelerator can also be used to efficiently quantify uncertainty with
regression models, where a continuous quantity is predicted rather than a discrete class. We use the Auto
MPG dataset [82], where the task is to predict an automobile’s fuel efficiency given eight other attributes
of the car which can be continuous (e.g. horsepower, weight) or discrete (e.g. model year, number of
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cylinders). The dataset of 398 cars is divided into 255 training, 64 validation, and 78 test examples. A
simple BNN is trained for 500 epochs using VI with three dense layers that have 128, 32, and 1 output,
respectively. Unlike the classification case, a negative log-likelihood loss function is used that assumes a
normal distribution for the fuel efficiency y:

L (ypred, ytrue, σ0) = − log

"
1

σ0
√

2π
exp

 
−
(
ytrue− ypred

�2

σ2
0

!#
(3.10)

where ypred is the predicted fuel efficiency, ytrue is the true efficiency, and σ0 is a hyperparameter that is used
to calibrate the estimated uncertainty of the model. For this network topology, which produces point
predictions, the corresponding DNN does not provide any uncertainty estimate because the output has
no probabilistic interpretation.

The model’s predictive uncertainty is obtained by defining confidence intervals (CIs) that contain some
percentage of the 1000 BNN point predictions for each input. Fig. 3-7A shows the mean prediction and
90% CIs for the examples in the test set, where blue indicates that the true fuel efficiency lies within the 90%
CI. For a model that produces well-calibrated uncertainties, a CI containing α% of the predictions should
contain the true output for α% of the test inputs. Fig. 3-7B shows that the BNN gives well-calibrated
uncertainties across the full range of CIs (values of α), and the spintronic hardware closely matches the
ideal software results.
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Figure 3-7. (A) Spintronic BNN regression results on the Auto MPG test set, comparing the predicted
to true efficiency. Error bars show the 90% confidence interval obtained from sampling 100 BNN
predictions. Blue indicates points where the true values lies inside the 90% confidence interval. (B)
Calibration curve for the software and spintronic implementation of the regression BNN on the Auto
MPG test set.

3.0.6. Energy efficiency

Compared to conventional digital implementations of BNNs, the proposed MTJ-based probabilistic
MVM engine saves considerable energy by performing multi-bit RNG and multiply-accumulate (MAC)
operations using low-voltage magnetic devices in the analog domain. Furthermore, the proposed hardware
can be more efficient than previously proposed MTJ-based accelerators [40, 83] by integrating the two
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functions within the same array, without the need for intermediate digital processing to compute a
probabilistic MVM.

Fig. 3-8A shows how the energy consumption per probabilistic MAC operation scales for the proposed
spintronic accelerator. Circuit energies were computed based on a 40nm transistor process, assuming
8-bit precision for the analog-to-digital converter (ADC) and shared digital-to-analog converter (DAC).
To reduce the current consumption of the CC, MTJs with higher resistance than listed in Tables 1 and
2 are assumed (Bayes-MTJ Rp = 10 kΩ, DW-MTJ Rp = 56 kΩ). We also consider the efficiency of a
system that uses the highest MTJ resistances demonstrated in the literature [84] (Bayes-MTJ Rp = 1 MΩ,
DW-MTJ Rp = 5.6 MΩ). Since the CC, ADC, or DAC dominate the energy, higher efficiency can be
obtained in large arrays where these costs can be amortized over more MACs. Meanwhile, the cost of
true RNG in state-of-the-art CMOS circuits is about 1.6 pJ/bit [1], or 6.4 pJ to generate a 4-bit random
value that matches the assumed programming precision of the Bayes-MTJ. Multiplication of 4-bit values
incurs an additional ∼0.05 pJ/MAC [85]. The spintronic accelerator can yield more than 100× energy
improvement at large array sizes.

An energy cost associated with BNNs, whether implemented in digital software or a spintronic accelerator,
is the cost of randomly sampling the prediction multiple times. Resampling the noisy weights is needed
to produce well-calibrated uncertainties, and also improves accuracy by ensembling the predictions of
multiple weight samples. Fig. 3-8B and C show how the accuracy and ECE on Fashion MNIST and
CIFAR-100 depend on the number of samples for the spintronic BNN. The number of samples needed
for convergence of accuracy and ECE depends on the task, and this number is the overhead factor of a
BNN prediction over a DNN prediction on the same analog hardware.
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Figure 3-8. (A) Energy consumption per probabilistic MAC operation within an N ×N probabilistic
MVM executed by the spintronic in-memory computing accelerator (blue). Two values of the Bayes-
MTJ parallel resistance are considered. The black dashed line shows the efficiency of performing the
same probabilistic MACs using the CMOS True RNG from Bae et al. [1]. (B)-(C) Accuracy and ECE
vs. number of sampled predictions from the spintronic BNN on the Fashion MNIST and CIFAR-100
datasets.
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Symbol Parameter Value
α Gilbert damping 0.01
Ms Saturation magnetization 1× 106 A/m
Ki Anisotropy energy 0.08 J/m2

κs VCMA coefficient 75× 10−15 J/m
P Spin polarization 0.6
tMgO MgO thickness 1.5 nm
tfree Free layer thickness 1.5 nm
d MTJ diameter 50 nm
TMR Tunnel magnetoresistance 200%
Vh Voltage where TMR is halved 0.5 V
Rp Parallel resistance 2 kΩ
T Temperature 300 K

Table 3-1. Physical parameters used in the macrospin LLG simulations of the Bayes-MTJ.

Symbol Parameter Value
α Gilbert damping 0.02
Ms Saturation magnetization 8× 105 A/m
Ku Perpendicular anisotropy 5× 105 J/m3

A Exchange constant 1.3× 10−11 J/m
DMI Dzyaloshinskii-Moriya interaction constant −0.05 J/m2

P Spin polarization 0.7
tfree Free layer thickness 1.5 nm
l Free layer length 600 nm
w Free layer width 40 nm
wn Notch width 10 nm
dn Notch depth 10 nm
sn Notch spacing 35 nm
Rp Parallel resistance 11.1 kΩ
TMR Tunnel magnetoresistance 200%
T Temperature 300 K

Table 3-2. Physical parameters used in micromagnetics simulations of the DW-MTJ.

Metric DNN (software) BNN (software) BNN (spintronic)
Accuracy (Fashion MNIST) 90.09% 89.98% 89.53%
ECE (Fashion MNIST) 3.28% 1.54% 0.83%
ECE (50% Letter fraction) 34.35% 12.27% 7.00%
Accuracy (CIFAR-100) 67.98% 63.65% 63.47%
ECE (CIFAR-100) 15.38% 7.59% 3.86%
ECE (50% SVHN fraction) 31.40% 13.62% 9.64%

Table 3-3. Accuracy and expected calibration error of trained networks.
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4. RETENTION OF DW SYNAPSES

4.0.1. Methodology for elevated-temperature DW-MTJ simulations

The above probabilistic computing schemes that rely on spintronic synapses, as well as more conventional
schemes implementing neural networks with purely scalar weights [26, 32], are only valid in the inference
regime assuming that weights programmed remain programmed over time. DW-MTJ synaptic devices
benefit from multiple strengths from relying on current-induced nucleation and reaction to external
voltage forces, but the underlying physical equations for domain-wall propagation also notably expose
them to an increased probability of state drift (DW movement) as temperatures increase. In this sub-
section of our project, we began exploring DW retention using archetypal domain wall track systems and
simulating them at elevated temperatures using MuMax [64].

Figure 4-1. (A) Schematic for simulation methods; heavy metal track with structured notches evolves
over time where notch represents energy wells and thermal energy can induce motion of the DW
(white strip between blue and red regions in P and AP states, respectively). (B) Depiction of DW
position in a notchless track demonstrating broader motion. Sampling strategy is indicated; the black
rectangles overlaid on the image demonstrate the sampling window size method that is employed in
following figures.

As shown in Fig. 4-1A, the overall research objective is to explore how the limits of energy barriers
introduced into the DW racetrack (notches). Analytically, the rate of escape from a notch , k, is overall
modeled as an Arrhenius-like process. Specifically, it can be modeled with respect to an exponentiated
activation energy of the notch (Ea) divided by the Boltzmann constant and the ambient temperature T ,
where this term must be fit. In turn, the simplified retention time tr is simply 1/k. In order to provide a
constant lens of analysis over different simulation time lengths, a sampling window approach was utilized
where different sampling windows are nested over the total simulation time , as in 4-1B. These windows
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can be used to calculate a) standard deviation of distance traveled, or b) probabilities of escape from a
notch (not relevant in the notchless track case where unlimited travel is allowed.

For the second case specifically, this methodology suggests that , once a DW propagates a certain thresholded
distance ∆d beyond the center of a given notch N , the detected jump at time ∆t can be used to inform
and fit predicted retention for that model system. One such example is shown in Fig. 4-2A; in this case,
∆t = 85ns. Meanwhile, Fig. 4-2B demonstrates the relationship between an effective notch case and
an unbounded notchless case. As a function of the sampling window , the standard deviation of DW
propagation continues to increase in the notchless case, while it plateaus in the notched case (atT = 300K ).
However, in higher temperature scenarios, the notched case will not effectively plateau, leading to the
need for additional mechanisms for enhanced retention. These scenarios are discussed in the following
section.

Figure 4-2. (A) Demonstration of a single retention simulation for a notched case where jump from
originating notch is detected and recorded in order to inform retention studies. (B) Point cloud data
for several hundred individual simulations usng a variety of sampling window widths. This data can
help support quality claims for probability of retention at a given temperature. In this case, where
T = 300K , and anisotropy Ku = 1e6, notch width wn = 10nm, notched operation is reliable.

4.0.2. Anisotropy: a method for retention enhancement

At higher ambient temperatures, the odds of a domain wall escape continue to increase to an intolerable
level, and the use of anisotropy (stiffness of the magnetic thin film the DW transits through) becomes
critical. This dynamic is highlighted in the overall contrast between Fig. 4-3A,B. Specifically, at around
room temperature (T = 300k) , some anisotropy values for the track such as those around Ku = 1e6 or
a bit lower allow for adequate retention, and less stiff simulated variants behavior almost equivalent to
the notchless cases. In the high temperature scenario, even the stiffest simulated tracks show inadequate
retention.

In addition to anisotropy, further notch geometries wn can be explored in order to further enhance
geometry. The aggregate results of merit for retention (e..g predicted retention time tr given) are shown in
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Figure 4-3. (A) Standard deviation computed over various sampling windows in the low temperature
scenario with multiple scenarios/tracks simulated for each anisotropy configuration (B) Same results
for the high temperature environment.

Fig. 4-4A,B, where (A) explores in depth the temperature dependence of the model system for various
notch widths given a sufficiently thick track, and (B) explores the end retention time predicted for different
Ku given a set width geometry. In addition, the predicted tr then allows us to fit the earlier equations. For
instance, at the Ku = 1e6 case with wn = 10nm, the energy activation energy is Ea = 2e− 19J , with a fitting
paramter of B = 8.1e− 14s. For the same track width and at Ku = 5e5, these values fall to 2.8e− 11, wth a
fitting parameter of B = 8.1e− 14s

The aggregate results suggest that a sufficiently stiff track , with the smallest notch realistically fabricable ,
could open up the doorway to hundreds of hours of retention or better at room temperature. Immediate
next steps including getting actual tr values at room temperature or slightly aboveT = 300−400K , which
unlike these higher T simulations require much longer simulation steps to validate these predictions.
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Figure 4-4. (A) Average retention time tr, averaged over many individual simulation runs, as a function
of the temperature simulated . In this pane, anisotropy is held constant and notch width is being
varied. (B) The same simulation set-up as (a), but in this case notch width is held constant and
notch anisotropy is being varied. As visible, anisotropy has a very significant effect, with larger
values e.g. Ku = 1e−6 potentially paving the way towards days of retention at RT or slightly elevated
above RT temperatures (full simulations for these lower temperatures were not completed due to
computational tractability of the simulations).
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5. SUMMARY AND PERSPECTIVE

Our results confirm that a Bayes-MTJ noise encoder (programmable standard deviation σ ) and a pair
of DW-MTJ devices constructing a spintronic synapse ( programmable mean µ) can collectively encode
expressive probability distributions with sufficient quality for real BNN operations. The two types of
devices can be co-integrated within a compact nanofabric, paving the way to one-shot probabilistic matrix-
vector multiplications in the analog domain. The proposed hardware can be 10−100×more efficient than
performing the same computation using conventional RNGs, and can be made even more so with more
resistive MTJ devices. We simulated classification and regression Bayesian neural networks whose trained
probabilistic weights are encoded using the novel spintronic technology. Despite device non-idealities
(non-Gaussian noise distribution, limited range and precision in representing σ and µ), the spintronic
BNN implementation produces well-calibrated and decomposable uncertainty estimates on CIFAR-100,
Fashion MNIST, and perturbed versions of these datasets. The spintronic hardware yields high-fidelity
accuracy and ECE metrics that are nearly identical or superior to those produced by a software BNN.
To demonstrate feasibility on more complex tasks and to relax device programming precision and range
requirements, future work will investigate closer co-design of the algorithm and device by integrating
device properties into the VI training of the BNN.

Meanwhile, our intial exploration of domain-wall memory retention has us cautiously optimistic about
the feasibiliity of synapses that last weeks or longer, even in slightly elevated temperature environments.
However, this exploration made it clear that a simple device design that does not intelligently account for
the energy barrier of the trapped domain wall will not be able to deliver these metrics. In the next research
cycle, further experimental and theoretical explorations of mechanisms for effective and long-lasting
anisotropy modification, including VCMA-based circuit modulation ideas , will be critical. Even more
exotically, ideas such as magneto-ionics could present a win-win by not only inducing more expressive
single synapse behavior, but at the same time solidfying retention into a range that isn’t achievable in
current DW-MTJ device designs.
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