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ABSTRACT 
Representation of soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key 
source of uncertainty in predicting carbon climate feedbacks. The magnitude of this uncertainty 
can be reduced by accurate representation of environmental controllers of SOC stocks in ESMs. 
In this study, we used data of environmental factors, field SOC observations, ESM projections 
and machine learning approaches to identify dominant environmental controllers of SOC stocks 
and derive functional relationships between environmental factors and SOC stocks. Our derived 
functional relationships predicted SOC stocks with similar accuracy as the machine learning 
approach. We used the derived relationships to benchmark the coupled model intercomparison 
project phase six ESM representation of SOC stocks. We found divergent environmental control 
representation in ESMs in comparison to field observations. Representation of SOC in ESMs can 
be improved by including additional environmental factors and representing their functional 
relationships with SOC consistent with observations. 
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EXECUTIVE SUMMARY 

Representation of soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key 
source of uncertainty in predicting future carbon climate feedbacks. The magnitude of this 
uncertainty can be reduced by accurate representation of environmental controllers of SOC stocks 
in ESMs. In this study, we used data of environmental factors, field SOC observations, ESM 
projections, and machine learning approaches to (1) identify dominant environmental controllers 
of SOC stocks in observations and ESMs, (2) derive functional relationships between 
environmental factors and SOC stocks, (3) use the derived functional relationships to predict SOC 
stocks and compare prediction accuracy of the two approaches, and (4) benchmark the 
environmental control representation of SOC in coupled model intercomparison project phase six 
ESMs.  
Our results show divergent environmental control representation of SOC stocks in ESMs in 
comparison to field observations. Out of the 50 environmental factors we investigated, 14 were 
identified as dominant environmental predictors of global SOC stocks. Our results show diurnal 
temperature, drought index, cation exchange capacity and precipitation as most important observed 
environmental controllers of global SOC stocks. Random Forest (RF) model prediction of 
observed SOC stocks at global scale resulted in R2 and RMSE of 0.61 and 0.46 kg m-2 respectively. 
However, in ESMs, precipitation, temperature, and net primary productivity explained >96% 
variability of modeled SOC stocks. Our results show control of temperature on SOC stocks better 
constrained in ESMs in comparison to the controls of precipitation and net primary productivity. 
Representation of SOC in ESMs can be improved by including additional environmental factors 
in model representations and representing the functional relationships of environmental factors 
with SOC stocks consistent with observations. 
Various federal agencies and private foundations have shown interest in supporting studies using 
ML. As a result, use of ML approaches is increasing in diverse scientific applications including 
SOC storage and dynamics. DOE-BER has shown interest in building a research program to use 
ML to enhance Earth system predictability. Our study documents a unique use of ML to advance 
the representation of SOC stocks in ESMs.  
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ACRONYMS AND TERMS 
 

Acronym/Term Definition 
SOC Soil organic carbon 

ESM Earth system model 

ML Machine learning 

RF Random forest 

GAM Generalized additive modeling 

NLCD National land cover database 

NDVI Normalized difference vegetation index 

NPP Net primary productivity 

VBFI Valley bottom flatness index 

PET Potential evapotranspiration 

MSE Mean squared error 



 

9 

1. INTRODUCTION 
Soils store a large and dynamic fraction of global terrestrial carbon (Sulman et al., 2020), and 
affect many ecosystem services ( Lal, 2013). Soils can act as sources or sinks of atmospheric CO2, 
depending on land use, management interventions, and environmental conditions. Observation-
based SOC stock estimates show large spatial heterogeneity (Batjes, 2016; Hengl et al., 2014). 
This observed spatial heterogeneity in SOC stocks is primarily controlled by the soil forming 
factors: climate, organisms, topography, parent material, and time (Jenny, 1941; McBratney et al., 
2003). As a result, different combinations of these environmental factors have widely been used 
for spatial prediction of SOC stocks at different scales (Adhikari et al., 2020; Mishra et al., 2021; 
Vitharana et al., 2017). Despite their key role in determining the spatial heterogeneity of SOC 
stocks and regulating land-atmosphere exchanges of carbon, the control of these environmental 
factors on SOC stocks are not correctly characterized and represented in current land surface model 
process representations. As a result, land models poorly represent current SOC spatial 
heterogeneity (Carvalhais et al., 2014; Todd-Brown et al., 2013), which contributes to large 
uncertainty in predicting future carbon-climate feedbacks (Arora et al., 2020; Friedlingstein et al., 
2014). Therefore, to reduce uncertainty in future carbon-climate feedback projections, it is critical 
to accurately (i.e., consistent with observations) represent environmental controllers of SOC stocks 
in ESMs.  
A variety of approaches have been applied to predict the spatial heterogeneity and infer 
environmental controllers of SOC stocks (Lamichhane et al., 2019; Minasny et al., 2013). Among 
different approaches applied for spatial predictions of SOC stocks, linear regression and ordinary 
kriging have been most widely used approaches (Minasny et al., 2013; Zhang et al., 2017). Linear 
regressions quantify the strength and direction of relationships between environmental factors and 
SOC stocks and have been applied primarily due to their simplicity and ease of interpretation of 
the results obtained. Ordinary kriging uses the spatial autocorrelation among existing samples to 
predict the value of SOC stocks at an unsampled location. 
However, several recent studies demonstrated use of nonlinear approaches to predict the spatial 
heterogeneity of SOC stocks. Among nonlinear methods, machine learning (ML) approaches are 
increasingly being applied to predict soil properties, including SOC stocks (Lamichhane et al., 
2019; Padarian et al., 2020; Siewert, 2018). Heuvelink et al. (2020) used a quantile regression 
forest machine learning approach to predict the annual SOC stock of surface soils of Argentina 
between 1982 and 2017 and reported a larger temporal variation in comparison to the 
Intergovernmental Panel on Climate Change Tier 1 approach of predicting SOC change. Ottoy et 
al. (2017) compared four digital soil mapping approaches to predict SOC stocks at a regional scale 
and reported boosted regression trees achieved highest prediction accuracy. Authors identified 
drainage condition, soil type, and vegetation type as important environmental predictors of SOC 
stocks. Vos et al. (2017) used various data mining approaches to identify and interpret main factors 
that controlled the cropland SOC stocks. Authors reported land use, land-use history, clay content 
and electrical conductivity as main predictors of the topsoil SOC stocks, whereas bedrock material, 
relief and electrical conductivity were main predictors of the subsoil carbon stocks. Bui et al. 
(2009) reported that SOC in Australian agricultural soils were related to vegetation, biomass, soil 
moisture and temperature patterns. Authors reported that the structure in the multivariate 
relationships between environmental factors and soil properties were consistent with principles of 
pedogenesis and landscape ecology. In a review of digital soil mapping literature, Ma et al. (2019) 
documented that the pedological knowledge can be used in digital soil mapping and digital soil 
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mapping can also lead to new knowledge discovery regarding the soil formation. However, 
Wadoux et al. (2020a) noted that the knowledge discovery based on ML needs to be treated with 
caution. Interestingly, authors demonstrated how pseudo-covariates not related to any soil-forming 
factors and processes can also accurately predict soil organic carbon. Therefore, careful pre-
selection and preprocessing of pedologically relevant environmental covariates and the posterior 
interpretation and evaluation of the recognized patterns can only provide meaningful insights. 
More recently, ensembles of multiple approaches have been applied to improve the spatial 
prediction of SOC stocks (Riggers et al., 2019; Vašát et al., 2017). A recent study showed that the 
median prediction obtained from an ensemble of ML approaches better predicts the spatial 
heterogeneity of SOC stocks in comparison to individual ML or hybrid approaches, such as 
regression kriging (Mishra et al., 2020). In many previous studies, ML approaches were used to 
identify important environmental predictors and predict the spatial variation of SOC stocks. In a 
recent review of ML applications in soil science, Padarian et al. (2020) identified two primary 
research needs: (1) identification of parsimonious ML models and (2) interpretability of the applied 
ML models. Similarly, in another review, Wadoux et al. (2020b) identified the need to incorporate 
pedological knowledge in ML algorithms to make these approaches more relevant to soil science. 
These authors identified plausibility, interpretability, and explainability as the greatest challenges 
in using ML approaches in soil science.   
Current ESMs, however, only use the effects of a limited number of environmental factors in 
representing SOC storage. A recent study that compared SOC stocks from multiple ESMs against 
observation has indicated that there is still large knowledge gap in both ESMs and observations 
(Georgiou et al., 2021). It is imperative to compare ESM simulations against global SOC datasets 
to evaluate model performance and identify key environmental controllers in representing global 
SOC storage. Benchmarking ESM simulations against observed data is a most common approach 
for model evaluation (Luo et al., 2012; Todd-Brown et al., 2013; Collier et al., 2018). Through 
comparing model simulations with observations, we diagnose model’s strengths and deficiencies 
in simulating SOC storage and identify key factors for future improvement. The emerged 
understanding of SOC storage in benchmarking could further develop to new model structures (by 
identifying key processes) and new parameterizations (by quantifying key relationships between 
SOC and environmental variables) of ESMs. Thus, benchmarking analysis of ESMs is an effective 
tool to reduce uncertainties in predicting SOC dynamics and provide more trustworthy information 
for environmental management and policymakers (Lauer et al., 2017). 
The specific objectives were to (1) use machine learning to select important environmental 
predictors of SOC stocks, (2) derive empirical relationships between environmental factors and 
SOC stocks, (3) use the derived functional relationships to predict SOC stocks and compare 
prediction accuracy of the two approaches, and (4) use the derived relationships to benchmark the 
environmental control representation in coupled model intercomparison project phase six ESMs. 
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2. METHODS 
 

2.1 Soil organic carbon observations 

We used field SOC measurements from the rapid carbon assessment project of the Natural 
Resources Conservation Service’s Soil Science Division of the USDA (Soil Survey Staff and 
Loecke, 2016) to achieve our study objectives 1-3. That assessment project was designed to 
produce a robust estimate of SOC stocks in different kinds of soils and land uses across the 
conterminous United States based on consistent and dedicated soil sampling. Over 6200 sampling 
sites across the conterminous United States (Fig. S1) were established following a hierarchical 
sampling design consisting of major land resource areas as first-level strata, which were further 
stratified based on land use and land cover and soil types in a nested fashion. Soil samples at 
observation locations were collected from genetic horizons and were analyzed for SOC 
concentration and bulk density following the Soil Survey Laboratory Methods Manual (Burt, 2004; 
Grossman & Reinsch, 2002). However, this study considered SOC stock for only the top 30 cm of 
soil, calculated after correcting it for coarse fragments (Eq. 1). For soil samples with missing bulk 
density measurements, a pedotransfer function based on a RF approach was developed (Sequeira 
et al., 2014) and SOC stock was calculated as  

𝑆𝑂𝐶!"# = %(𝑆𝑂𝐶 × 𝐵𝐷 × 𝐷) × +1 − $%
&''
./,        (1) 

where SOCstk is the SOC stock (t C ha−1), SOC is the SOC concentration (g C 100g-soil-1), BD 
is the soil bulk density (g cm−3), D is the soil layer thickness (cm), and CF is the volumetric 
fraction of the coarse fragments.  
To benchmark the ESM representation of SOC stocks (objective 4), we used the World Soil 
Information Service (WoSIS) datasets. The World Soil Information Service (WoSIS) compiled 
SOC profiles across the globe after quality assessment. The 2019 snapshot of WoSIS dataset 
conserved 111,380 soil profiles with SOC content information (unit: g C g-1) at different soil depths 
(Batjes et al., 2020). Another dataset we used in this study was compiled from Mishra et al. (2021). 
This dataset contained 2,546 soil profiles with SOC stock (g C m-3) information in permafrost 
regions in North America, northern Eurasia, and Qinghai-Tibet Plateau. In total, we used 113,926 
soil profiles from these two data sources. Because not all the soil profiles in our database preserve 
SOC information that covers the whole 0 – 100 cm interval, eventually we used 54000 soil profiles 
reporting SOC stocks of 0 – 100 cm. Because values of SOC stock across profiles were highly 
skewed, we used their natural log values in this study.  

 
2.2 Environmental predictors of soil organic carbon stocks 

 

The storage and cycling of SOC stocks are controlled by multiple environmental variables 
including, climatic variables, soil type, topographic variables, and land cover and land use. For 
objective 1-3, we compiled 31 environmental variables from different sources and evaluated their 
usefulness as predictors of SOC in the study area (Table S1). These variables were representative 
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of major soil forming factors: climate, vegetation, topography, and parent material (Jenny, 1941; 
McBratney et al., 2003). Seven of the 31 variables were climatic variables, obtained from 
Parameter-elevation Regressions on Independent Slopes Model and global climate and weather 
data: the 30-yr (1981 to 2010) annual average of minimum, mean, maximum, and dewpoint 
temperatures; precipitation as rainfall; rainfall during the wettest and driest quarter in a year; and 
potential evapotranspiration. Six of the 31 variables described vegetation characteristics: land use, 
land cover, potential vegetation cover, remote sensing data (median value of surface reflectance 
during the growing season), net primary production, and ecological regions. Ten variables related 
to topography were derived from the national digital elevation model at 30-m spatial resolution 
that was resampled to 100-m grid scale for this study: elevation, slope aspect, slope length factor, 
multi-resolution valley bottom flatness index, melton ruggedness index, mid-slope position, 
wetness index, slope height, slope gradient, and valley depth. Five variables described soil 
environment (parent material and soil climate): soil types, surface geology, natural drainage 
condition, hydrological unit, and soil temperature regime. For these 31 environmental variables, 
vector layers were rasterized when necessary, and all the raster layers and point SOC observations 
were projected to a common Universal Transverse Mercator projection system (NAD 1983). The 
values of the environmental variables at sampling locations were then extracted and a matrix of 
SOC stock and 31 predictors (6123 rows, 34 columns) was created for modeling. All the 
categorical variables were converted to integer variables before using in this analysis. 
 
For the ESM benchmarking (objective 4), we compiled 50 environmental variables from different 
sources and evaluated their usefulness as predictors of global SOC stocks. The climatic variables 
include annual average temperature, precipitation, evapotranspiration, drought, and its statistics 
for different temporal scales. The soil related variables include clay content, sand content, silt 
content, texture, pH, cation exchange capacity. Land cover variables include IGBP types, 
vegetation cover, and ESA land cover types.  Topographical variables include Elevation and depth 
to bedrock.  
 
2.3 Dimensionality reduction using Random Forest 

We used a Random Forest (RF) regression approach to identify important environmental 
predictors of SOC stocks. RF is based on a decision tree model and consists of an ensemble of 
randomized classification and regression trees with a bootstrap aggregation (Breiman, 2001). In 
RF, a training data set is first randomly drawn with replacement from the original data set. Then, 
a decision tree is fitted to the training data set by randomly selecting a subset of the input variables 
at each branch split. Typically, only p/3 variables are used to decide a branch split for a regression 
tree, where p is the number of predictor variables. The process is repeated to build many 
uncorrelated trees, hence the name “forest”, and the prediction is computed by averaging the 
predictions of each tree. RF is one of the most popular predictive models in ML due to its 
outstanding performance even with little parameter tuning (Hastie et al., 2001). The RF model was 
trained by using the “randomForest” package in R (Liaw & Wiener, 2002). The total number of 
regression trees (ntree) was set to 500, and mtry=10 (  31/3) variables were randomly selected to 
compute a split at each branch. The number of minimum data points to stop growing a tree was set 
to nodesize=10. Because each tree of the RF is trained with a subset of the original data set, the 
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model accuracy can be evaluated using a K-fold validation approach. The SOC stock datasets 
values were positively skewed, and therefore were transformed using natural log function.  
 
We used a ‘greedy’ approach (Edmonds, 1971) to identify uncorrelated sets of environmental 
predictors of SOC stocks. In the ‘greedy’ approach, the environmental predictors were first 
arranged according to the variable importance rank from the RF model. The Pearson’s correlation 
coefficients between the environmental predictors were calculated, and environmental predictors 
with absolute value of the correlation coefficients larger than a threshold (taken as 0.6), were 
removed from the data set.  
 
The variable importance was computed by the random permutation method, where one of the 
environmental variables is randomly permutated between the out-of-bag samples and the change 
in the prediction accuracy [R2 (1-Residual sum of square/Total sum of square) and root mean 
square error] due to the random permutation provides a measure for the importance of the 
environmental variable (Hastie et al., 2001). The permutation-based importance is one of the most 
common approaches to assess the relative importance between input variables in the RF approach.  
 
2.4 Generalized Additive Models to derive functional relationships between environmental 
predictors and SOC stocks 
 
RF is a powerful machine learning technique due to its strength in computing nonlinear relations 
between input and output variables. However, RF is essentially a “black box” model, which does 
not provide detailed information about the relationships between the input and output variables. 
The function between predictor variables and response is particularly challenging to tease apart. 
This makes it difficult to use RF to find a functional relationship between a particular 
environmental predictor and SOC, particularly when the data points are not uniformly distributed 
over the high-dimensional feature space. Therefore, we used a Generalized Additive Model 
(GAM) to derive functional relationships between the RF-identified environmental predictors and 
SOC stocks. In GAM, the relationship in the data can be modeled as (Hastie & Tibshirani, 1990; 
Hastie et al., 2001). 
 
𝑌 = 𝐶 + ∑ 𝑓((𝑋()

)
(*& .                     (2) 

Here, Y is the target variable, e.g., observed SOC; Xi is an environmental variable; fi is a smooth 
function; and C is a constant, which is usually a mean of Y. GAMs can generalize multilinear 
regression, but without the linear assumptions. This is performed by replacing the linear β 
parameters of the form 𝑌 = 𝐶 + ∑ β((𝑋()

)
(*&  with a smoothing function 𝑓, usually in the form of 

additive splines. This allows the influence of individual predictor variable to be decoupled and 
compared with target variable, without requiring linearity of relationship between the predictor 
variable and target variable. The thin plate spline is used for the smoother, 𝑓((𝑋() (Wood, 2003). 
For a one-dimensional problem, the smoothing function is found by minimizing 
 

∑ 6𝑌( − 𝑓(𝑋()7+,
(*& + 𝜆 ∫+-

!.(0)
-0!

.
+
𝑑𝑥,       (3) 
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in which 𝑌( and 𝑋(, respectively, denote the target and the input feature, N is the total number of 
data, 𝜆 is a penalty parameter. The function that minimizes (3) is given as 
 
𝑓(𝑥) = ∑ 𝛿(𝜂6|𝑥 − 𝑋(|7 + ∑ 𝛼2𝜙2(𝑥)+

2*&
,
(*& .       (4) 

Here, 𝛿( and 𝛼2 are unknown parameters, 𝜙2 is the (j-1)-th order polynomial, and 𝜂(𝑟) = 𝑟3. 
Furthermore, 𝛿 is approximated by a reduced order basis as 𝛿 = 𝑈#𝛿#, in which 𝑈# is a rank-k 
matrix. The rank of 𝑈# denotes the maximum degree of freedom of the thin plate spline. To prevent 
an overfitting, k is chosen to be four. The unknown parameters, 𝑈# , 𝛿# , and, 𝛼, are estimated from 
the data by solving a regularized optimization problem as shown in Wood (2003). The GAM model 
(2) is then computed by iteratively computing the one-dimensional thin plate splines for each 
environmental variable, using the backfitting algorithm (Hastie et. al., 2001). For our analysis here 
we used the “mgcv” package in R to train a GAM model (Wood, 2017) using a Restricted 
Maximum Likelihood method, and a thin plate spline for the smooth functions (Wood, 2003).  
 
2.5 Earth system model outputs 

We downloaded and aggregated the SOC and environmental controller data from three ESMs, 
Community Earth System Model (CESM) (Hurrell et al., 2013), U.K. Earth System Model 
(UKESM) (Sellar et al., 2019), and Beijing climate center (BCC) (Wu et al., 2019), to evaluate the 
environmental controllers of baseline global SOC stocks. ESMs did not report depth-wise soil 
carbon projection, making direct comparison with depth-specific SOC observation difficult. Many 
models used in ESMs were designed to simulate the soil carbon for topsoil depth, we assumed that 
the simulated soil carbon is contained within 1 m of soil profile to simplify comparison with 
observations. 
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3. RESULTS AND DISCUSSIONS 
3.1 Dominant environmental predictors of SOC stocks 

The importance of all the environmental predictors of SOC stocks in descending order, as 
estimated by RF is provided in Figure 1a. The resulting variable importance shows that soil 
drainage has the dominant effect on continental US surface SOC stocks, followed by normalized 
difference vegetation index and dry-season precipitation. We also found that many of the 
environmental predictors used in this study were correlated with each other (Fig. 1b). While RF 
offers a good predictive model, it lacks the capability to identify multicollinearity in the  
environmental predictors (Mishra et al., 2020). Hence, as explained in section 2.4, we removed the 
correlated variables (resulting in 19 variables) and re-applied the RF approach with the reduced 
number of environmental predictors.  
 
 

 

 
 
 
 
 
 
 

Figure 1. (a) Variable importance for the top 30 variables and (b) absolute values of the 
correlation coefficients between the variables. The index corresponds to the variable importance 
rank. MSE is mean squared error, NDVI is normalized difference vegetation index, P driest is 
precipitation in driest season, NLCD is national land cover database, VBFI is valley bottom 
flatness index, NPP is net primary productivity, PET is potential evapotranspiration, P wettest is 
precipitation of the wettest season.  
 
Variable importance ranking changed after correlated environmental predictors were removed 
(Figure 2a), as did the incremental changes in R2 with respect to the number of the environmental 
predictors (Figure 2b). We found significant improvement in the RF performance (R2 and RMSE) 
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as the number of environmental predictors increased from 1 to 8 (with the predictors ordered by 
the RF-inferred importance; Figure 2b). However, after 12 environmental predictors, the 
improvement in model prediction accuracy was minimal. These results suggested that among all 
the environmental predictors we used, only 12 environmental predictors were the strongest 
predictors of SOC stocks. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. (a) Variable importance after removing correlated variables. (b) Changes in the model 
accuracy in terms of the number of the input variables of the Random Forest model. MSE is 
mean squared error, PET is potential evapotranspiration, NDVI is normalized difference 
vegetation index, NLCD is national land cover database, P wettest is precipitation of the wettest 
season, VBFI is valley bottom flatness index, NPP is net primary productivity, MRN is melton 
ruggedness number. 
 

3.2 Nonlinear controls of environmental factors on SOC stocks 

Using the 12 most important environmental predictors identified by RF as an input feature set, we 
trained the GAM approach to fit the log-transformed SOC stocks (Fig. 3). The constant term in the 
GAM approach was C = 3.98. R2 and RMSE were 0.52 and 0.69, respectively. The prediction 
accuracy of GAM was slightly lower than for the RF approach (R2 = 0.56, RMSE = 0.66). While 

●

●

● ● ● ●

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Num. Variables

R
2

1 4 8 12 16 32

(b)

Number of variables  



 

17 

RF considers high-order nonlinear interactions between the environmental predictors, in our GAM 
approach, SOC is modeled by a linear combination of nonlinear functions of each environmental 
predictor, not considering interactions between them, which may have resulted in a slightly lower 
prediction accuracy. Figure 3 shows the GAM-inferred relationships between environmental 
factors and log-transformed SOC stocks with respect to the 12 most important variables. Potential 
evapotranspiration, normalized difference vegetation index, and soil drainage condition are the 
three most important variables from RF (Figure 2a).  
 

 
 
Figure 3. Variable-wise prediction of ln SOC by the Generalized Additive Model. The shade 
around the solid line indicates 95% confidence interval. The minor ticks on the horizontal axis 
denote the values of data. ln SOC is observed SOC (Ln Kg m-2), PET is potential 
evapotranspiration, NDVI is normalized difference vegetation index, NLCD is national land 
cover database, P wettest is precipitation of the wettest season, VBFI is valley bottom flatness 
index, and NPP is net primary productivity.  
 
 
The functional relationships between SOC stocks and environmental predictors were produced as 
splines by GAM. We next developed explicit analytical expressions by fitting the splines obtained 
from GAM. Figure 3 shows that the changes of SOC stocks with respect to many of the 
environmental variables (n = 6) are essentially negligible after considering the uncertainty. Hence, 
we identified only the following 6 important environmental variables: potential 
evapotranspiration, normalized difference vegetation index, soil drainage condition, precipitation 
of the wettest season, elevation, and net primary productivity; 
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• Potential evapotranspiration (PET): 

D 𝑧 =
𝑃𝐸𝑇 − 641
1000 ,

𝑌456 = 𝑒𝑥𝑝(0.44 − 1.24𝑧 − 1.51𝑧+ + 0.05𝑧3) − 0.6.
 

 

• Normalized difference vegetation index (NDVI): 

𝑌,789 = Q0.078 + 1.87
(𝑁𝐷𝑉𝐼16 − 0.4)&.;+𝑖𝑓𝑁𝐷𝑉𝐼16 > 0.4,

0.078 − 4.36|𝑁𝐷𝑉𝐼16 − 0.4|+.<<𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

• Soil drainage: 

Soil drainage 1 2 3 4 5 

𝑌=>(?-@A(BACD -0.38 -0.05 0.15 0.50 1.00 

 

• Elevation: 

D 𝑧 =
𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛
1000

𝑌5?DEA"(>B = 0.17 − 𝑒𝑥𝑝{−1.34 − 0.75𝑧(1 + 0.1𝑧+)}
 

 

• Precipitation: 

D 𝑧 =
𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛

250
𝑌4@DF()("A"(>B = 0.38 − 𝑒𝑥𝑝{−0.15 − 3.24𝑧&.G}

 

 

• Net primary productivity (NPP): 

𝑌,44 = 0.077 − 1.68 × 10HG𝑁𝑃𝑃 

The fitted curves accurately represented the splines from GAM (Figure 4). The log-transformed 
SOC stocks from the GAM approach were computed using the following equation, 
 

𝑙𝑛𝑆𝑂𝐶 = 𝑌456 + 𝑌,789 + 𝑌=>(?-@A(BACD + 𝑌5?DEA"(>B + 𝑌4@DF()("A"(>B + 𝑌,44 + 3.98 

Here, 𝑙𝑛𝑆𝑂𝐶 is log transformed SOC stocks, 𝑌456 is the functional relation of PET with SOC 
stocks, 𝑌,789 is the functional relation of NDVI with SOC stocks, 𝑌=>(?-@A(BACD is the functional 
relation of soil drainage with SOC stocks, 𝑌5?DEA"(>B is the functional relation of elevation with 



 

19 

SOC stocks, 𝑌4@DF()("A"(>B is the functional relation of precipitation with SOC stocks, and 𝑌,44 is 
the functional relation of net primary productivity with SOC stocks. 
 

 

 
Figure 4. Curve fittings of the splines from the Generalized Additive Model. The solid lines are 
the expectation values from the Generalized Additive Model, and the circles are computed from 
the fitting curves. The shade around the solid line indicates 95% confidence interval.  
 
Our results show that the analytical model we developed using only 6 environmental predictors 
(Fig. 5) showed similar prediction accuracy as that obtained from the GAM with 12 variables. 
Using only the first three environmental predictors (potential evapotranspiration, normalized 
difference vegetation index, and soil drainage condition) together with the constant term (3.98), 
the analytical model achieved an R2 of 0.48, indicating relatively marginal importance of the 
remaining three environmental factors (elevation, precipitation, and net primary productivity). 
Figure 5a and 5b show the comparison between the GAM model with all the 12 environmental 
variables and the analytical model with 6 environmental variables in predicting SOC stocks. 
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Figure 5. Comparison of the model predictions between (a) GAM (Generalized Additive Model) 
with 12 variables and (b) analytical model with 6 variables.  
 
We developed an approach to derive analytical expressions for observationally-derived 
environmental controls on SOC stocks. In this approach, we first identified the dominant 
environmental predictors of continental U.S. surface SOC stocks using a RF approach. We then 
derived mathematical equations which captured environmental controls on SOC stocks using a 
GAM approach. The mathematical relations we derived produced comparable prediction accuracy 
consistent with the RF approach, using only a subset of environmental predictors used in the RF 
approach. Our study demonstrates a novel use of ML to improve understanding of nonlinear 
controls of environmental factors on SOC stocks. Our approach of deriving analytical relationships 
between environmental factors and SOC stocks can be used to evaluate ESM representations of 
environmental controls on SOC stocks. However, we note that our study quantified these 
relationships at a much finer resolution (100 m) than typically used in ESM land models for global 
simulations (~10-100 km). Therefore, a first step in evaluating ESM land model SOC predictions 
using these derived analytical relationships would be to run the models at fine resolution using 
appropriate forcing, initial conditions, and site characteristics. Such an analysis could point to 
deficiencies in the models’ mechanistic representations so that evaluation at ESM resolutions 
could focus on spatial scaling methods. 
 
Our analysis identified 6 environmental factors (potential evapotranspiration, vegetation index, 
soil drainage condition, precipitation, elevation, and net primary productivity) as dominant 
predictors of continental US surface SOC stocks among the 31 environmental predictors we 
evaluated. Out of these 6 environmental factors, potential evapotranspiration, soil drainage 
condition, and normalized difference vegetation index were the most important environmental 
predictors of SOC stocks. Elevation and net primary productivity showed marginal importance in 
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predicting continental US surface SOC stocks, although these are key environmental controls in 
current ESM land models.  
 
Various earlier studies also used different combination of these environmental factors to predict 
SOC stocks at different scales and in different environmental conditions (Gonçalves et al., 2021; 
Lamichhane et al., 2019; Minasny et al., 2013; Mishra et al., 2020; Mishra et al., 2021). Garten et 
al. (2009) reported that the control of soil moisture on bulk SOC and its fractions were greater than 
the controls of elevated CO2 and temperature individually at a field scale. Consistent with this 
finding, the dominant controls of potential evapotranspiration, soil drainage condition, and 
precipitation demonstrate the control of soil moisture on SOC stocks across the continental U.S. 
Our results show that SOC stocks decreased exponentially with increases in potential 
evapotranspiration. In our dataset, higher potential evapotranspiration values are in the Southern 
U.S. (Fig. S1), which has higher air temperatures and solar radiation in comparison to other parts 
of the U.S. Higher air temperatures and longer duration of solar radiation cause drier soil 
conditions, promoting SOC mineralization and lower total SOC stocks (Das et al., 2019; Hungate 
et al., 2002; Sherrod et al., 2005).  
 
Our results show lower SOC stocks in excessively drained soils (number 1) and higher SOC stocks 
in poorly drained soils (number 5) across the continental US. Excessively drained soils are 
generally coarse-textured soils with high saturated hydraulic conductivity. Similarly, poorly 
drained soils are often fine-textured soils with more of their pore space filled with water for longer 
periods of time. Our results are consistent with findings of earlier studies, which showed mean soil 
carbon concentration significantly differed across different soil drainage classes (Raymond et al., 
2013; Wickland et al., 2010). Poorly and very poorly drained soils have lower soil respiration rates 
(Davis et al., 2010; Webster et al., 2008) compared to well-drained soils (Davidson et al., 1998; 
Savage & Davidson, 2001), resulting in higher SOC preservation. Some studies suggest 
precipitation has a strong positive correlation with SOC (Alvarez & Lavado, 1998; Burke et al., 
1989; Evans et al., 2011), while other studies show precipitation has little to no influence on SOC 
(Doetterl et al., 2015; Percival et al., 2000). Our results show increased SOC stocks with increases 
in precipitation up to 200 mm y-1. Beyond 200 mm y-1, the impact of precipitation on SOC stocks 
was small. Considering precipitation as a proxy for soil moisture content, control of precipitation 
on SOC stocks is higher in drier areas of the continental US than in areas with higher precipitation.  
 
Our results indicate that with increased vegetation index, continental U.S. surface SOC stocks 
increased nonlinearly. We found large increases in SOC stocks as annual average NDVI values 
increased from -0.2 to 0.2, but the relationship between SOC and NDVI flattened at higher NDVI 
values (>0.2 to 1). This relationship could be due to nonlinear relationships between cholorphyll 
concentration of green biomass and the calculated NDVI values (Yoder & Waring, 1994). 
Vegetation properties have been documented as strong predictors of SOC stocks (Guo et al., 2016; 
Jobbágy & Jackson, 2000; Li et al., 2010) and widely used in statistical and process-based models 
to predict SOC stocks (Gautam et al., 2020; Mishra et al., 2021). 
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3.3 Dominant environmental controllers and their relationships with SOC stocks in Earth 
system models 
 
Out of the 50 global environmental factors we evaluated, only 14 were dominant predictors of 
global SOC stocks. These 14 environmental factors explained 60% of variability in SOC stocks in 
observations. In contrast, CMIP6 ESMs used only 8 environmental factors and explained >95% 
variability in ESM SOC representations. The variable importance of these environmental factors 
is presented in Fig. 6.  
 

Figure 6: Divergent environmental controls of global SOC stocks in observations (left) and in 
Earth system models (right). 
 
The RF models in CMIP6 ESM datasets produced near prefect predictions of ESM SOC stocks 
(average R2 = 0.95) using only three environmental factors (precipitation, net primary productivity 
and temperature).  The R2 values obtained by RF for UKESM, CESM, and BCC model were 
0.99,0.89, and 0.98 respectively. 
 
We evaluated the control of temperature, precipitation and net primary productivity on SOC stocks 
which were found dominant controllers both in observations and ESMs. The nonlinear 
relationships between environmental factors and SOC stocks are not consistent between field 
observations and ESM representations (Fig. 7). In ESMs, the control of temperature on SOC stocks 
were consistent with observations within the range of 0 to 20oC, but the control of temperature on 
SOC stocks was not consistent with observations either at higher or lower temperatures (< 0oC and 
>20oC). Our results showed different relationships describing the control of precipitation on SOC 
stocks in observations and ESMs. In observations, SOC stocks are found increasing with the 
increase in precipitation. But, in ESMs, the control of precipitation on SOC stocks has been 
represented differently among ESMs, and with observations. Among ESMs, CESM shows 
relatively close functional relationship with observations, but other two ESMs shows different 
control of precipitation on global SOC stocks. We found that the ESM SOC stocks showed 
significantly higher sensitivity to NPP than what was observed in field observations. Field 
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observations of SOC stocks showed the saturating relationship with the NPP, but ESMs represent 
exponential increase of SOC stocks with increase in NPP. 
 
 
 
 

 
 

 
 
Figure 7: Relationships between net primary productivity (NPP), annual precipitation and annual 
temperature with observed SOC stocks (black line) and ESM representations (colored lines). 
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4. OUTOMES AND IMPACTS 
 

Our research activities enhanced the scientific understanding about the environmental controllers 
of SOC stocks and their representation in existing CMIP6 ESMs. The key outcome of our efforts 
is an approach to improve existing modeling representation of environmental controls of SOC 
stocks in the ESMs. Specifically, our findings documented the mathematical algorithms that 
described the environmental controls of SOC stocks both in models and observations. During this 
project, we produced data products, publications, and scientific insights of interest to 
experimentalists, modelers, land managers, and policymaking and implementing agencies.  
 
The capabilities gained through this effort will better position Sandia to integrate measurement 
and remote sensing data with mechanistic, process-based, and geospatial modeling in order to 
evaluate and forecast belowground responses to a wide range of environmental perturbations – 
including climatic change; land use/land cover changes; soil contamination by metals, 
radionuclides, or organics; or other long-term conditions – that may disrupt the soil properties or 
processes that are essential to sustaining life on Earth. Thus, there is potential for developing long-
term support for this kind of studies from a variety of sponsors. Successful integration of Dr. 
Mishra’s capabilities with multi-disciplinary team will place Sandia, over the long term, in a 
strategic position to respond to new opportunities in support of DOE mission areas of 
environmental quality and energy security, e.g., through research as diverse as (1) predicting the 
consequences of warming high-latitude systems (permafrost regions) on future atmospheric 
concentrations of greenhouse gases and subsequent feedbacks to climatic change, (2) evaluating 
the impacts of environments contaminated with metals, radionuclides, and organics and identifying 
methods for their remediation, and (3) devising systems for sustained production of biofuel 
feedstocks. 
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5. CONCLUSIONS 
 
Appropriate representation of environmental controllers on SOC stocks in Earth system land 
models is required to project realistic rates of change in SOC in response to land use and climate 
changes, and to understand feedbacks between the land and atmosphere. The non-linear 
expressions we derived quantify controls of individual environmental factors on SOC stocks in the 
presence of other environmental factors. Therefore, these observationally derived analytical 
expressions can be used to benchmark land model representations of environmental factors on 
SOC stocks. Our analysis showed potential evapotranspiration, normalized difference vegetation 
index, soil drainage condition, precipitation, elevation, and net primary productivity as important 
environmental controllers of continental US surface SOC stocks. Out of these six environmental 
factors, potential evapotranspiration, normalized difference vegetation index, and soil drainage 
condition explained about 50% of the variability in observed SOC stocks (while the other three 
environmental variables explained another 6% of the variability). Our derived analytical 
expressions produced comparable prediction accuracy as the Generalized Additive Modeling and 
Random Forest approach using only a subset of environmental factors.  
 
We observed different environmental factors as dominant controllers of SOC stocks in 
observations and ESM representations. The environmental factors which were present both in 
observations and ESMs, showed different functional relationships between environmental factors 
and SOC stocks in observations and ESM representations. Future studies should investigate the 
magnitude of uncertainty in SOC stocks that can be reduced by including additional environmental 
factors in ESMs consistent with field observations.  
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