
1

Pattern and Anomaly Detection in UX (PADUX)

A System to Capture and Utilize User Signals for Better UX

Joshua Mitchell and Alan Gross

josmitc@sandia.gov and ajgros@sandia.gov

Abstract—The rise of remote work in historically on-premise

companies leaves less margin for error in software deployment

processes. Further, it requires that developers and system

administrators obtain automatic feedback on deployment success

or failure more quickly than in the past. How can DevOps-oriented

teams, concerned about the user experience of the workforce,

receive more immediate, data-driven feedback to reduce outages,

know when to perform rollbacks, and create more robust

deployment strategies overall? The User Experience Solutions

department at Sandia National Laboratories is working on such a

tool, proposing that an automated outage detection system based

on web analytics software and real time message streaming could

be a key to identify widespread user experience issues.

1 INTRODUCTION

Many industries have historically optimized enterprise IT for an on-premise user

experience. However, a sudden acceleration of remote work situations due to the

COVID-19 pandemic have increased the overall burden on these "brick-and-

mortar-first" enterprise IT organizations. The question of how remote workers

experience enterprise IT is crucial, as these knowledge workers often cannot

deliver on their mission if IT systems are not functioning effectively. Measuring

and responding to negative IT experiences (and responding at mission speed) is

therefore an important capability. This paper outlines an experimental system

prototyped to address such a problem. First, we briefly explore the problem space,

focusing on some of the challenges IT organizations face with a larger-than-normal

remote population. Second, we outline how traditional IT monitoring occurs using

a signal-and-measure approach (i.e. software that imitates a client interacting with

SAND2021-12503CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

mailto:josmitc@sandia.gov
mailto:ajgros@sandia.gov

2

a web site) and that, while there is great value in this, we hypothesize about a more

granular approach that involves capturing and measuring the signals originating

from real clients. Third, we lay out a system architecture (PADUX) that was built

to digest these client signals and produce real time insights. Fourth, we lay out the

details of how the underlying PADUX algorithm functions and the resulting

model from this algorithm. Fifth, we discuss the results of our experiment by

analyzing historical Major IT Incidents (MITIs) against PADUX data and discuss

the accuracy of the prototype and its potential uses.

2 PROBLEM SPACE

Remote work among knowledge workers has been on the rise for years, but many

industries, especially prior to the COVID-19 pandemic, maintained a primarily

"brick-and-mortar" approach in terms of knowledge worker locality. The arrival

of the pandemic sent many of these workers into remote roles, placing strain on

systems (such as VPNs) that might not have been optimized for this increased

load. Enterprise IT organizations, such as the one these authors belong to,

scrambled to reconfigure resources for this new, remote dynamic.

Workers who shifted to home offices also face an increased number of variables in

accessing enterprise IT systems. There are now multiple ISPs, geographies, time

zones and weather patterns involved (consider hurricanes on the US east coast and

forest fires on the US west coast). There is also non-standard equipment, such as

personal routers and modems, to consider. Remote work, with its many upsides,

contains many variables. This creates a complex environment to navigate.

The combined shift in burden from on-premise IT systems to remote IT systems,

along with the increased complexity of a remote worker’s environment, indicates

that many organizations might struggle to maintain a good user experience for

knowledge workers. The impact of such a struggle could be serious: the poorer the

collective user experience of enterprise IT, the greater the threat to the workforce’s

ability to deliver on its mission effectively. The challenge has never been greater

to deliver excellent enterprise IT.

3

In order to handle these complexities, enterprise IT organizations must be aware

of how their deployments and systems are faring. In the past, the colocation of

employees made identifying issues easier. However, because of the distribution of

employees across multiple geographies and time zones, it can be difficult to

determine if a few calls to a helpdesk represent an isolated incident or a broader

pattern. The PADUX system was undertaken with all of these concerns in mind.

3 HYPOTHESIS AND GOALS

Here we outline the fundamental hypothesis of PADUX as well as the

encompassing goals we attempted to achieve through deployment of the system.

3.1 System Access as a Foundational UX Task

When considering whether enterprise IT systems are usable, we should first

consider this fundamental definition of usability from ISO 9241-11:2018: “[the]

extent to which a system, product or service can be used by specified users to

achieve specified goals with effectiveness, efficiency and satisfaction in a specified

context of use” (International Standards Organization). The scope of the PADUX

project involves a prerequisite to all other usability considerations: system access.

The basic idea is that user access to a system is the first step in measuring their

experience. If users cannot access the system, the remaining measurements do not

matter.1

3.2 Hypothesis

Our hypothesis can be stated as follows:

(1) If the burden of sending real time signals that mirror user

behavior can be acquired by client systems and (2) that signal

pattern can be translated into a model, then anomalies in basic

system access can be detected and used to determine if system

1 Note that by “system access” we are not referring to authentication and authorization

mechanisms. Instead we are referring to whether a user is simply able to reach the outmost,

expected bounds of a system.

4

access by users is currently impaired or has been impaired in the

past.

3.2.1 Assumptions

Our hypothesis depends on two assumptions. The first assumption is that clients

can take on the burden of signaling in real time. This requires that each system

broadcasts a signal to a listening endpoint at some level of granularity great

enough to accurately state that the client is connected (or “up”, as the common

vernacular goes). This assumption itself presumes the broadcast signals mirror

real user behavior. The second assumption is that these signal patterns can be

modeled in such a way that an anomaly (e.g. weak client signal patterns) can be

detected in real time and then be utilized to identify a system outage.

The first assumption, that real time signals can be sent from clients, is answered

by the use of a broadly adopted, open source, web analytics tool called Matomo

(https://matomo.org). Matomo, through embedding of a short JavaScript snippet

into client code, measures user behavior at a highly granular level. Further, it was

implemented as an enterprise service within our organization and broadly

adopted into client applications. Because Matomo tracks extremely granular user

behavior such as clicks, input field values, out links, page load times, and many

other details, this satisfies the second part of the first assumption.

The second assumption, that these signal can be translated into a model, is satisfied

because a high volume of data was captured over a several year period, allowing

for some consistent behavior modeling. For example, in Figures 1A and 1B below,

two different dates of user behavior are modeled. The full explanation of how to

interpret these figures is discussed in section 5, Algorithms. Suffice to say, Figures

1A and 1B represent signal levels of approximately fifteen-thousand users

interacting with organizational enterprise IT systems over the course of one day.

https://matomo.org/

5

Figure 1A—Visitor patterns for September 18, 2020. The yellow

(middle) line is the 15-minute, rolling mean count of active visits,

while the green (upper) and red (lower) lines represent 3 standard

deviations from the mean, positive and negative respectively.

Figure 1B—Visitor patterns for September 15, 2020.

3.2.2 Traditional Monitoring Tools

The approach explored in this paper differs significantly from traditional

monitoring techniques. Oftentimes, instead of placing the burden on the client,

monitoring systems either (1) act as a single client themselves or (2) utilize

privileged access to the system, perhaps monitoring database connections or

internal logs. The approach we are recommending does not seek to disqualify

these monitoring patterns. We do suggest, however, the following addendum to

our hypothesis above:

6

To maximally measure a population’s user experience in real time,

it is essential that measurements be taken as close to the physical

user as possible.

In this case, we are utilizing signal generators within each user’s browser, which is

much closer to the user than a distant monitoring client2 or even the backend

logging system monitoring the system’s inner workings.

3.2.3 Inspirations

The basic idea of broad-scale signal monitoring is inspired largely by work done

in photovoltaic research with solar panels. “When the output of a solar electric

system is graphed… it forms a traditional bell curve” (pveducation.com). This

makes intuitive sense. As the sun “rises” (to use the colloquial term), the output of

the solar panel will gradually increase throughout the day. Eventually it will hit

some peak and then decline as the sun “sets.”

In much the same way, companies with the vast majority of their workforce in

nearby time zones will see the same bell curve. As employees arrive on-site or

login from remote locations the activity levels recorded will follow a predictable

pattern. There will be a peak, some valleys (e.g. lunch breaks), and then an

eventual decline as the workday ends. This pattern was observed in Figures 1A

and 1B.

4 PADUX ARCHITECTURE

In this section we discuss the full PADUX architecture. An inventory of the full

system can be laid out as follows:

• A single-node Kafka cluster

• A Python consumer script

• Various Python modeling scripts

• A MSSQL database

2 Example: an automated script making HTTP calls to a web application every minute. If a

status code of 200 is returned, the application is assumed to be running correctly.

7

• Plotly dashboards

Each of these layers is discussed below, but the high-level architecture is displayed

in Figure 3.

Figure 3—PADUX architecture design

Note in Figure 3 the Data Mart and Matomo are considered external to PADUX.

They are shown for reference.

4.1 Kafka Cluster

The Kafka cluster was deployed to an internally developed Platform as a Service

(PaaS) and managed using Docker Compose. The Kafka instance used was built

with a default configuration sourced from Confluent’s Docker Hub account (see

https://hub.docker.com/u/confluentinc). By using Confluent, we were able to

harness a preconfigured cluster with various conveniences such as a web client for

managing the background services. A Java database connector (JDBC) was added

and a connector instance was instantiated to poll for new data from Matomo every

sixty seconds.

Utilizing Kafka offered several helpful capabilities for our use case. First, its JDBC

connector minimized load on the Matomo database by only requesting recent

messages. Second, the system is highly scalable and even though for our purposes

only a single node was used, there is the option to scale the system horizontally

https://hub.docker.com/u/confluentinc

8

later. Third, currently only Matomo data is being streamed, but additional data

sources can be easily added using a plethora of different Kafka connectors.

4.2 Analysis and Model Building

The analysis and model building components are mostly contained in a single

Python script and can be run either manually or via automation. The script

parameters require a start and end date to specify the bounds of the model’s data.

Other parameters of the model will be discussed in detail in the algorithm section.

4.3 Consumer Script

The consumer script is written in Python and leveraged the Kafka Consumer

library, Kafka-Python. The consumer has several notable points:

• It uses an Auto Offset Reset (AOR) policy of “latest” so only the latest

messages are retrieved, thereby optimizing consumer performance (see

section 4.7 on the Retroactive Data Script for more information on the

rationale of this policy choice).

• It utilizes a consumer group, which allows for scaling the consumer

horizontally.

• The primary logic of the consumer is to pre-load a model and compare real

time signal data against a model of past signal data. If the real time signals

are significantly weaker than past signals, an anomaly is registered.

Regardless of whether an anomaly is noted, signal strength is recorded in

the MSSQL database. Details of this algorithm are discussed later in the

paper.

4.4 MSSQL Database

The database was designed using an extremely simplified schema. Below is the

entity relationship diagram (ERD) of the database:

9

Figure 4—PADUX database ERD

Each time new data is polled and processed by the consumer the results are stored

within the VisitCount table, which can be thought of as the record of signal levels.

This occurs regardless of anomaly detection. If an anomaly is detected, the

appropriate anomaly type is included within the VisitCount record. Determining

the appropriate AnomalyType is done within the consumer algorithm directly.

4.5 Plotly Dashboards

Dashboards to display data were developed within Plotly’s Dash framework, as

shown in Figure 4 (see https://plotly.com/). The dashboard runs within the same

Docker compose stack as the consumer. The dashboard is populated by pulling

data from the PADUX database (the signal data, shown in yellow as the “real time”

line) and compared against another dataset loaded from a CSV file. This second

file contains the model (which are the lines “smooth”, “under”, “over”). These

details are discussed in detail in the algorithm section. It is worth pointing out that

there is also a historical option (the “Past Visits” tab in Figure 5), which allows for

historical data exploration of the signal data against different models.

https://plotly.com/

10

Figure 5—PADUX dashboard showing signals in real time

4.6 Deploying the Consumer and Dashboard

The consumer and dashboard are deployed using Docker Compose. Each instance

(any consumer and the dashboard) uses the same image, with “python” specified

as the entry point. Within the Docker Compose a different script is called for the

same image, depending on which service needs to be started. This has allowed for

scaling to add more consumers easily, while still streamlining local development.3

4.7 Retroactive Data Script (not shown in Figure 3)

An additional component that was developed was a Python script that

retroactively populates the MSSQL database. This was designed for situations

where unexpected issues cause outages within the PADUX infrastructure itself. It

also allows for back-populating pre-PADUX time periods for historical analysis.

The script can be run for a date range and will retroactively populate data in the

3 The core code repository contains the analysis modules, the consumers, and the

dashboards. This makes the system somewhat of a monolith. However, this was an

intentional design as the analysis portion, consumers, and dashboard all work closely

together. It would have been highly inconvenient to split these into a microservice pattern.

11

MSSQL database. Currently it is only configured to be run manually; ideally, this

will be deployed as an automated background process.

One of the advantages of this second script is it allows the primary consumer to

operate with a “latest” policy. In practice this policy means only the newest

messages will be consumed and older messages will be ignored in the case where

the consumer goes down and comes back up at some later point. It was observed

that when the offset was set to a policy like “earliest”, the system struggled to catch

up on messages due to the sheer volume requiring processing.

5 ALGORITHMS

This section covers PADUX’s various algorithms in depth. First, we will provide

some background on Matomo analytics. Second, the Kafka connect query will be

shown and explained. Third, the model used to determine if there is an anomaly

in signals is discussed. Finally, the implementation of the anomaly algorithm

within the PADUX consumer is briefly reviewed.

5.1 Matomo Analytics Background

Signals, for the purposes of this paper, are the same as the Matomo concept of a

“visit.” A visit in Matomo can be defined as follows:

A sustained period of activity on a web site by a single user where

there is no more than 30 minutes between any two actions4 (see

https://matomo.org/faq/general/faq_36/ for more details).

With some exceptions, this holds true even if the user closes their browser and

accesses the site again within the 30-minute window. “Actions” can be defined less

formally as there is a very broad set. For examples, actions include out-links, clicks

on the page, typing into form fields, and any inner-site navigation. These are the

low-level signals about the user that Matomo captures. When a user initiates a

visit to a site, two important details are recorded: the visit’s first action time and

the visit’s last action time. When this visit record is initially created, those two

values are equivalent. As the user moves about the site and performs actions, the

4 This is the default time interval shipped with Matomo. It is configurable, however.

https://matomo.org/faq/general/faq_36/

12

last action time is updated. The implications of this record keeping is that it

provides high granularity in measuring user activity as a signal on any site where

Matomo is installed.

5.2 Kafka Connect Query

Kafka connectors are a type of abstraction that allows for the Kafka cluster to

connect to different data sources using various protocols. For example, one type

of connector might be for a web REST API, while another connector might be

specific to a MongoDB system. In this case, we decided to connect directly to the

Matomo database using a JDBC connector. This connector includes a “query”

feature, which allows for standard SQL syntax against a MySQL database (MySQL

is the specific Matomo database technology). The essential elements of the query

are as follows:

• It selects the unique ID of the visit, the time of the first and last action, the

site metadata such as the site’s recorded unique identifier, and the total

time of the visit.

• The query was constrained to visit records that had a last action time

occurring within 1 minute of the time of the query.

Simply put, the connector selects all visit records that were active within the last

minute. By doing so, the records coming into the PADUX consumer at every

minute represent the number of individuals actively utilizing web-based resources

during that minute and gives the consumer a high-granularity signal to utilize for

model comparison.

5.3 PADUX Model

5.3.1 Fundamentals

The signal coming into the PADUX consumer must have a comparison model. The

basic model proposed fundamentally uses the same concept discussed in section

5.2: one that measures active visits for each minute in a 24-hour time period.

However, the variableness in these measures could be significant enough that

detecting anomalies would be difficult. Instead, the following was calculated: (1)

13

the rolling, 15-minute mean of active visits at every minute of a twenty-four hour

period and (2) the +/- standard deviation (again, rolling 15-minutes) where Σ = 3.

The end result is shown in Figure 6 below.

Figure 6—Rolling standard deviation of visit data

5.3.2 Intuition Check of Model

In general, Figure 6 illustrates expected active signals coming from employee use

of web systems. The tails (which never go to zero), illustrate overnight periods

when automated bots, such as the monitoring tools discussed previously, perform

tests, and checks of the systems. During the morning hours, there is a sudden climb

in activity. In the middle of the day, when many employees take lunch, a dip in

activity is seen with a spike approximately an hour later. Finally, as the day ends,

there is a decline that eventually returns to near-zero levels of activity, except for

the bots and the occasional employees burning the midnight oil.

5.3.3 Caveats of the Model

Some caveats had to be considered. First, activity varies significantly depending

on the day of the week. For example, a Tuesday and a Thursday can have very

different patterns. Further, due to the fact that the 9/80, standard 40 and 4/10

schedule are all supported within our organization, Fridays are an outlier among

working days. To complicate matters further, subsequent Fridays differ, because

employees largely favor certain 9/80 schedules over others due to how they line

up with US holidays.

14

In order to account for these caveats, the model takes the following parameters:

(1) day of the week and (2) minute of the day. For this experiment, the specific

Friday in question was not used as a parameter. Future versions of PADUX will

account for this nuance.

5.4 Implementation in Consumer

Implementation in the consumer involves bringing together the real time query

used in Kafka and the model, both discussed above. The key points of the

algorithm are as follows:

• Every minute, the consumer checks for updates to the Kafka topic where

the visit data is waiting to be consumed.

• If data is available, the consumer pulls it.

• Once the data is pulled, it goes through a basic parsing process that puts it

into JSON format.

• After parsing, the consumer examines the data to determine what day and

what minute of the day the visit data represents (for example, Monday at

12:06 PM MST). It then sums the number of active visits for that minute

• The model is already loaded during startup, so the consumer finds the

matching day and minute in the model (Monday at 12:06 PM MST) and

pulls the expected mean, high, and low counts from the model.

• The consumer then compares the real time visit count against the lower

rolling count. If the current is less than the expected count, then it is flagged

and noted in the database. Otherwise the consumer simply stores the real

time count without an anomaly reference.

Figure 7 illustrates what this looks like in real time:

15

Figure 7—Rolling standard deviation of visit data

In Figure 7 there was a significant drop in activity signals (visits) around 9:30 AM,

and the signal went to zero at certain points, triggering several anomaly events.

Interestingly enough, these correspond to a power failure within an IT data center.

6 RESULTS

6.1 MITIs

A “major incident” in IT can be defined as “an emergency-level outage or loss of

service” (Atlassian). In order to manage such situations, organizations can create

an incident management process that defines the “path we take to identify,

resolve, understand, and avoid repeating incidents” (Atlassian). Within our

organization, this process is formally referred to as a MITI: A Major IT Incident.

In order to cross-check the effectiveness of the PADUX system, we decided to

perform historical analysis of signal data, comparing the results of each MITI

incident with the PADUX signal measurements. Prior to beginning the PADUX

project, it was never an expectation to detect every MITI. This is simply due to the

heterogenous nature of outages. A major IT incident may or may not cause

significant signal loss to the degree that it is detectable using the methodology

we’ve described in this paper. Therefore, in order to properly evaluate PADUX

performance, we evaluated each MITI according to its recorded Issue Description.

The categorizations used are placed into Table 1.

16

While this categorization is based on intuition and not more measurable

techniques, nonetheless, coming up with a non-intuitive, quantifiable approach

goes far beyond the scope of this experimental system. Instead, we relied on our

combined 12 years of experience within our organization to determine category.

This provides us with a minimum of 11 MITI days for PADUX evaluation.

Table 1—MITI Categorizations for PADUX analysis

Category Name Description Count

Unclear In these cases, we were not clear on the scope of the affected

systems.

6

Too localized These were too localized to cause signal measurement

anomalies. For example, power outage in an office-only

building.

7

Not tracked by Matomo This situation is not localized, but we did not have receptors

for outage signals coming from the clients of these systems.

8

Detectable We expect PADUX to detect signal anomalies in these affected

systems.

11

Total 32

6.2 PADUX Comparison with MITIs

The next step in the process was to analyze PADUX data for the specific days in

which the MITI’s occurred (the 11 MITI days classified as “detectable” in Table 1).

We then compared analysis of those days against anomaly readings on other

random collections of business days. Essentially, we were looking for clear

evidence that the higher the level of signal anomalies from PADUX, the more

likely a MITI was to be initiated by the MITI team. Our null hypothesis, therefore,

is that the mean difference of anomaly counts for any random selection of two

groups of days (eleven in each group) exceeds the mean difference of the MITI

17

days anomaly counts and any other randomly selected group of days more than

5% of the time. The alternate would indicate that MITI days have much higher

levels of anomaly counts than any random group of days and, therefore, if PADUX

detects a high anomaly count this should indicate a widespread IT issue worth

investigating.

To identify MITIs more accurately, PADUX readings were generated for the

specific MITI days classified as “detectable” using a Python script that backfills the

PADUX database for a specific date range. The script backfills PADUX readings

for the date ranges of interest (approximately September 2020 through July 2021).

To verify the statistical significance of PADUX readings on MITI days vs. non-

MITI days the distribution of the data readings was analyzed and found to be non-

normal. As a t-test assumes normally distributed data, this method was not

appropriate. Instead, permutation testing was performed as an appropriate

alternative for this data (Pellegrina, L., & Vandin, F. (2020), Bruce & Bruce, 2017).

See 9.1 Appendix A: Q-Q Probability Plot, for more information.

Permutation testing required a script for initial selection of all the MITI days being

analyzed (11 total) as well as counts for the number of anomalies that occurred

within business hours for each day. This represents the “test group.” A selection

of 11 random days was taken from the full set of possible days for which PADUX

signal data was generated (September 2020 through July 2021).5 The number of

anomalies during business hours was calculated for the random 11-day set,

representing the “control group.” The mean was calculated for both the test group

and the control group and the absolute difference was then taken. To complete the

permutation testing, the script selected (again at random) pairs of 11-day groups

from the allowed day pool (22 days total, half in a test group, half in a control

group, selected each time), and the absolute mean-difference was calculated for

5 Sandia National Labs, like others in the aerospace industry, has a shutdown period

annually in mid-to-late December. Therefore, data from mid-December through the first

few days in January were excluded from the analysis. Further, all holidays which would

affect Sandia Labs workforce were removed.

18

each iteration.6 This was done 118 times, besides the original test/control iteration.

The results of the analysis are shown below in Figure 8.

Figure 8—Bar chart showing mean difference of the permutation

iterations using the experiment script.

As can be seen, in the vast majority of cases, the mean-difference of any randomly

selected pairs of 11 days will not exceed that of the MITI days with any randomly

selected control group. A closer look gives a p-value of 2.54%, where only 3 of the

118 cases were greater-than-or-equal the mean-difference of the original

test/control group. This indicates it is very unlikely the null case could happen by

random chance. A summary of these findings is in Table 2 below.

6 Selection was completed without replacement of the days for any particular group of 11.

While the same days might appear in the pair of test and control groups, in any one group

of eleven, duplicate days were not allowed.

Test/Contr…

0

20

40

60

80

100

120

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

A
n

o
m

al
y

 C
o

u
n

t
M

ea
n

 D
if

fe
re

n
ce

s

Permutation Iterations

Permuation Mean Differences

19

Table 2—P-value findings

 Description Count

 Greater-than-or-equal test/control mean difference 3

 Less-than test/Control mean difference 115

 Total iterations 118

 Test/Control Mean Difference: 92 anomalies

 P-Value 2.54%

7 CONCLUSION

7.1 Revisiting the Original Hypothesis

In section 3.2, we laid out our hypothesis which, assuming the built-in

assumptions could be satisfied, states that “anomalies in basic system access can

be detected and used to determine if system access by users is currently impaired

or has been impaired in the past.” Did we prove our hypothesis?

We would argue that we did prove it in part. Certainly, PADUX can be used to

identify outages from the past; it gives clear indications that users had difficulty

accessing systems on the 11 MITI days. Nonetheless, it is unclear if PADUX can

alert system owners of issues in real time. The analysis done here takes full days

into account, not windows of time within a given day. Despite this uncertainty,

there is enough promise within this analysis to indicate that more granular

modeling and research could add a level of sophistication to PADUX such that it

could be proficient in detecting real time outages.

20

7.2 Utilizing PADUX

This analysis does give strong evidence that low-level signal readings from a

broad network of clients can indicate significant issues in enterprise IT systems.

Many of these issues may not even be measurable by traditional monitoring

methods. It cannot be reiterated enough, however, that this is not intended to be a

replacement for these traditional monitoring techniques. Instead, this should be

viewed as an additional protection layer or heuristic to be used in conjunction with

other monitoring tools. If, for example, a real-time warning system were

configured to trigger when certain anomaly patterns occur, this method could aid

enterprise IT organizations in shortening response times.

Another useful application is in post-event network forensics. Essentially, this data

can be used to highlight and prioritize where forensic teams should start.

Throughout a given calendar year many IT outages might go unnoticed due to the

qualitive labeling methods currently employed, e.g. an individual person (or small

team of people) must decide there is sufficient evidence to call a MITI. Much of the

evidence of deprecated IT services may not be apparent to those in charge of the

MITI process, and so those events may never be captured. Capturing these events

via a system like PADUX would allow forensic teams to prioritize specific days to

investigate and then analyze granular data sets such as server logs.

7.3 Future Work

Currently the PADUX system has several shortcomings: (1) models are not

automatically regenerated based on new data, (2) there is no automatic notification

system, (3) granularity is highly limited (all sites are viewed in aggregate), (4) there

is limited capability in terms of external exposure via something like a REST API,

(5) many of the deployment steps are manual and (6) the system’s underlying

architecture is not currently configured to be highly-available. All of these issues

could be addressed and would make the system more usable.

21

8 REFERENCES

1. Atlassian. How to run a major incident management process.

https://www.atlassian.com/incident-management/itsm/major-incident-management

2. Bruce, Peter and Andrew Bruce (2017). Practical Statistics for Data

Scientists. Chapter 3, Statistical Experiments and Significance Testing.

O’Reilly, Sebastopol, CA.

3. International Standards Organization. Ergonomics of human-system

interaction— Part 11: Usability: Definitions and concepts.

https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en

4. Kafka-Python. KafkaConsumer

https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html

5. Pellegrina, L., & Vandin, F. (2020). Efficient mining of the most significant

patterns with permutation testing. Data Mining and Knowledge

Discovery, 34, 1201-1234.

https://link.springer.com/content/pdf/10.1007/s10618-020-00687-8.pdf

9 APPENDICES

9.1 Appendix A: Q-Q Probability Plot

In order to determine if a t-test was an appropriate approach to check for the

statistical significance of the PADUX findings, a Q-Q probability plot was

generated. This Q-Q plot indicated that the data was not distributed normally, but

positively skewed. Therefore, permutation testing was used instead. For the full

data set and analysis, please see the accompanying spreadsheet:

data_analysis_final_1632321371.1069791.xlsx

https://www.atlassian.com/incident-management/itsm/major-incident-management
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html
https://link.springer.com/content/pdf/10.1007/s10618-020-00687-8.pdf

22

Figure 8—Normal Probability Plot of the data showing this set is

most likely not normal.

ACKNOWLEDGEMENTS

We want to thank John Miner (Sandia National Laboratories) for his

mentorship and for sparking the idea to this project by pointing out the

analogy between photovoltaic patterns and the concepts explored in this

research. We would also like to thank Scarlett Marklin (Sandia National

Laboratories) for helping advise us in the statistical analysis portions

through informal, but very helpful, reviews (we hoped we didn’t fail her

too badly). Paul Salazar (Sandia National Laboratories) provided a review

of our software stack and we would like to thank him for always asking

good questions. Finally, we would like to thank our manager, Tameka Huff

(Sandia National Laboratories), for funding us to pursue these very

interesting projects.

-3

-2

-1

0

1

2

3

-40 -20 0 20 40 60 80 100 120

Normal Probability Plot

