This paper describes obijective technical results and analysis. Any subjective views or opinions that might be expressed in SAND2021-12503C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Pattern and Anomaly Detection in UX (PADUX)
A System to Capture and Utilize User Signals for Better UX

Joshua Mitchell and Alan Gross

josmitc@sandia.gov and ajgros@sandia.gov

Abstract—The rise of remote work in historically on-premise
companies leaves less margin for error in software deployment
processes. Further, it requires that developers and system
administrators obtain automatic feedback on deployment success
or failure more quickly than in the past. How can DevOps-oriented
teams, concerned about the user experience of the workforce,
receive more immediate, data-driven feedback to reduce outages,
know when to perform rollbacks, and create more robust
deployment strategies overall? The User Experience Solutions
department at Sandia National Laboratories is working on such a
tool, proposing that an automated outage detection system based
on web analytics software and real time message streaming could

be a key to identify widespread user experience issues.

1INTRODUCTION

Many industries have historically optimized enterprise IT for an on-premise user
experience. However, a sudden acceleration of remote work situations due to the
COVID-19 pandemic have increased the overall burden on these "brick-and-
mortar-first" enterprise IT organizations. The question of how remote workers
experience enterprise IT is crucial, as these knowledge workers often cannot
deliver on their mission if IT systems are not functioning effectively. Measuring
and responding to negative IT experiences (and responding at mission speed) is
therefore an important capability. This paper outlines an experimental system
prototyped to address such a problem. First, we briefly explore the problem space,
focusing on some of the challenges IT organizations face with a larger-than-normal
remote population. Second, we outline how traditional IT monitoring occurs using

a signal-and-measure approach (i.e. software that imitates a client interacting with

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

mailto:josmitc@sandia.gov
mailto:ajgros@sandia.gov

a web site) and that, while there is great value in this, we hypothesize about a more
granular approach that involves capturing and measuring the signals originating
from real clients. Third, we lay out a system architecture (PADUX) that was built
to digest these client signals and produce real time insights. Fourth, we lay out the
details of how the underlying PADUX algorithm functions and the resulting
model from this algorithm. Fifth, we discuss the results of our experiment by
analyzing historical Major IT Incidents (MITIs) against PADUX data and discuss

the accuracy of the prototype and its potential uses.

2PROBLEM SPACE

Remote work among knowledge workers has been on the rise for years, but many
industries, especially prior to the COVID-19 pandemic, maintained a primarily
"brick-and-mortar" approach in terms of knowledge worker locality. The arrival
of the pandemic sent many of these workers into remote roles, placing strain on
systems (such as VPNs) that might not have been optimized for this increased
load. Enterprise IT organizations, such as the one these authors belong to,

scrambled to reconfigure resources for this new, remote dynamic.

Workers who shifted to home offices also face an increased number of variables in
accessing enterprise IT systems. There are now multiple ISPs, geographies, time
zones and weather patterns involved (consider hurricanes on the US east coast and
forest fires on the US west coast). There is also non-standard equipment, such as
personal routers and modems, to consider. Remote work, with its many upsides,

contains many variables. This creates a complex environment to navigate.

The combined shift in burden from on-premise IT systems to remote IT systems,
along with the increased complexity of a remote worker’s environment, indicates
that many organizations might struggle to maintain a good user experience for
knowledge workers. The impact of such a struggle could be serious: the poorer the
collective user experience of enterprise IT, the greater the threat to the workforce’s
ability to deliver on its mission effectively. The challenge has never been greater

to deliver excellent enterprise IT.

In order to handle these complexities, enterprise IT organizations must be aware
of how their deployments and systems are faring. In the past, the colocation of
employees made identifying issues easier. However, because of the distribution of
employees across multiple geographies and time zones, it can be difficult to
determine if a few calls to a helpdesk represent an isolated incident or a broader

pattern. The PADUX system was undertaken with all of these concerns in mind.

3 HYPOTHESIS AND GOALS

Here we outline the fundamental hypothesis of PADUX as well as the

encompassing goals we attempted to achieve through deployment of the system.
3.1 System Access as a Foundational UX Task

When considering whether enterprise IT systems are usable, we should first
consider this fundamental definition of usability from ISO 9241-11:2018: “[the]
extent to which a system, product or service can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use” (International Standards Organization). The scope of the PADUX
project involves a prerequisite to all other usability considerations: system access.
The basic idea is that user access to a system is the first step in measuring their
experience. If users cannot access the system, the remaining measurements do not

matter.!
3.2 Hypothesis
Our hypothesis can be stated as follows:

(1) If the burden of sending real time signals that mirror user
behavior can be acquired by client systems and (2) that signal
pattern can be translated into a model, then anomalies in basic

system access can be detected and used to determine if system

! Note that by “system access” we are not referring to authentication and authorization
mechanisms. Instead we are referring to whether a user is simply able to reach the outmost,
expected bounds of a system.

access by users is currently impaired or has been impaired in the

past.
3.2.1 Assumptions

Our hypothesis depends on two assumptions. The first assumption is that clients
can take on the burden of signaling in real time. This requires that each system
broadcasts a signal to a listening endpoint at some level of granularity great
enough to accurately state that the client is connected (or “up”, as the common
vernacular goes). This assumption itself presumes the broadcast signals mirror
real user behavior. The second assumption is that these signal patterns can be
modeled in such a way that an anomaly (e.g. weak client signal patterns) can be

detected in real time and then be utilized to identify a system outage.

The first assumption, that real time signals can be sent from clients, is answered
by the use of a broadly adopted, open source, web analytics tool called Matomo

(https://matomo.org). Matomo, through embedding of a short JavaScript snippet

into client code, measures user behavior at a highly granular level. Further, it was
implemented as an enterprise service within our organization and broadly
adopted into client applications. Because Matomo tracks extremely granular user
behavior such as clicks, input field values, out links, page load times, and many

other details, this satisfies the second part of the first assumption.

The second assumption, that these signal can be translated into a model, is satisfied
because a high volume of data was captured over a several year period, allowing
for some consistent behavior modeling. For example, in Figures 1A and 1B below,
two different dates of user behavior are modeled. The full explanation of how to
interpret these figures is discussed in section 5, Algorithms. Suffice to say, Figures
1A and 1B represent signal levels of approximately fifteen-thousand users

interacting with organizational enterprise IT systems over the course of one day.

https://matomo.org/

Outliers

0

00:00
Sep 18, 2020

Figure 1A—Visitor patterns for September 18, 2020. The yellow
(middle) line is the 15-minute, rolling mean count of active visits,
while the green (upper) and red (lower) lines represent 3 standard

deviations from the mean, positive and negative respectively.

Outliers

o

00:00
Sep 15, 2020

Figure 1B—Visitor patterns for September 15, 2020.

3.2.2 Traditional Monitoring Tools

The approach explored in this paper differs significantly from traditional
monitoring techniques. Oftentimes, instead of placing the burden on the client,
monitoring systems either (1) act as a single client themselves or (2) utilize
privileged access to the system, perhaps monitoring database connections or
internal logs. The approach we are recommending does not seek to disqualify
these monitoring patterns. We do suggest, however, the following addendum to

our hypothesis above:

To maximally measure a population’s user experience in real time,
it is essential that measurements be taken as close to the physical

user as possible.

In this case, we are utilizing signal generators within each user’s browser, which is
much closer to the user than a distant monitoring client?> or even the backend

logging system monitoring the system’s inner workings.
3.2.3 Inspirations

The basic idea of broad-scale signal monitoring is inspired largely by work done
in photovoltaic research with solar panels. “When the output of a solar electric
system is graphed... it forms a traditional bell curve” (pveducation.com). This
makes intuitive sense. As the sun “rises” (to use the colloquial term), the output of
the solar panel will gradually increase throughout the day. Eventually it will hit

some peak and then decline as the sun “sets.”

In much the same way, companies with the vast majority of their workforce in
nearby time zones will see the same bell curve. As employees arrive on-site or
login from remote locations the activity levels recorded will follow a predictable
pattern. There will be a peak, some valleys (e.g. lunch breaks), and then an

eventual decline as the workday ends. This pattern was observed in Figures 1A
and 1B.

4 PADUX ARCHITECTURE

In this section we discuss the full PADUX architecture. An inventory of the full

system can be laid out as follows:

¢ A single-node Kafka cluster
e A Python consumer script

e Various Python modeling scripts
e A MSSQL database

2 Example: an automated script making HTTP calls to a web application every minute. If a
status code of 200 is returned, the application is assumed to be running correctly.

e Plotly dashboards

Each of these layers is discussed below, but the high-level architecture is displayed
in Figure 3.

Subscribed to
Palls for new data every 60 seconds “visits" fopic

¢ Post analysis
data stored in

| v
~ &3 kafka| ==, ¢)

Matomo Kafka Cluster Consumers Database

h 4

Y

Mew data pulled
into Kafka

¥y ¥

Models developed locally .
and deployed. Data viz made

available in Plotly

Data for analysis
pulled from DM N
) i)

Analysis / Model Building

Data Mart

Dashboards

Figure 3—PADUX architecture design

Note in Figure 3 the Data Mart and Matomo are considered external to PADUX.

They are shown for reference.
4.1 Kafka Cluster

The Kafka cluster was deployed to an internally developed Platform as a Service
(PaaS) and managed using Docker Compose. The Kafka instance used was built
with a default configuration sourced from Confluent’s Docker Hub account (see

https://hub.docker.com/u/confluentinc). By using Confluent, we were able to

harness a preconfigured cluster with various conveniences such as a web client for
managing the background services. A Java database connector (JDBC) was added
and a connector instance was instantiated to poll for new data from Matomo every

sixty seconds.

Utilizing Kafka offered several helpful capabilities for our use case. First, its JDBC
connector minimized load on the Matomo database by only requesting recent
messages. Second, the system is highly scalable and even though for our purposes

only a single node was used, there is the option to scale the system horizontally

https://hub.docker.com/u/confluentinc

later. Third, currently only Matomo data is being streamed, but additional data

sources can be easily added using a plethora of different Kafka connectors.

4.2 Analysis and Model Building

The analysis and model building components are mostly contained in a single

Python script and can be run either manually or via automation. The script

parameters require a start and end date to specify the bounds of the model’s data.

Other parameters of the model will be discussed in detail in the algorithm section.

4.3 Consumer Script

The consumer script is written in Python and leveraged the Kafka Consumer

library, Kafka-Python. The consumer has several notable points:

It uses an Auto Offset Reset (AOR) policy of “latest” so only the latest
messages are retrieved, thereby optimizing consumer performance (see
section 4.7 on the Retroactive Data Script for more information on the
rationale of this policy choice).

It utilizes a consumer group, which allows for scaling the consumer
horizontally.

The primary logic of the consumer is to pre-load a model and compare real
time signal data against a model of past signal data. If the real time signals
are significantly weaker than past signals, an anomaly is registered.
Regardless of whether an anomaly is noted, signal strength is recorded in

the MSSQL database. Details of this algorithm are discussed later in the
paper.

4.4 MSSQL Database

The database was designed using an extremely simplified schema. Below is the

entity relationship diagram (ERD) of the database:

R Ano
% AnomalyTypeld
B Name

¢5§Visiﬂ:|:|ur'lt|d
B VisitCount

% AnomalyTypeld
B3 AuditDateCreated
B AuditDateUpdated
B3 AuditCreatedBy
B AuditUpdatedBy
H Minute

I3 Description AnomalyTypeldAnomalyTypeld

I3 AuditDateCreated
IF AuditDateUpdated
I3 AuditCreatedBy
I3 AuditUpdatedBy

Figure 4—PADUX database ERD

Each time new data is polled and processed by the consumer the results are stored
within the VisitCount table, which can be thought of as the record of signal levels.
This occurs regardless of anomaly detection. If an anomaly is detected, the
appropriate anomaly type is included within the VisitCount record. Determining

the appropriate AnomalyType is done within the consumer algorithm directly.
4.5 Plotly Dashboards

Dashboards to display data were developed within Plotly’s Dash framework, as
shown in Figure 4 (see https://plotly.com/). The dashboard runs within the same

Docker compose stack as the consumer. The dashboard is populated by pulling
data from the PADUX database (the signal data, shown in yellow as the “real time”
line) and compared against another dataset loaded from a CSV file. This second
file contains the model (which are the lines “smooth”, “under”, “over”). These
details are discussed in detail in the algorithm section. It is worth pointing out that
there is also a historical option (the “Past Visits” tab in Figure 5), which allows for

historical data exploration of the signal data against different models.

https://plotly.com/

Live Visits Dashboard

Figure 5—PADUX dashboard showing signals in real time

4.6 Deploying the Consumer and Dashboard

The consumer and dashboard are deployed using Docker Compose. Each instance
(any consumer and the dashboard) uses the same image, with “python” specified
as the entry point. Within the Docker Compose a different script is called for the
same image, depending on which service needs to be started. This has allowed for

scaling to add more consumers easily, while still streamlining local development.?
4.7 Retroactive Data Script (not shown in Figure 3)

An additional component that was developed was a Python script that
retroactively populates the MSSQL database. This was designed for situations
where unexpected issues cause outages within the PADUX infrastructure itself. It
also allows for back-populating pre-PADUX time periods for historical analysis.

The script can be run for a date range and will retroactively populate data in the

3 The core code repository contains the analysis modules, the consumers, and the
dashboards. This makes the system somewhat of a monolith. However, this was an
intentional design as the analysis portion, consumers, and dashboard all work closely
together. It would have been highly inconvenient to split these into a microservice pattern.

10

MSSQL database. Currently it is only configured to be run manually; ideally, this

will be deployed as an automated background process.

One of the advantages of this second script is it allows the primary consumer to
operate with a “latest” policy. In practice this policy means only the newest
messages will be consumed and older messages will be ignored in the case where
the consumer goes down and comes back up at some later point. It was observed
that when the offset was set to a policy like “earliest”, the system struggled to catch

up on messages due to the sheer volume requiring processing.
5 ALGORITHMS

This section covers PADUX’s various algorithms in depth. First, we will provide
some background on Matomo analytics. Second, the Kafka connect query will be
shown and explained. Third, the model used to determine if there is an anomaly
in signals is discussed. Finally, the implementation of the anomaly algorithm

within the PADUX consumer is briefly reviewed.
5.1 Matomo Analytics Background

Signals, for the purposes of this paper, are the same as the Matomo concept of a

“visit.” A visit in Matomo can be defined as follows:

A sustained period of activity on a web site by a single user where
there is no more than 30 minutes between any two actions* (see

https://matomo.org/fag/general/faq 36/ for more details).

With some exceptions, this holds true even if the user closes their browser and
accesses the site again within the 30-minute window. “Actions” can be defined less
formally as there is a very broad set. For examples, actions include out-links, clicks
on the page, typing into form fields, and any inner-site navigation. These are the
low-level signals about the user that Matomo captures. When a user initiates a
visit to a site, two important details are recorded: the visit’s first action time and
the visit’s last action time. When this visit record is initially created, those two

values are equivalent. As the user moves about the site and performs actions, the

4 This is the default time interval shipped with Matomo. It is configurable, however.

11

https://matomo.org/faq/general/faq_36/

last action time is updated. The implications of this record keeping is that it
provides high granularity in measuring user activity as a signal on any site where

Matomo is installed.
5.2 Kafka Connect Query

Kafka connectors are a type of abstraction that allows for the Kafka cluster to
connect to different data sources using various protocols. For example, one type
of connector might be for a web REST API, while another connector might be
specific to a MongoDB system. In this case, we decided to connect directly to the
Matomo database using a JDBC connector. This connector includes a “query”
feature, which allows for standard SQL syntax against a MySQL database (MySQL
is the specific Matomo database technology). The essential elements of the query

are as follows:

o It selects the unique ID of the visit, the time of the first and last action, the
site metadata such as the site’s recorded unique identifier, and the total
time of the visit.

e The query was constrained to visit records that had a last action time

occurring within 1 minute of the time of the query.

Simply put, the connector selects all visit records that were active within the last
minute. By doing so, the records coming into the PADUX consumer at every
minute represent the number of individuals actively utilizing web-based resources
during that minute and gives the consumer a high-granularity signal to utilize for

model comparison.
5.3 PADUX Model
5.3.1 Fundamentals

The signal coming into the PADUX consumer must have a comparison model. The
basic model proposed fundamentally uses the same concept discussed in section
5.2: one that measures active visits for each minute in a 24-hour time period.
However, the variableness in these measures could be significant enough that

detecting anomalies would be difficult. Instead, the following was calculated: (1)

12

the rolling, 15-minute mean of active visits at every minute of a twenty-four hour
period and (2) the +/- standard deviation (again, rolling 15-minutes) where X = 3.

The end result is shown in Figure 6 below.

Outliers

variable
smooth
under
over
realvisits
200

150
100
50
[}

00:00 12:00
Jun 24, 2021

timestamp

Figure 6—Rolling standard deviation of visit data

5.3.2 Intuition Check of Model

In general, Figure 6 illustrates expected active signals coming from employee use
of web systems. The tails (which never go to zero), illustrate overnight periods
when automated bots, such as the monitoring tools discussed previously, perform
tests, and checks of the systems. During the morning hours, there is a sudden climb
in activity. In the middle of the day, when many employees take lunch, a dip in
activity is seen with a spike approximately an hour later. Finally, as the day ends,
there is a decline that eventually returns to near-zero levels of activity, except for

the bots and the occasional employees burning the midnight oil.
5.3.3 Caveats of the Model

Some caveats had to be considered. First, activity varies significantly depending
on the day of the week. For example, a Tuesday and a Thursday can have very
different patterns. Further, due to the fact that the 9/80, standard 40 and 4/10
schedule are all supported within our organization, Fridays are an outlier among
working days. To complicate matters further, subsequent Fridays differ, because
employees largely favor certain 9/80 schedules over others due to how they line

up with US holidays.

13

In order to account for these caveats, the model takes the following parameters:

(1) day of the week and (2) minute of the day. For this experiment, the specific

Friday in question was not used as a parameter. Future versions of PADUX will

account for this nuance.

5.4 Implementation in Consumer

Implementation in the consumer involves bringing together the real time query

used in Kafka and the model, both discussed above. The key points of the

algorithm are as follows:

Every minute, the consumer checks for updates to the Kaftka topic where
the visit data is waiting to be consumed.

If data is available, the consumer pulls it.

Once the data is pulled, it goes through a basic parsing process that puts it
into JSON format.

After parsing, the consumer examines the data to determine what day and
what minute of the day the visit data represents (for example, Monday at
12:06 PM MST). It then sums the number of active visits for that minute
The model is already loaded during startup, so the consumer finds the
matching day and minute in the model (Monday at 12:06 PM MST) and
pulls the expected mean, high, and low counts from the model.

The consumer then compares the real time visit count against the lower
rolling count. If the current is less than the expected count, then it is flagged
and noted in the database. Otherwise the consumer simply stores the real

time count without an anomaly reference.

Figure 7 illustrates what this looks like in real time:

14

Outliers

variable
smoath
under
over
realvisits

e e—

00:00
Sep 24, 2020

timestamp

Figure 7—Rolling standard deviation of visit data

In Figure 7 there was a significant drop in activity signals (visits) around 9:30 AM,
and the signal went to zero at certain points, triggering several anomaly events.

Interestingly enough, these correspond to a power failure within an IT data center.
6 RESULTS
6.1 MITIs

A “major incident” in IT can be defined as “an emergency-level outage or loss of
service” (Atlassian). In order to manage such situations, organizations can create
an incident management process that defines the “path we take to identify,
resolve, understand, and avoid repeating incidents” (Atlassian). Within our

organization, this process is formally referred to as a MITL: A Major IT Incident.

In order to cross-check the effectiveness of the PADUX system, we decided to
perform historical analysis of signal data, comparing the results of each MITI
incident with the PADUX signal measurements. Prior to beginning the PADUX
project, it was never an expectation to detect every MITI. This is simply due to the
heterogenous nature of outages. A major IT incident may or may not cause
significant signal loss to the degree that it is detectable using the methodology
we’ve described in this paper. Therefore, in order to properly evaluate PADUX
performance, we evaluated each MITI according to its recorded Issue Description.

The categorizations used are placed into Table 1.

15

While this categorization is based on intuition and not more measurable
techniques, nonetheless, coming up with a non-intuitive, quantifiable approach
goes far beyond the scope of this experimental system. Instead, we relied on our
combined 12 years of experience within our organization to determine category.

This provides us with a minimum of 11 MITI days for PADUX evaluation.

Table 1—MITI Categorizations for PADUX analysis

Category Name Description Count

Unclear In these cases, we were not clear on the scope of the affected 6
systems.

Too localized These were too localized to cause signal measurement 7
anomalies. For example, power outage in an office-only
building.

Not tracked by Matomo This situation is not localized, but we did not have receptors 8

for outage signals coming from the clients of these systems.

Detectable We expect PADUX to detect signal anomalies in these affected 11
systems.

Total 32

6.2 PADUX Comparison with MITIs

The next step in the process was to analyze PADUX data for the specific days in
which the MITI's occurred (the 11 MITI days classified as “detectable” in Table 1).
We then compared analysis of those days against anomaly readings on other
random collections of business days. Essentially, we were looking for clear
evidence that the higher the level of signal anomalies from PADUX, the more
likely a MITI was to be initiated by the MITI team. Our null hypothesis, therefore,
is that the mean difference of anomaly counts for any random selection of two

groups of days (eleven in each group) exceeds the mean difference of the MITI

16

days anomaly counts and any other randomly selected group of days more than
5% of the time. The alternate would indicate that MITI days have much higher
levels of anomaly counts than any random group of days and, therefore, if PADUX
detects a high anomaly count this should indicate a widespread IT issue worth

investigating.

To identify MITIs more accurately, PADUX readings were generated for the
specific MITI days classified as “detectable” using a Python script that backfills the
PADUX database for a specific date range. The script backfills PADUX readings
for the date ranges of interest (approximately September 2020 through July 2021).
To verify the statistical significance of PADUX readings on MITI days vs. non-
MITI days the distribution of the data readings was analyzed and found to be non-
normal. As a t-test assumes normally distributed data, this method was not
appropriate. Instead, permutation testing was performed as an appropriate
alternative for this data (Pellegrina, L., & Vandin, F. (2020), Bruce & Bruce, 2017).
See 9.1 Appendix A: Q-Q Probability Plot, for more information.

Permutation testing required a script for initial selection of all the MITI days being
analyzed (11 total) as well as counts for the number of anomalies that occurred
within business hours for each day. This represents the “test group.” A selection
of 11 random days was taken from the full set of possible days for which PADUX
signal data was generated (September 2020 through July 2021).5 The number of
anomalies during business hours was calculated for the random 11-day set,
representing the “control group.” The mean was calculated for both the test group
and the control group and the absolute difference was then taken. To complete the
permutation testing, the script selected (again at random) pairs of 11-day groups
from the allowed day pool (22 days total, half in a test group, half in a control

group, selected each time), and the absolute mean-difference was calculated for

5 Sandia National Labs, like others in the aerospace industry, has a shutdown period
annually in mid-to-late December. Therefore, data from mid-December through the first
few days in January were excluded from the analysis. Further, all holidays which would
affect Sandia Labs workforce were removed.

17

each iteration.® This was done 118 times, besides the original test/control iteration.

The results of the analysis are shown below in Figure 8.

Permuation Mean Differences

Test/Contr...
120

100
80
60
40

20

o |H‘ ll i

m. \‘ .|_||H|| I l.‘m”n_l ||||H|‘..\|‘ HI N \.M
O ™ O = O = O = OV = OV = OV = OV = OV = O —~ O —~« O

Anomaly Count Mean Differences

—

Permutation Iterations

Figure 8 —Bar chart showing mean difference of the permutation

iterations using the experiment script.

As can be seen, in the vast majority of cases, the mean-difference of any randomly
selected pairs of 11 days will not exceed that of the MITI days with any randomly
selected control group. A closer look gives a p-value of 2.54%, where only 3 of the
118 cases were greater-than-or-equal the mean-difference of the original
test/control group. This indicates it is very unlikely the null case could happen by

random chance. A summary of these findings is in Table 2 below.

6 Selection was completed without replacement of the days for any particular group of 11.
While the same days might appear in the pair of test and control groups, in any one group
of eleven, duplicate days were not allowed.

18

Table 2—P-value findings

Description Count
Greater-than-or-equal test/control mean difference 3
Less-than test/Control mean difference 115
Total iterations 118
Test/Control Mean Difference: 92 anomalies
P-Value 2.54%

7 CONCLUSION

7.1 Revisiting the Original Hypothesis

In section 3.2, we laid out our hypothesis which, assuming the built-in
assumptions could be satisfied, states that “anomalies in basic system access can
be detected and used to determine if system access by users is currently impaired

or has been impaired in the past.” Did we prove our hypothesis?

We would argue that we did prove it in part. Certainly, PADUX can be used to
identify outages from the past; it gives clear indications that users had difficulty
accessing systems on the 11 MITI days. Nonetheless, it is unclear if PADUX can
alert system owners of issues in real time. The analysis done here takes full days
into account, not windows of time within a given day. Despite this uncertainty,
there is enough promise within this analysis to indicate that more granular
modeling and research could add a level of sophistication to PADUX such that it

could be proficient in detecting real time outages.

19

7.2 Utilizing PADUX

This analysis does give strong evidence that low-level signal readings from a
broad network of clients can indicate significant issues in enterprise IT systems.
Many of these issues may not even be measurable by traditional monitoring
methods. It cannot be reiterated enough, however, that this is not intended to be a
replacement for these traditional monitoring techniques. Instead, this should be
viewed as an additional protection layer or heuristic to be used in conjunction with
other monitoring tools. If, for example, a real-time warning system were
configured to trigger when certain anomaly patterns occur, this method could aid

enterprise IT organizations in shortening response times.

Another useful application is in post-event network forensics. Essentially, this data
can be used to highlight and prioritize where forensic teams should start.
Throughout a given calendar year many IT outages might go unnoticed due to the
qualitive labeling methods currently employed, e.g. an individual person (or small
team of people) must decide there is sufficient evidence to call a MITL. Much of the
evidence of deprecated IT services may not be apparent to those in charge of the
MITI process, and so those events may never be captured. Capturing these events
via a system like PADUX would allow forensic teams to prioritize specific days to

investigate and then analyze granular data sets such as server logs.
7.3 Future Work

Currently the PADUX system has several shortcomings: (1) models are not
automatically regenerated based on new data, (2) there is no automatic notification
system, (3) granularity is highly limited (all sites are viewed in aggregate), (4) there
is limited capability in terms of external exposure via something like a REST AP],
(5) many of the deployment steps are manual and (6) the system’s underlying
architecture is not currently configured to be highly-available. All of these issues

could be addressed and would make the system more usable.

20

8 REFERENCES

1. Atlassian. How to run a major incident management process.

https://www.atlassian.com/incident-management/itsm/major-incident-management

2. Bruce, Peter and Andrew Bruce (2017). Practical Statistics for Data
Scientists. Chapter 3, Statistical Experiments and Significance Testing.
O'Reilly, Sebastopol, CA.

3. International Standards Organization. Ergonomics of human-system

interaction— Part 11: Usability: Definitions and concepts.

https://www.iso.org/obp/ui/#iso:std:is0:9241:-11:ed-2:v1:en

4. Kafka-Python. KafkaConsumer

https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html

5. Pellegrina, L., & Vandin, F. (2020). Efficient mining of the most significant
patterns with permutation testing. Data Mining and Knowledge

Discovery, 34, 1201-1234.
https://link.springer.com/content/pdf/10.1007/s10618-020-00687-8.pdf

9 APPENDICES
9.1 Appendix A: Q-Q Probability Plot

In order to determine if a t-test was an appropriate approach to check for the
statistical significance of the PADUX findings, a Q-Q probability plot was
generated. This Q-Q plot indicated that the data was not distributed normally, but
positively skewed. Therefore, permutation testing was used instead. For the full
data set and analysis, please see the accompanying spreadsheet:
data_analysis_final_1632321371.1069791.xlsx

21

https://www.atlassian.com/incident-management/itsm/major-incident-management
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html
https://link.springer.com/content/pdf/10.1007/s10618-020-00687-8.pdf

Normal Probability Plot

3
®
-40 100 120
-3
Figure 8 —Normal Probability Plot of the data showing this set is
most likely not normal.
ACKNOWLEDGEMENTS

We want to thank John Miner (Sandia National Laboratories) for his
mentorship and for sparking the idea to this project by pointing out the
analogy between photovoltaic patterns and the concepts explored in this
research. We would also like to thank Scarlett Marklin (Sandia National
Laboratories) for helping advise us in the statistical analysis portions
through informal, but very helpful, reviews (we hoped we didn’t fail her
too badly). Paul Salazar (Sandia National Laboratories) provided a review
of our software stack and we would like to thank him for always asking
good questions. Finally, we would like to thank our manager, Tameka Huff
(Sandia National Laboratories), for funding us to pursue these very

interesting projects.

22

