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Background

Current tamper-indicating enclosures (TIEs) typically require time consuming and
subjective inspections, active monitoring technology, or external verification
mechanisms. There are no current approaches that upon tamper, result in obvious
responses with onlv visual inspection needed.
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(Left) NGSS surveillance system uses both anodized aluminum, which is verified subjectively on
both the outer and inner surfaces via visual inspection and touch, as well as active self-monitoring
using conductive materials.

(Middle) The EOSS fiber loop seal uses active self-monitoring using conductive foils. Active
methods require power and are not applicable in some scenarios.

(Right) Metal containers can be verified using eddy current — an external electronic instrument
capable of finding disturbances in the metal, including drilled and plugged holes.
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Sensors

General schematic

Sensor molecule
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5 ‘ Transition Metal Complexes with Sensor
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Tamper event releases FeCl,*4H,0O and the sensor chelates to Fe(ll) to cause a color change

* Not limited to FeCl,*4H,0
* FeCl;*6H,0 is more robust to oxidation



6 ‘ Investigation of Transition Metal Salts and Sensors

\ OH
NH
AN
Q/NHQ + HOYQ\(OH
o] o)
Fe3*

Chem. Eur. J. 2011, 17, 13274.
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Sensor
 HO-BIP — synthesized
* Produces purple solution

Sensor + TM
* 1 -3 mg/mL Metal
Chloride Solutions
 Much more dramatic color
changes
* Colored sensor
« Stronger sensor-
transition metal
interaction

Ni2*

Co?*
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Investigation of Transition Metal Salts and Sensors
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 1- 3 mg/mL Metal Chloride Solutions; 1:1 ratio of TM to sensor

« Fe?* yields the most dramatic color change, but it is prone to oxidation
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Absorbance

Absorbance

Investigation of Transition Metal Salts and Sensors
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9 I Sensor Synthesis
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E Only ~5% yield
Multiple pathways attempted
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HO-BIP
« Solvent, concentration, and temperature were varied with no increase in yield ‘

« Alcohol may not be nucleophilic enough
* Oxygen part of the conjugation into the ring

Krieger, G.; Tieke, B. Macromol. Chem. Phys. 2017, 218, 1700052.
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Polymer Systems

3 polymer systems and their random copolymers were cured

PEGDA — cheap & crosslinks

HEMA — polar/water compatible

TMPTA - crosslinks

Mixtures of 25/75, 50/50, 75/25

PEGDA/HEMA — Flexible/Difficult to crack

PEGDA/TMPTA

TMPTA/HEMA

Chosen Mixture: 75/25 HEMA/PEGD

Sate

\(LUAVQH PEGDA
O
HEMA QF/
/\{roz X ,OW]/\
0O O
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Simulating a Tamper Event

1 drop of TM solution

Rinse with water for 5 min

Polymer + Sensor

Concentration

0.01 M 01 M

Wait 25 min

Conclusions

e Strong TM-Sensor bond

« Sensor is bound to polymer

» FeCl, yields more dramatic change
* 0.2Mis best

Reversibility

* HCl reverses the TM binding, but

destroys polymer




12 I Simulating a Tamper Event

1 drop of TM solution

Rinse with water for 5 min ‘
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13 ‘ O,-Sensitive Tamper Indicating Material

OH in KOH(aq)
NH2

PDMS 2mm) DOPA-Melanin Glass Slide
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' Evidence of prior
tampering

PDMS Layer
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Permeable to oxygen
Contains bubbles of
aqueous L-DOPA/KOH
Inherently contains
unique identifiers

Epoxy Layers

| O, Diffusion
¢ ¢ Continues

®
®

Clear, Colorless Epoxy Top
Sealed, Clear, Colorless PDMS
Clear, Colorless Epoxy Base

%@ e 2 %2 ¢

}0

ACS Appl. Mater. Interfaces, 2016, 8, 4314-4317

Minimally permeable to
oxygen

Seals PDMS layer & O,
sensitive L-DOPA
Tampering allows
oxygen to flow into and
diffuse through PDMS
Inherently contains
unique identifiers



14 Preparation of 3-Layer System

Mixed PDMS (Sylgard 184)

60 °C
—_— —_—
25 min
(PDMS ComponentS Add|t|0n Of ~50 |J|_ Of L- A"Owed to fu”y cure in g|0vebo
degassed in glovebox DOPA to PDMS

antechamber overnight)

Aqueous I.-DOPA bubbles

Epoxy: Epon 828/Jeffamine
T403 PDMS
(Epoxy components
* Partially cured for 4 hours degassed in glovebox
Epoxy antechamber over a

\ / « 2 material poured then
PDMS was set on top

weekend)

e Other half poured over



*Bubbles from mixing are

L-DOPA Tamper Event inherent unique identifiers™
O = tamper hole Process Improvements
Polymer Substrate - Silicone

0wl % 160 wi %

40wt %

Polymer Substrate - Epoxy

Tamper event
introducing oxygen

22 hours
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High-boiling Polyprotic Organics

Glycerol Propylene Glycol

Ethylene Glycol

Using high-boiling polyprotic solvents rather

than water was expected to allow both L- Pre-0,
DOPA and KOH solubility while expanding the Exposure
temperature range at which these materials

can be utilized.

* To test this, water was replaced with;
* Glycerol (T, =290 °C, T;= 18 °C)
* Propylene glycol (T, =187 °C, T; =-60 °C)
* Ethylene glycol (T, =197 °C, T;=-13 °C

POSt-OE
Exposure

Once pure organic solvents were proven with the
same O, mechanism established with H,0O, the
final solvent experiments had relevant
combinations of H,O and polyprotic organics to
yield a balance of solubility and thermal
properties

Glycerol 1:1 Glycerol/H,O

Silicone and
H,O and/or
organic mixture

Epoxy

Bubbles formed during processing lead to
inherent areas that would be difficult to replicate



Thermal Cycling and Gamma Irradiation of Coupons

60Co Gamma Irradiated — Dose Rate = 641.4 rads/s - 190 hours I
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20 Environmental Testing of Tl Pucks
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