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D A K D I A C++ toolkit that provides a variety of non-intrusive

algorithms for performing iterative analysis with

. . | simulation codes.
Explore and predict with confidence.

Algorithms: design optimization, model calibration, uncertainty quantification, DACE, GSA, parametric studies

Framework: plug and play method selection, composition of methods/models with nesting, recasting, surrogates
Computing: supports multiple levels of parallelism for scalability on both capability and capacity HPC resources

Interfacing: can be used as either a stand-alone application or as a set of library services

i samples = 5

Core forward UQ components
«  Sampling: Monte Carlo, Latin hypercube; Incremental, Importance T
. Reliability: Local (FORM, AMV+, TANA/QMEA); Global (EGRA, GPAIS, POF Darts) 7]

. Stoch. expansion: PCE (project, regress), SC (nodal, hierarch), FTT (regress, cross appr.) ...
. Epistemic: Interval estimation (local, global); Dempster-Shafer |
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Advanced (multi-component) capabilities 1;; Expected looo o
+  Bayesian methods: QUESO, GPMSA, DREAM, MUQ; Emulator-based MCMC ¢ |7 N
. Nested studies: Mixed aleatory-epistemic UQ; Optimization under uncertainty j Ezz 5 N
. Multilevel-Multifidelity: sampling, surrogates, hybrid 2 001 5, o
* Dimension reduction: Active subspaces, adapted basis PCE SCANE 2SR I B T i
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Simulation interfacing

 Black box

« Embedded service

DAKOTA Input File

« Commands

* Options

» Parameter definitions
* File names

—

DAKOTA Executable
Sensitivity Analysis,
Optimization, Uncertainty
Quantification, Parameter
Estimation

—

DAKOTA Parameters File
{x1 = 123.4}
{x2 = =-33.3},

etc.

\ 4
Use APREPRO/DPREPRO
to cut-and-paste x-values
into code input file

\ Code
Input

(CALORE thermal analysis )
ALEGRA shock physics
SALINAS  structural dynam
Premo high speed flow

(your code here)

parameters
file

\_ J

DAKOTA
Executable

script-driven file
system interface with
separate executables

Simulation Executable
Black-box

responses
file

DAKOTA Output Files

* Statistics on f-values
* Optimality info

* Raw data (all x- and f-values)
—) + Sensitivity info

Integrated Executable
| DAKOTA Library |}

B | usec+APl [
% for in-core §
] data 20
@ transfers 3

Simulation Application
Alegra, Xyce, Trilinos,

k Albany, Matlab, Pythonj

Agile Components Vision, ~2012

DAKOTA Results File
999.888 f1l

777.666 £2, etc.

A

User-supplied automatic
post-processing of code
output data into f-values

Y Code
Output

Non-intrusive (NAND / MDF)

* All residuals eliminated,
coupling satisfied
* DAKOTA optimization & UQ

Intrusive to coupling (IDF)

* Indiv. physics residuals eliminated;
coupling enforced by opt/UQ
* DAKOTA opt/UQ & ROL opt.

Intrusive to physics (SAND / AAQ)

* No residuals eliminated
* ROL opt., Stokhos UQ




High-Performance Computing for Enabling High-Fidelity Opt/UQ

Exploiting multiple sources of parallelism

Production (~1998): Multilevel parallelism via MPI + “X” (= asynchronous local system call, fork, thread),

effectively separating internal Dakota from external resource scheduling
Recursive partitioning & scheduling

with MPI Communicators

1. Algorithmic coarse-grained:. concurrency in data requests: bevel 1 Level 2 Level 3
 lterators: Gradient-based, Nongradient-based, Surrogate-based MPI_COMM WORLD SpECON evalcome
« Strategies with concurrent Iterators: Multi-start, Pareto, Hybrid,
MINLP

* Nested Models: OUU/MCUU, Mixed UQ
2. Algorithmic fine-grained: computing the internal linear algebra of an

analysisCOMM ' s:

opt. algorithm in parallel (e.g., large-scale opt., SAND) ] ]
3. Fn eval coarse-grained: concurrent execution of separable simulations L0 D

within a fn. eval. (e.g., multiple loading cases) ] -
4. Fn eval fine-grained: parallelization of the solution steps within a single

analysis code (e.g., ALEGRA, Xyce, STERRA) Legion task graph for Soleil-X (PSAAP?)
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Next-Gen Exploratory (2020): Asynchronous many task (AMT) parallelism

 Ensemble-based UQ workflows amplify the aggregate task graph
* Heterogeneity in simulation fidelities and computing hardware
* Fine-grained task optimizations expected to outperform coarse-grained job scheduling _ =REg--" —
 Collaboration w/ Stanford on Legion + ensembles via PSAAP2, PSAAP3 =
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Resources

May/November Releases: v6.14 released May 2021

Supported platforms: Linux, Mac, Windows
http://dakota.sandia.gov Modern SQE: Nightly builds/testing, gitlab, cmake Dakota Ul: integrate study wizards, docs,
Manuals, Publications, Training matls. online GNU LGPL: free downloads worldwide pilot analysis for method selection
Community development: moving to git pull requests

Community support: dakota-users list, [user forums]
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* Chartreuss
& B “Sand boa Wiew® Tor fast wausbzations of genenc data using Charireydes
© Suppert added to Chartreuse for C3V files
& Four-dimensianal Charlreuse scater plols (e, me-based node coloring)
* Dakota Input File Editing
= Mew form-based editors for Dakoba interface blocks and hybrid method Blocks
@ Limited support for visualization of Dakata uncertainty variables (normal lognoemal,



Sandia

UQ & Optimization: DOE/DOD Mission Deployment Natonal
Stewardship (NNSA ASC) Energy (ASCR, EERE. NE) Climate (SciDAC, CSSEF, ACME)
Safety in abnormal environments Wind turbines, nuclear reactors Ice sheets, CISM, CESM, ISSM, CSDMS

accumulation, termperatune surface topagraphy

surface welocity _ — e

Vi h%;,‘\f' o -1 sliding law

bed topography

Sl gvcitry .

meltireeze distribution ‘;
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CHWM: push fwd

oy . . [fl... WastePD: 10
Additional Office of Science: [T posterior '
(SciDAC. EFRC. BES) LI T . uniform
Comp. Matls: waste forms / ﬁ&g Wl 5
hazardous matls (WastePD, CHWM) ﬂzzgq E 0'2 Pareto-
MHD: Tokamak disruption (TDS) ; g = ﬁa T informed
Quantum Chem: soot modeling TEGW - |JE\[ U.0-3.00-1.50 0.00 150 3.00 4.50 5.00 7.50 9.00

Adtivation Energy [ eV)

Common theme across these applications:
» High-fidelity simulation models: push forward SOA in computational M&S w/ HPC

- Severe simulation budget constraints (e.g., a handful of runs)
- Significant dimensionality, driven by model complexity (multi-physics, multiscale)




Research Thrusts for UQ S

Laboratories

* Focus: Compute dominant uncertainty effects despite key challenge of high—{D,Fidelity}

* Foundational: Emphasize scalability through exploitation of special structure
* Adaptivity: p- and h- refinement of stochastic expansions
* Adjoints: gradient enhancement for PCE / SC / GP
» Sparsity: compressed sensing
* Low rank: tensor / function train (w/ UMich)
* Dimension reduction: active subspaces (w/ CU Boulder), adapted basis (w/ USC)

* Building on foundation: Compound efficiencies EERE
« Multilevel-Multifidelity with sampling & CS/FT surrogates (new: ROM, NN, GP) & B £
* Active subspaces/Adapted basis: link dissimilar parameterizations, enhance correlation =ERE

E Ll
I

* Building on foundation: Address complexity w/ component-based approach — e ——
« Emulator-based Bayesian inference, Mixed aleatory-epistemic UQ, o'} o coshee
Optimization under uncertainty, Optimal experimental design 10} e

* Position UQ for next generation architectures

Relative Error in Std Dev

» Current (imperative): multilevel parallelism (MPI comm. partitioning + nested scheduling) W w0 e e o
* Future (declarative): collaborations with Legion in Stanford PSAAP{2,3}

Equivalent Number of High-Fidelity Model Evaluations




o - . - ' Sandia
Science Pipeline” Metaphor o
Algorithm Software Mission
Research Development Impact

Prototyping Advanced/supervised

(MATLAB, Python, deployments with

lightweight C++ codes) partners/early adopters

\ Feedbacks /
pop | J
NASA Scalable UQ, DUU @' Nozzles, Scramjets
Trajectory simulation
pog/ | ! ! FASTMath UQ ! Tok k, ‘ ,
SC at . okamaks
SC . 7] @:soac. . o)
DOE/ | — J
NNSA g"vi'\ V&V Methods V&YV Software ! % Advanced Deployment
AsC




Sandia

“Science Pipeline” Metaphor o

In FY20, we began organizing around the constituent components as project thrusts

>

DAKOTA

Explore and predict with confidence

Upstream
Research

Product Mission

Development Integration

« Each thrust has its own team, planning, and set of prioritized goals
* The project defines a set of integrated milestones that emphasize the flow through the R/D/A pipeline




Connecting the pipeline

Selected vignettes in mission-driven R&D

Historical
* UQ modernization for thermal analysis community

Current
« Multifidelity methods
» Bayesian inference with MCMC (follow MF UQ)

Looking forward
* Model management with “trustworthy Al/ML”

Heavy reliance on 1970s technology in DOE mission work

Mission connections dominated by HF M&S on HPC
MCMC = too expensive, posteriors are slow to converge

Machine learning is the new wild-west!



Connecting the pipeline

Selected vignettes in mission-driven R&D

Historical
* UQ modernization for thermal analysis community .

Heavy reliance on 1970s technology in DOE mission work
* Mean Value First-Order Second-Moment (MVFOSM)
e Latin Hypercube Sampling (LHS)

Advanced Deployment: Deploy modern UQ approaches for
which barriers to adoption are minimal (~same sample sets):
* L1 sparse grid as alternative to MVFOSM w/ central FD
* Compressed sensing PCE as post-processor of LHS data
« Can “advanced UQ” demonstrate tangible benefits relative
to current MV/LHS approaches?

Leverage these foundations into mixed A-E UQ deployment
* For mixed UQ, are current simplifying assumptions valid,
or are we discarding realism for efficiency?

Temperature
1
. Uncertainty in 5L

Temperature response

Urncertainty of
of 5L failure =77

 Uncertainty in WL

Temperature - Temperature response

Uncertainty ) W LI
of WL failure  “=}—#——=
Temperature /

LN time
Resultant uncertainty Resultant uncertainty

in WL failure time in 5L failure time

Our starting point here is cultural: gain acceptance for newer UQ approaches from
our internal user community. CRITICAL for connecting our R&D to mission impact.




UQ modernization for thermal analysis community (Part 1): PCE methods

Established approach: MVFOSM (linear Taylor series) with central finite differences (2n+1 evaluation stencil)

« Compared to level 1 sparse grid PCE: captures nonlinear main effects and supports nonlinear sensitivity analysis
* 2n+1 evaluations at Gauss points = quadratic main effects, no interactions
* First set of active indices within a generalized sparse grid approach
* Naturally leads to subsequent refinement: Index set(s) with greatest AQol - higher-order main + interaction effects

—> Identified cases of mild and severe nonlinearity (MV ok, MV not ok) in thermal response

Established (entrenched?) approach: LHS with coarse sampling (one set of N stratified samples, no replicates)

» Post-process this unstructured data using regression PCE
* Over-determined: SVD for low-order expansions
* Under-determined: compressed sensing for higher-order expansion candidates
* K-fold cross-validation - search over {exp. order, noise tol} to mitigate over-fitting of sparse data

- Identified dominant main + interaction terms within candidate set, efficient GSA via VBD (Sobol’ indices)

L1 sparse grid Compressed Sensing Variance Decomposition
i E T I ' ’ I I ' I at -L; Linea ' ' L I .
03 -f' Guadral _
L1-Sparse
B ot Facto
0.2t '_-Ll‘-r | Oirihog "

€ 015 —

g
o} s
. ! I wul 1 1l |||

1] 5 1 15 20 25 30 a5 40 45 50 [1} 19 20 an ]

Greater resolution and additional insight while retaining same cost / reusmg same data as MV/LHS




UQ modernization (Part 2): Mixed Aleatory-Epistemic Safety Analyses

Context: safety assessments must contend with a mixture of variability +
lack of knowledge when computing probability of loss of assured safety (PLOAS)

Existing approaches/tools make strong assumptions about the epistemic uncertainty
* Rely on nested LHS, which is intractable in general for HF simulations
« Assumption: epistemic UQ is limited to post-processing vars that short circuit nested sampling
* Arguments can be made that these vars have both reducible and irreducible
components and are mis-characterized, and other thermal variables have reducible
uncertainty.
* Investigate impact of these assumptions — are we discarding rigor for tractability?

Approach: Dakota enables removal of these strong assumptions and renders mixed A

-E studies tractable though use of scalable algorithms that are tailored for each loop
« Epistemic: surrogate-based global optimization (EGO) for interval bounds

: Aleatory : .
@ uQ 9
L EN) Model PP RE &)

GOF ‘or Mac< hermal simalator (bueketing: rarmal s alsatrry model pasg mﬁterf;-

» Aleatory: spectral convergence / efficient tail sampling via adaptive PCE T

0.g atreng WP SELA minfp
P BE4A mani ]
IWE Glida i

Results: explored spectrum of formulations that provide more

WP AESSA mingp;
VT ZES8A maxia)

realistic A-E separation

« Strong assumptions (red) give conservative probability bounds under T
specific conditions

* In other cases, bounds on tail probabilities shown to be inaccurate by orders
of magnitude, indicating over-prediction of safety / under-prediction of risk

* Accuracy lost where it is most important for PLOAS estimation
- rigorous aleatory-epistemic modeling is critical for these safety analyses

« Key takeaway (again): socialization of R&D investments - mission impact

Cumlatie Mobability

=




Connecting the pipeline

Selected vignettes in mission-driven R&D

Current
« Multifidelity methods * Mission connections dominated by HF M&S on HPC
Highly active area with a multifaceted research roadmap
Monte Carlo UQ Methods Surrogate UQ Methods (PCE, SC) Optimization Under Uncertainty
* Production: optimal resource 5 i _ * Production (v6.10+): * Production: manage simulation
allocation for multilevel, ) e ML PCE w/ projection & regression; and/or stochastic fidelity
multifidelity, combined (DARPA W ML SC w/ nodal/hierarchical interp;
EQUIPS, Wind, Cardiovascular) ;; // £ greedy ML adaptation (DARPA i * Emerging:
] ] ) ) - 5_§ SEQUOIA), multilevel fn train (ASC V&V) .., ; Derivative-based methods (DARPA SEQUOIA)
* Emerging: active dimensions e ¥éd . + Multigrid optimization (MG/Opt)
(LDRD, SciDAC), generalized 5 * Emerging: multi-index stochastic I Soeve * Recursive trust-region model mgmt.:
fmwk for approx control variates | | 222 collocation; multiphysics/multiscale extend TRMM to deep hierarchies
(ASC V&V), goal orientation i [I integration (ASC V&V); new surrogates _=- Derivative-free methods (DARPA Scramjet)
(rare events), hybrid methods - _,[L| HJ: T (GP, ROM, NN) w/ error mgmt. fmwk + SNOWPAC (w/ MIT, TUM) with goal-
for GSA ' sl (LDRD, SciDAC); learning latent variable = oriented MLMC error estimates
- - relationships (MFNets, LDRD) M ienin
* On the horizon: control of time avg; . T v W * On the horizon: Gaussian process-based
model tuning / selection (LDRD) * On the horizon: unification of surrogate approaches: multifidelity EGO; Optimal

+ sampling approaches (LDRD) experimental design (OED)



Potential Flow

Multiple Model Forms in UQ & Opt

Discrete model choices for simulation of same physics

A clear hierarchy of fidelity (from low to high)

» Exploit less expensive models to render HF practical
» Muiltifidelity Opt, UQ), inference

« Support general case of discrete model forms
« Discrepancy does not go to 0 under refinement

Hybrid RANS/LES
An ensemble of peer models lacking clear preference structure /
cost separation: e.g., SGS modeling options
« With data: model selection, inadequacy characterization
 Criteria: predictivity, discrepancy complexity
» Without (adequate) data: epistemic model form propagation
 Intrusive, nonintrusive
* In MF context: correlation analysis, model tuning, ensemble selection

L
Vortex sheet
Potential Flow model

Reynolds One- * ] s
Averaged Navier- equation equation stress RANS
Stokes (RANS) EANS model RANS model maodel
Hybrid Fddy m
RANS/LES Model

Large Eddy

AN[API] [PPOJAl SuUISEAIDU]

Discretization levels / resolution controls
» Exploit special structure: discrepancy - 0 at order of
spatial/temporal convergence

Combinations for
multiphysics, multiscale




2018/2019 Vignettes: ML, MF, MLMF Monte Carlo

Mukiscale-rullipfysics application al
Lange Eddy Simulation [LES)

Model forms:
« 2D, 3D

Discretizations:
«  d/{8,16,32,64}

the Art LES

Scramjet

UCAV Nozzle

["F2" Case)
Pomean | H?l.rmx.wmm | Musean | TEE mean | Hrean LF LF [updated}l
TSR T qg’ii.._ 01 1 38905007 | 4245700003 N dicti correlation | Variance reduction [%] correlation | Variance reduction [%]
df ANIao4e-1); A dae-U6 AYlate-Ud | a5 - | LA dle-L) NO Variance On-pre IClive Th
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d/8 [ 4.05795¢-03 | 1.906126-06 | 1.60029-02 turbulence levels reformulation Thermal Stress 0391 1251 0.067 s
d/16 || 2.85017¢-04 | 7.36978¢-07 | 2.07638¢-03 )
Table 2: Variance for the five Qols of the P1 unit problem. TABLE: Correlations and variance reduction for £“/e5 = 0.001.
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Recent Deployment Vignettes: ML/MF Monte Carlo/Polynomial Chaos

Sandia
National _

Crash & Burn Multiphysics (ASC L2 Milestone)

Forward UQ w/ explicit (LF) + implicit (HF) SIERRA mechanics

Multilevel MC across model resolutions for LF model

*  Multifidelity MC with HF implicit + selection of most effective LF explicit

Successful demonstration of
advanced UQ methods,
integrated alongside emerging
ASC workflows for
multiphysics simulation

—

Mechanical loading of mock device

Prediction of Tokamak instability (SciDAC)
Magneto-hydrodynamics (Drekar) R e o~
* Model resolutions are well - .

correlated for demo problem 2 NN N
*  MLMC is sufficient to obtain 30x £ T

"y

reduction in cost for same accuracy § oo N \ |

1011y [ PP PSPPI SR S
1 m tan 1000

Equivalent Cast

10000

Estimator | Naoo Naoo  Nioo | Eq. Cost
e MC 1273 - - 1273
[ — MLMC (2 levels) 1 1278 - 236.62
MLMC 1 8 1366 44 .36

Geologic Disposal

GDSA \\ N oX B;H ":'; ';/
example Points where 1129 tracked i /
simulation s 2
and QOI: NW Repository %
PFLOTRAN R T oo
Peak 1129 Concentration
1.0 * Deployed MF PCE for GSA to a problem related
to geologic disposal safety assessment (GDSA)
059 —e— ml e =% .| @ S0bol indices for model response as fn. of time
—+— af prz, land ol * Indices practically identical with ~80 equivalent
- | HF evaluations for MF PCE compared to 713

T T
BEL GLIL B

t [+]

evaluations for equivalent accuracy SF PCE.

Network Cybersecurity (SECURE GC LDRD)

* Deployed ACYV for forward UQ with HF emulation (minimega) and LF

discrete event simulation (ns-3)
Investigated the efficiency of MF UQ by tuning ns-3 models
Demonstrated increased efficiency for tail est. given a minimega dataset
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Forward UQ: ACV1 vs MC ns-3 tuning effect on ACV performance

Emerging

Z-PINCH
EXPERIMENT
FLuID

CIS LDRD:
non-hierarchical
ensemble (models
+ experiments)

BES QC:
exploration of
the C;Hg PES
with KinBot



Key mission feedbacks

Multilevel performance on elliptic model PDEs is compelling, but does not accurately represent Sandia mission areas
« Extensions for multidimensional hierarchies, including multiphysics / multiscale (multi-index collocation)
* Investments in non-hierarchical MF methods: ACV and MFNets

Popular MF approaches neglect important practicalities

* "Oracle” correlations assumed -> iterated versions of MEMC, ACV

« Imperfect data - embedded cross validation

« Dissimilar parameterizations - shared subspaces

* Free hyper-parameters - model tuning (currently a joint focus with NASA Langley)

« Stochastic simulation, simulation/surrogate error estimation - extended error management framework




Background: multifidelity sampling methods of interest @ Natonal

M
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i{a) W-RIDiff sampling strat. {b) MFMC sampling strat. (c) ACV-IS sampling strat. (d) ACV-MF sampling strat.
: . . - 0 MC —¥— W-RDiff
Theoretical perf. bounds for recursive vs. non-recursive o 10 MFMC
* Recursive limited by variance reduction of perfect p, (OCV-1) 2 101 ACV-IS
« Non-recursive can exploit potential gap between OCV-1 and OCV 5 oy T ACVAIE
T 10 22T agvevsss v s s s s s s w -
N : . = :
Methods minimize estimator variance over number of truth evals N 2 0y Monomial
and approximation oversample ratios r 5 we_ testproblem
* MFMC has closed form for optimal r*,N* (given ordered/reordered models) ;5 10 o %
* ACV solves numerically for r*,N* (does not require ordering) 10-5 , ]
0 10 20 30

Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity uncertainty quantification,” JCP 408 (2020)



2)
3)
4)

Iterated MFMC

Iterated ACV

Sandia
National
Laboratories

Initialize: select a small shared pilot sample N© expected to under-shoot the optimal profile

1) Sample all models

—

N( shared samples > Estimate p2,,,) > Estimate r()
Estimate N(*") using prescribed { budget C || tolerance ¢ }

Compute one-sided AN for shared samples from N® to N(+1)
A. Optional: apply under-relaxation factor y
If non-zero increment, advance (i) and return to 1)

B.

WMean Error

100+

1) NO shared samples = Cov (), Cov 0 (“C”, “c”) = opt. solver > r', N’
2) Compute one-sided AN for shared samples from N® to N

A. Optional: apply under-relaxation factor y

B. If non-zero increment, advance (i) and return to 1)

Finalize: apply r* for LF eval increments, estimate o = apply controls to compute final expectation(s)

535 Dillugion wilh 5 Maodels, 3 Qol. 4x CosliLevel

MFIMC std error Pilot =5
=nfr= MFMC std error Pilat = 10

== MEMC std error Filot = 50
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Std errors averaged
across 10 seeds
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Equivalent HF Jimulations

Performance degradation from pilot over-estimation is clearly evident

0O DO: PU RONM D

Analytic r* reduces numerical burden but also limits flexibility

OMMEN

85 Dillugion wilh 3 Models, 3 Qol. 4x CosliLevel
10 T

AGY MF NIP StdErr 3 Models Pilot = 5
< =lr= ACY MF NIP StdErr 3 Models Pilat = 10 |]
== ACY MF NIP StdErr 3 Modols Pilot = 25 |
== ACY MF NIP StdErr 3 Models Pilot = 50 |4
== ACY MF NIP StdErr 3 Models Pilot = 100

X
\'\‘ ‘q
' DR
Rl TR ;
N Y .
: \';‘~ “‘, ",
X Y
= “?"E A
N
107"} -q*‘:, .
Std errors averaged ‘L\"\
across 10 seeds
P T

Performance degradation from pilot over-estimation is not significant
 ACV-MF demonstrates greater flexibility / resilience:

locates near-optimal solutions that incorporate large pilots
« Starting pts on left are for budget = pilot (moves quickly from MC to ACV)




Std Cowiation Emar

Surrogates with Greedy MF Refinement: PCE (sparse grids, regression) and FTT (regression):
Integrated MF competition including embedded cross validation

Model

problem

results

Greedy ML

Steady state diffusion

du

i .
dr .

{;r.:ﬁ]la{.r.‘ﬁ]] =10, (z,€) € (0,1) x I¢

u(0,€) =0,

u(1,€) = 0.

PCE: compressed sensing

with uniform candidate refinement

A0 :
=5 ["CE C5 siagle level
A  A-MFPCE S 2 lovel p_ 10
. ML FCE G5 5 leveln - 1
5 Ml POF G5 §levels = 1.5
10-3_'1? » Ml PCF G5 5lavali = 2
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Ecquivalan: HF Sirmwlztions
Cony Tol Ny Na Ny Yy Vs
12 13 23 14 14 14
le-4 211 83 19 19 19
1.e-(i 41 71 514 14 14
l.e-2 1359 T43 327 5 19
Le-100 | 3535 A1 | 10k 491 14
1.e-12 | 10319 HTE3 | 2783 | 1343 13
Le-14 | 26655 | 14991 | 8063 | 3703 | 15

Greedy ML PCE: sparse grids with

uniform / generalized refinement

b0

Greed

Mesan Errar

y MF FTT regression:

10 T

Stedgv Ernor

embedded CV over rank, order, both

—#— FT max rank, ardcr 4
—¥— FT max order, rank 4
—p— FT max rank order

MFFT inlegraled max rank, order 4
=g = MFFT inegrated max order, rank 4
c=p= MFFT integrated max rank order

10
Equivalent HF Simulations

10’
Equivalent HF Simulations

Greedy MF PCE regression: embedded CV over basis order
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From Multi-Index to (De-)Coupled Multi-Physics

Advection diffusion

de d
En.», LZ+ ad—lau i, ZI—E krr| Zld—ln t.Z)| =

wil e, Zy=0 el e.Z)=0 ovix.0Z=0

=gim. . &)

(e, Z) e (D)=l

Greedy multi-index PCE: sparse
grids with generalized refinement

"~ =
-2 O
¢ LN
= r v
3 P
| 1078
= = (32D
— (0, 1,2 301, 2)) [ :
== (42D
10~ —— ([0, 1,23, 40,1, 2])
s ([5].2])
—— ([0, 1,2, 3,4 5][0,1,2]) @ B

e A e

BN SN S e W0

oy, i)

Jakeman, E., Geraci, Gorodetsky, “Adaptive Multi-index Collocation

for Uncertainty Quantification and Sensitivity Analysis,” in review.

Multi-level/fidelity/index + Multiphysics

« Create multi-index sparse grid (random + model resolution vars) for each

physics

» Decouple through surrogates (+ re-representation)
« Compete candidate grid refinements for each physics in terms of impact on

system Qol goals per unit cost

* Investigate impact of integrated adaptive refinement

* Random vars (black box MP, fixed resolution)
RV + decoupled MP (fixed resolution)

RV + decoupled MP + multilevel resolution

Application test problem:
* System inputs x, model

resolutions a, and system Qol y;,

» 3-physics satellite design
problem

fHilxz,a0) =1
fa(yr, a2) = 2
fa(ya, a3) = 3

I I ° I
1 2 1 4 3 a1 oz 3 4

Final refinement level for adaptive
multiphysics, multilevel manager

- Grid 2 . Grid 3

Extent of Adaptive Equivalent I
Refinement HF Evals
None (Fixed RV, MP, Fid) 6240
RYV only (Fixed MP + Fid) 1740
RV + MP (Fixed Fid) 608
RV + MP + MF 119

2 FL w0

15
Itarations

RV + MF + MP adaptivity reduces expense by 50x
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Multilevel — Multifidelity Sampling Methods National __
Leveraging active directions (ECCOMAS, WCCM)

* Active subspaces, ridge approximation, adapted basis, ...

> Let's introduce the m x m matrix C
) — — T
C= j (‘W‘) (‘W‘) p(x)dx
» Since C is |) Positive semidefinite and IlI) Symmetric, it exists a real eigenvalue decomposition

C=WA WT, where

» W is the m x m orthogonal matrix whose columns are the normalized eigenvectors

» A =diag{\;,....A\n}and A; > --- > Ay >0

Let's define two sets of variables
{ y = WEI eR" (Active)

= x=Wuy+Wz= W,y
zZ = W?x e ™™ (Inactive)

* Main ideas:
* For each model independently one can compute active directions
« Sample along these shared active directions and map back to original model coords.
* Principal directions for a shared Qol can bridge dissimilar parameterizations and
demonstrate underlying shared processes

G. Geraci, E., “Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification,” SAND2018-10817, Sept. 2018
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Multilevel — Multifidelity Sampling Methods National

Research Direction: leveraging active directions (example 1)

High-Fidelity Low-Fidelity

3 =
- A 1000 Estimator Realizations (LF cost = 0.01 HF cost)
ﬂx.ﬂ;-i 3 E'E 0.45 T | I J
0 olxy) 15 MC (300 HF} | —
_____ ' 03 0.4 1= MC-AS (300 HF) =l |
_ ‘ 5 035 MC-MF (100 HF + 20000 LF) =71
-1 =]
% o ' o MC-MFAS (100 HF + 20000 LF) =20
Fla,y) = exp (0.7 + 0,3) + 0,15 (272 gz, v) S oxp (0,083 008574 0,15 (amy) 5 03 F _
L .
Independent Important Directions =
'@ TR S| 1 — : ; S . g 025 |
S ERENSE P i 2
0s 1Y RV AN AN N N A = ' i 2 0.2 [- h
% AW AT A — ; — 3\.
i A= \\\Ifu\ \\ P = ﬁ% =
ghl=iSSEEESth NSRS - = g 015F .
05 -1‘, . “ \\ *1\: S=SSwn \ 05 E 'g
e EessRlEasee R £ ot} -
_1-1 -0.5 0 05 1 I-1 -0.5 (1] 05 1 G.GS = =
0
a Soatr i T e 0.95 1 1.05 1.1 1.15
Y S Y N 1 B I I . ) Expected Value
2| X 4 2l *  Fixed computational budget of 300 equiv HF runs (LF cost ratio =
3ol it | LR 100)
R % - u;: * 1000 realizations for each estimator - pdf of estimated Expected
os |- 0.05 A Value
0 25 3 vl . * Active subspace discovery for each realization during pilot sample
phase

G. Geraci, E., “Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification,” SAND2018-10817, Sept. 2018



Exploration of hyper-parameter model tuning

Tunable model problem (from JCP paper on ACV*)

* 1 parameter is tunable: 6,

* 2 parameters are fixed: € = n/2, 6, = /6

Sandia
National _
Laboratories

6, controls:

» Correlations among models p; and pis;
» Cost of evaluating @, according to the cost law
log ws — logw

Model Definitions logw; = logw; + F— (61 — 02)
Q = Vily’ with w=1 and wy=10""
Q= Nai (COS 91;;3 + sin 9]_3’3) Low-fidelity model properties
1.0 4
3 1
Q, = V3 (£x+ —y) . where x.y ~U(—1,1)
2 2 0.8 -
Correlations (variances are scaled to 1) “f- e
a1
Q Q1 Q2 504
Q | 1 Ygrsing e —
Qi | sym 1 % (Sil‘l 61 + /3 cos 91) —— P
Qs | sym sym 1 007 s i

* Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity uncertainty quantification,” JCP 408 (2020)
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Exploration of hyper-parameter model tuning Lioreeorics

Model tuning performed within the context of a particular estimator (here, ACV-MF)

. 1 2 tot 2
argmin — (1 — Ry _yp (01.71,72) st. CT" =N (w + wiri> < Crarget = 1000
01 .N.ry.ro N ( V—MF ) ; &
Nested or AAO optimization:
 For ACV, hyper-parameters integrate as additional decision vars for minimizing estimator variance
* For analytic allocation cases (e.g., MFMC), there is no need for AAO opt. and we simplify to argmin,

. * N[* 2*
since p(@),w(6) 2 r,N* 2 R Variance ACV-MF

0.0014{ -®- ACV-MF ;‘
— MC :
0.0012 - ;’
é
£ 0.0010 A -
. . . . [1*]
Mid-fidelity model (Q,) is tuned > ;’
for ACV at ~ midpoint 6,* = /3 g 000087 & /
E * /
# 0.0006 - ‘\. ,"
- s
0.0004 4 '-l‘ o
Ak WP oY g
ﬂ.lﬁ D.IB 1:{} 1j2 1:4 ljﬁ

TO DO: PULL FROM SLIDE COMMENTS?



Connecting the pipeline

Selected vignettes in mission-driven R&D

Current

« Bayesian inference with MCMC (follow MF UQ)

Inverse UQ:
Characterization of
input uncertainties
through data
assimilation

Random inputs
(prior)

Nalu-Wind simulated wake
data 5D downwind
(inference target is

averaged)

Random inputs
(prior = posterior)

-
—Posterior

« MCMC = too expensive, slow to converge, poor reliability

Atmosphere to electrons (A2e)

* Forward UQ: WindSE resolutions (RANS) within Greedy MF PCE
« Data assimilation: integrate wake data from experiments / HF LES
* Opt. Under Uncertainty: wind plant design using SNOWPAC + MLMC

FY19 EERE: Emulator-based Bayesian inference leveraging multifidelity PCE

Quantities of
interest (Qol)

Propagation




(ML-MF) Emulator-based Bayesian inference

MCMC sampling performed on emulator, leveraging differentiable emulator structure

* Pre-solve for MAP (maximum a posteriori probability) point: full Newton min of —log(posterior)
Accurate MCMC proposal: emulator derivatives = Hessian of misfit 2 MVN proposal covariance
* mitigates sample rejection in high D: for 10D Rosenbrock test, 98% rejection rate reduced to 30%

Gaussian Likelihood

palE) = exp | ~5(7®) -0y ((E) -0

—log[p(d[E)] = %(f(};) —d)T7'(fE)—d) = M(E) Negative Log Likelihood = Misfit
VEM(E) = Vef () Ty' Vef(§) + VEf(©)- [T (F(§)—a)] Hessian of Misfit
Gauss-Newton approx. Hessian Rosenbrock Problem; Prior ~ N(0,1)

(if only emulator grads)

Laplace approx.: MVN proposal covariance defined by
inverse Hessian of negative log posterior

—logmy(§) = M(E) —logmo(&)

* augmenting misfit: Hessian of negative log prior provides
regularization for priors w/ curvature (normal, beta, gamma)

* Posterior Hessian-based proposal balances likelihood and prior,
performing better than either alone




Eff. Th.
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248 anan
1 1

il 1

| = PiHH

WIndSE (RANS) Inference Results for MF PCE

Inference results for u compared to Nalu Data:

70 95 70 9.5 70
9.0 9.0

60 8.5 60 8.5 60
8.0 50 8.0 50
7.5 7.5
7.0 40 7.0 40
6.5 6.5

30 30 0 20 40 30

0.4
0.3
0.2
0.1
0.0
0.1
-0.2

u (m/s)

-
o

0 20 40 0 20 40 0 20 40
Nalu Data MF PCE Mean MAP Solution MAP - Data
Marginal sli Inference Details
arginal s |§es * MCMC chain of 250k samples = effective sample sizes of 103 — 10*
of 6D posterior * MAP solution has Eff. Th., | _ at bounds
R distribution * significant improvement in wake capturing relative to mean soln
B * Datais informative, especially for Eff. Th., | __, Ax. IF

o)

* significant info gain w.r.t. uniform priors
o M‘///////////// Impacts

* 5xspeedup for forward emulation using MF PCE
* Inverse problem comes for free (post-processing of MF PCE using

B P{Busin

PLET. T }

o
o

= ox o Hessian-preconditioned MCMC)

* Added expense: iteratively refine MF PCE in regions of high
posterior probability

-“J plAx. IF)

&

201 B.L2
I L

* Reduction of epistemic RANS uncertainty through assimilation of LES data
 Demonstration of Robust / Reliable Inference at affordable cost:
effective alternative to simulation-based MCMC (and ML MCMC)

o}

Pifma

Eff- Th. -’?max



Connecting the pipeline

Selected vignettes in mission-driven R&D

Looking forward
* Model management with "trustworthy AI/ML” * Machine learning is the new wild-west!

Within DOE, much effort is currently being invested in “UQ for Machine Learning”
* General recognition that Al/ML models must be used with care Recurrent network
* Goal: estimates of prediction variance due to uncertainty in quality of network training

Challenge: “Machine Learning for UQ” leveraging these estimates

* Given emerging capabilities for NN prediction variance + our experience in MF surrogates, oﬁ_‘utputlaver
extend our model management / data fusion approach to incorporate Al/ML models input layer \ v / (class/target)

hidden layers: “deep” if > 1

Opportunity to demonstrate a rigorous approach From “Implementation of RNN, LSTM, and GRU,” C.C. Chatterjee



Quantum
Chemistry -

Model Management for UQ with Machine Learning

Discrepancy-based, Sequence-based, Hybrid architectures

Motivated by existing MF approaches (Monte Carlo, PCE)

Or ~ Qo+ Yk AL for Aj = Q) — Q)4

Mapping from x to HF Qol is composed of multiple
(traditional) feed-fwd NNs, one per model in hierarchy

* Following first NN mapping x > Q,, can map x > 4,
or Q., > Q, or combine x,Q,; > Q, or x,4,; > A4,

Differential training: tailor to predictive value vs. cost,
targeting decay in mapping complexity

Greedy MF refinement / Active learning

Compete candidate grid refinements across parameter
and model investments for MF prediction of PES for
heavy carbon clustering (soot)

1 | o

U—Ngt Predicted Pressure

True Pressure
0

Fluid 90
Dynamics

0.6 20

0.4 40

60
0 25 50 ] 25 50

60

Convolutional encoder/decoder assembly networks

* inspired by the recent success in image classification
and segmentation shown by deep convolutional
encoder-decoder networks (DCNN)

* We investigate encoding-decoding DCNN where
fidelities are learned all-at-once during training.

o s H

-
] Skip »
Skip * * r
DH—»[ LF3

5
o3

e

[] upsampe LF1

[] oropoutiviock

Fig. 3 Schematic representation of the proposed multifidelity network with explicit feedback.



Model Management for UQ Aggregating Additional Error Models

* Beyond MC estimator variance + residual bias E.g., within SNL:
* Must be estimable and controllable e Turbulent flows/Combustion: finite time-window used for flow stats
* Prediction variance in surrogates  Radiation transport: finite number of particle histories
* Underlying simulation stochasticity 2  Subsurface transport (repositories): finite number of transport domains

* Intent is AAO optimization over all relevant parameters (generalized “model management” for aggregate MSE)
* Special cases (as below) may collapse to smaller optimizations, given explicit theory for portions

> £ is the vector of UQ parameters (COV [@HF ~ [F] )2 5
> 1 is a vector of inaccessible RV that notionally represents the variability in the solver ~2 ’ \ ﬁz _ P
—~ ~ f - 2 A
> Every time we run the solver, we get an elementary realization f = f(£, n7) VYar [QHF] VYar [QLF] 1+ po7
. : . N
» Running for a fixed £ multiple times (replicas) generates { f(£@, 5t V™" Elo2 g[a2 g2 i[o2
{ }J=1 Var [QLF] [ . IFTF] + Var [QHF] [ rl,.FLF] + [ r,,rﬁ; EFT,.LF]
. . . . N N2+ NUY NL
> The Qol for UQ is obtained by averaging f (for a fixed £): where 5 = i n n 'n
N N 2
1 @ 0y — ¢ (Cw[ o.Q ])
Q) =E, [fl = o >_F(EW.n") = Q(8)
7 =1
o= 1-p2 N pt_C™ — Rr* « LF oversampling
Sampling UQ, e.g. mean estimator, is accomplished with two nested sampling estimators 1 — pﬂ + p‘zf N%F 1 — p2 CLF
Ng Ng Ny = 9
1 a1 1 5 G : Rr*—1 p
EQl~ — > @V =—3" -3 r(?,q99) A=1-— + variance reduction
Ne i3 Ne (= | Nn j=1 Rr+ 14 p27
2 * n \
_ o, (&) N, = A+ HF samples
Var [Q(&)] +E | < } ¢ 2 -
~MC] n N - " " C ,
Var [QM ] = Ne Ctot = NeCyp + "N Crp = NﬁcHr (N;"' + erN#}) +— Total cost




Summary Remarks

Dakota: a flexible, extensible software tool for UQ

» Algorithms: design optimization, model calibration, UQ, DACE, GSA, parametric studies

* Framework: plug and play method selection, composition of methods/models with nesting, recasting, surrogates
« Computing: multiple levels of parallelism for scalability on both capability / capacity HPC

* Interfacing: either a stand-alone application or a set of library services

The Pipeline from Upstream Research - Product Development 2> Mission Integration
* Vignettes:

* UQ Modernization efforts

« Multifidelity methods

* Robust/ affordable Bayesian inference

ML for UQ” leveraging “UQ for ML”

Lessons Learned:

* Milestones and other “advanced deployment” opportunities: critical for demonstration and socialization of
emerging methodologies

« Organizing around these principles has helped us formalize the different roles and ensure their health
 Feedbacks from these mission integration efforts are identifying the most critical directions for R&D investment
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MF deep Neural Networks for Quantum Chemistry

Discrepancy-based Multifidelity NN modeling A A L % _

* Motivated by MF approaches for Monte Carlo and stochastic emulation O~ Qo+ Loy A, for & = O = Q1

* Decomposition-based approach: mapping from x to HF Qol is
composed of multiple feed-forward NNs, one per model in hierarchy

* Differential training: tailor to predictive value vs. cost, targeting decay in mapping complexity

* Following first NN mapping x > Q,, can map eitherx > 4, or Q. ; > Q,

Recurrent architecture for MF NN

* Used for modeling a sequence, typically for time-dependence

* Our sequence is the model dependence mapping Q.; > Q,

* As for co-kriging / GPs, correlation = benefits in integrated modeling

* Approach can be applied to any DAG - generalized model dependency
* Explore LSTM, independent RNN, hierarchical RNN

Greedy MF refinement / Active learning
* Compete candidate grid refinements across parameter and model investments
for MF prediction of PES for heavy carbon clustering (soot)




‘ DAKOTA
) Optimization

‘ Uncertainty Quant. <
Parameter Est.
D A K 0 — A Sensitivity Analysis Iterative systems analysis
| Black box: \ Multilevel parallel computing
Explore and predict with confidence Sandia simulation codes Simulation management

Commercial simulation codes
Library mode (semi-intrusive):
—p- ALEGRA (shock physics),

Model
Parameters

Design
Metrics

Xyce (circuits), Sage (CFD),
Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter,

SIERRA (multiphysics) J
http://dakota.sandia.gov
Manuals, Publications, Training matls. online
@ D :!ah'_;ta.:_
p‘ DAKOTA = : .r:?_:ci::“:::w“-ﬂ @0t B HaENEFn 1045 M Harege
S Releases: v6.14 released in May o =)[=e (=) - | .
M : : o || @ e et et ot
L Supported platforms: Linux, Mac, Windows =
— Modern SQE:; Nightly builds/testing, gitiab, Cmake Y = e ——
GNU LGPL: free downloads worldwide .-

Dakota 6.14

Community development: moving to pull request model

Community support: dakota-users list, [user forums]

rF L4




Emphasis on Scalable Methods for High-fidelity UQ on HPC

1.0

Compounding effects:

* Mixed aleatory-epistemic uncertainties (segregation - nested iteration) h .
* Requirement to evaluate probability of rare events (resolve PDF tails for Qol) N
* Nonsmooth Qol (exp conv in spectral methods exploits smoothness) = '
D"EI.O 0.2 b.-tns 0.6 0.8 10
)‘) DAKOTA
Steward Scalable Algorithms within % Uncertainty Quant. |*
DAKQOTA Sensitvity Anatysis

Black box:
Sandla simulation cades
Commercial simulation codes
Library made {(semi-intrusive):
ALEGRA {shock physics),
Xyce (circuits), Sage (CFD),
Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter,
SIERRA imultiphysics)

Core (Forward) UQ Capabilities:
« Sampling methods: MC, LHS, QMC, et al. .

* Reliability methods: local (MV, AMV+, FORM, ...),
global (EGRA, GPAIS, POFDarts)

» Stochastic expansion methods: PCE, SC, fn train
« Epistemic methods: interval est., Dempster-Shafer evidence

Quantiies
of Intarest

Mozl
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DAKOTA Framework

lterator Model:
DoE LeastSq
Design Application Functions
|DDACEI ||ECD/ B§| NLSSO gontinuous system objectives
| | | iscrete fork constraints
QMC/CV NL25O Uncertain direct least sq. terms
uQ —— ParamStudy normal/logn generic
i Optlmlzer ;?e:;og;mg?gu Approximation Gradients
LHS/MC. DSTH MI exp/beta/gamma global numerical
iabili : EV L IL N polynomial 1/2/3, NN, analytic
|Re||ab|||ty| |PCE/S enter| |MU|tID| histogram kriging: MARS, RBF Hessians
interval multipoint — TANA3 ical
State local — Taylor series gﬁ:l;t:fa
po1 [conmin] Npsol] Npal opT+4] [coLiny EGA] continuous multifidelity quasi
Strategy: control of multiple iterators and models
lterator Coordination: Strategy
Nested
Layered
| Model Cascaded — -
Concurrent Optimization Uncertainty| |LeastSq
‘ Iterator Adaptive/Interactive \ / \ /
Parallelism:
|9 tUnd.erUnc|
Model Asynchronous local - | IModelCalUnderUnc|
Message passing lUncOfOptima|
Iterator Hybrid lPareto/MStart]
, IntervalValProl
‘ ‘ 4 nested levels with Branch&Bound/PICO|
Model Master-slave/dynamic

Peer/static




High-Level Vision for Next Generation Architecture
Dakota-MPI, Dakota-X, Py-Dakota, ...

Input = Stand-alone GUI
Front ends file o = 2
(Research to Production) - ~ 1@ @ vee
editors - B w S @
r: H-I Sandia Analysis Workbench
| | 1
Anglyzer Pdetalte rator | Minimizer
Algorithm Core 1 HonD . | Bl T i — Leastsn
(Iterators, Models, ...) I ey~ ot | L o cee
Venfication J I EmbedHyb ator SurrBaseds J
] SecHiybridhetateator |
MPI + llX” AMT
Back ends —
(Black box to Embedded plug-ins) Y ¥ N Lo O+ i P oo
Hog e/ HEe
00 E = B g O %
O - [
O =




Sandia

Mixed Aleatory-Epistemic UQ: Natonal
IVP, SOP, and DSTE based on Stochastic Expansions

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge epistemic
uncertainty): insufficient info to specify objective probability distributions sampling

Traditional approach: nested sampling

1.00

= Expensive sims - under-resolved
sampling (especially @ outer loop) 075 -

= Under-prediction of credible outcomes

’ Interval-
valued and
second-order

statistics

0.50

Cum Prob

Algorithmic approaches response metric

* Interval-valued probability (IVP), aka probability bounds analysis (PBA) Increasing epistemic
» Dempster-Shafer theory of evidence (DSTE) structure. (stronger

« Second-order probability (SOP), aka probability of frequency assumptions)
Address accuracy and efficiency minimize  M(s)

. . . . subject t <5<
* Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined) Subjectio sL =9 =Jv

* Outer IOOp: maximize M(s)
* IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP) —> |subjectto s <5< 51/
* SOP: nested stochastic exp. (nested expectation is only post-processing in special cases) I




Mixed Aleatory-Epistemic UQ:

Sandia

National
. . Laboratories
IVP, SOP, and DSTE based on Stochastic Expansions
Interv Est uQ Expansion Evalvations
Approach Approach Variables (Fn, Grad) Area I+ 1 T . T e
. .. . —— Glotal OpUSC w=3 Plas
IVP SC SSG Aleatory: ginterval converged to 5-6 digits by 300-400 evals o :;IL”] L1 et et
EGO SCSSGw=1 Aleatory (8491, 0/0) [750002,374000]  [2.26264, 11 8623] % o8 i 1L T LS J000A5 1000 P
EGO SCSSGw =2 Aleatory (372/403, 0/0) [75.0002,374999]  [-2.18735, 11.5900] . ' Lh . |
EGO SCSSGw=3 Aleatory (1260/1365, 0/0) [75.0002,374999]  [-2.18732, 11.5900] 1 Multiple cells
EGO SCSSG w =4 Aleatory (3564/3861, 0/0) [75.0002,374.999]  [-2.18732,11.5900] os . . within DSTE
NPSOL SCSSGw =1 Aleatory Q1/77.21/77) [75.0000,375000]  [-2.26264, 11.8623] . 1 |
NPSOL SCSSGw=2 Aleatory (93/341, 93/341) [75.0000,375.000]  [-2.18735, 11.5901] .
NPSOL SCSSGw=3 Aleatory (315/1155,315/1155)  [75.0000,375.000]  [-2.18732, 11.5900] Eoa - 1
NPSOL SCSSGw=4 Aleatory (891/3267,891/3267)  [75.0000,375.000]  [-2.18732, 11.5900] » W
IVP nested LHS sampling: converged to 2-3 digits by 102 evals tos k .
LHS 100 LHS 100 N/A (10?7104, 0/0) [80.5075, 338.607] [-2.14505, 8.64891] . TTw |
LHS 1000 LHS 1000 N/A (1097109, o/0) [76.5939, 368 .225] [-2.19883, 11.2353] ol
LHS 104 LHS 104 N/A (108108 , 0j0) [76.4755, 373.935] [-2.16323, 11 5593] S I N I L
Fully converged area interval = [75., 375.], B interval = [-2.18732, 11.5900]
Interval est w/ mixed-integer global opt Drekar RANS turbulence: Spalart-Allmaras,
K ' ' ' i k-¢ with Neumann BC, k-g with Dirichlet BC
—&— SRG0 10
'k —dh—=EGE0 20 |
—&— EGo 100
1w
E 102
% 1w
z
197" . Figure 5. The steady-state x-velocity for typical realization com-
Uncertain model forms (Rosenbrock) Flure . T sy e ooy O S RANS model n D
oL Form1: fi= IUD{.tg—x%Jz+i1—x1jz .
A& |Form2:  fp=100{xz— 4’? +.20%+ (0.8 —x1 & Method Outer Lvals TﬂT_E"Ll Evals ; '”m, ; \H‘m'&,w"'
. : LHS 10 250 [0.727604, 2.78150] [32.6109, 282.237]
1

e R I SBGO 17 425  [0.622869, 4.44624] [21.7321, 297.957




Multifidelity Methods: Sampling UQ, Surrogate UQ, OUU

A2e wake dynamics
2018/2019: -
UCAV
Nozzle
2020/2021: L/ A  Aae Abnormal thermal- Points where 1129 tracked
T d ) mechanical
NW Repository.
Geologic disposal
Monte Carlo UQ Methods Surrogate UQ Methods (PCE, SC) Optimization Under Uncertainty
* Production: optimal resource : ; * Production (v6.10+): * Production: manage simulation
allocation for multilevel, ) ML PCE w/ projection & regression; | ' and/or stochastic fidelity
multifidelity, combined (DARPA ==+~ ML SC w/ nodal/hierarchical interp; P T, ]
EQUIPS, Wind, Cardiovascular) = j_// greedy ML adaptation (DARPA o \\- : * Emerging:
: : : : . /j/ E—Ez SEQUOIA), multilevel fn train (ASC V&V) vl Ly ' Derivative-based methods (DARPA SEQUOIA)
* | Emerging: active dimensions - b | o ; * Multigrid optimization (MG/Opt)
(LDRD, SciDAC), generalized g * Emerging: multi-index stochastic - Sves * Recursive trust-region model mgmt.:
fmwk for approx control variates | - v *_| collocation; multiphysics/multiscale extend TRMM to deep hierarchies
ASC V&V), goal orientation e integration (ASC V&V); new surrogates - Derivative-free methods (DARPA Scramijet)
(rare events), hybrid methods (GP, ROM, NN) w/ error mgmt. fmwk = + SNOWPAC (w/ MIT, TUM) with goal-
for GSA (LDRD, SciDAC); learning latent variable |* oriented MLMC error estimates
relationships (MFNets, LDRD) .
* On the horizon: control of time avg; oW W * On the horizon: Gaussian process-based
model tuning / selection (LDRD) * On the horizon: unification of surrogate approaches: multifidelity EGO; Optimal

+ sampling approaches (LDRD) experimental design (OED)



Recent Deployment Vignettes: ML/MF Monte Carlo/Polynomial Chaos

Sandia
National _

Crash & Burn Multiphysics (ASC L2 Milestone)

Forward UQ w/ explicit (LF) + implicit (HF) SIERRA mechanics

Multilevel MC across model resolutions for LF model

*  Multifidelity MC with HF implicit + selection of most effective LF explicit

Successful demonstration of
advanced UQ methods,
integrated alongside emerging
ASC workflows for
multiphysics simulation

Mechanical loading of mock device

—

A2e Wind (EERE Milestone)

* Forward UQ: LES + potential flow in MLMF MC
» Data assimilation: integrate experimental wake data from SWiFT facility
* Opt. Under Uncertainty: wind plant design using SNOWPAC + MLMC

FY19 EERE program milestone:

Emulator-based Bayesian inference leveraging multifidelity PCE

* 5x speedup for forward emulation; inverse problem via post-processing
using Hessian-preconditioned Markov chain Monte Carlo

o a5 T 53 0 an T [EE]
a4 a0 aa LES
";'1‘ [2a] an L1H a5 [ca] B L1 o2
E - 8D a0 g BO o ol
— 15 L] 7.5 o
p= 2211 FL ] 70 40 F ] ol
o 65 ] a2
l 20 0 y 20 0 g 21 0 Hy 0 an -2

Malu Data MF PCE Mean MAP Solution MAP - Data

Geologic Disposal

GDSA S aeas 2 j/
example Points where 1129 tracked  [IEE. /
simulation #1 2w
and QOI: NW Repository é -
: :
PFLOTRAN 7 i BEUR
Peak 1129 Concentration
1.0 * Deployed MF PCE for GSA to a problem related
to geologic disposal safety assessment (GDSA)
059 —e— ml e =% .| @ S0bol indices for model response as fn. of time
—+— af prz, land ol * Indices practically identical with ~80 equivalent
- HF evaluations for MF PCE compared to 713

T T
Sl 580 BN
t [+]

evaluations for equivalent accuracy SF PCE.

Maan and its Gondidence Intarval

Network Cybersecurity (SECURE GC LDRD)

Deployed ACYV for forward UQ with HF emulation (minimega) and LF

discrete event simulation (ns-3)
Investigated the efficiency of MF UQ by tuning ns-3 models
Demonstrated increased efficiency for tail est. given a minimega dataset

Low-Fidality Selection

1 | MAC - Mean —— 1
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a0 | E
| B £ o
0 |  ; —
: = #Rlaq = 10, Size =508 —
a0 | 01 Bfieq = 500, Slze = 1KE - #
10 100 1000 gt 105 w0t 10 10
Equivaleni numiber al High-Fidelity evalualions Dalay [5]

Forward UQ: ACV1 vs MC ns-3 tuning effect on ACV performance

Emerging

Z-PINCH
EXPERIMENT
FLuID

CIS LDRD:
non-hierarchical
ensemble (models
+ experiments)

BES QC:

exploration of
the C;Hg PES
with KinBot



Mean Estimator StDev

SciDAC Partnership: FASTMath/UQ + TDS

Prediction of a basic Tokamak instability using Drekar:

» Multilevel hierarchy: 3 discretizations (constant CFL)

Pilot sample: 20 samples per level

0.1 F I T T

MC
MLMC (2 levels) —=
MLMC —=—

0.01 |

—

1000

0[}001 L L L ol
100
Equivalent Cost

10000

Level | #cores Run Time [s] | Normalized cost
100 x 100 72 2.567e+02 0.0307
200 x 200 108 1.029e+03 0.1844
400 x 400 144 4.186e+-03 1.0000
400 200 100
1.000000000000000 0.999999000457186 0.999967798992103
0.999909000457186 1.000000000000000 0.999969313474247

0.999967798992103 0.999969313474247 1.000000000000000

TABLE: Correlation matrix

Estimator | Naoo Naoo Nioo | Eq. Cost
MC 1273 - - 1273
MLMC (2 levels) 1 1278 - 236.62
MLMC 1 8 1366 44.36

TABLE: Samples allocation per model and total equivalent cost corresponding to an estimator
standard deviation equal to 1E — 3



Simple demonstration of key ML-MF concepts
Monte Carlo Sampling: MSE for mean estimator

Problem statement: We are interested in the expected value of Qy = G(Xps) where

» M is (related to) the number of spatial degrees of freedom

> E[Qy] 2= E[Q)] for some RV Q : Q@ — R

Monte Carlo:

Qe def 1 (i)
N_NZQ

two sources Df error.

» Sampling error: replacing the expected value by a (finite) sample average

» Spatial discretization: finite resolution implies Qy ~ @

Looking at the Mean Square Error:

E [(Qﬁ%r —E [Q])‘a} = N~"War (Qy) + (E[Qy — Q))*

Accurate estimation = Large number of samples at high (spatial) resolution




Simple demonstration of key ML-MF concepts
Multilevel MC: decomposition of estimator variance

Multilevel MC: Sampling from several approximations Qs of § (Multigrid...)

Ingredients:

> (M, :0=0,....L} with Mg < My < --- <M, ¥ M

» Estimation of E [@ys] by means of correction w.r.t. the next lower level

L L
Y, dﬁf QME QMF ] Imear:ﬂ' E [QM] [QM(}] —I—ZE [QME — QME—I} — Z]E [Yf»]
=1 =0

» Multilevel Monte Carlo estimator

QU def MC 1
ZYr Ne= 2N,

v

The Mean Square Error is

L
[ Rt~ — Q])Q] =Y N, 'Var (Y;) + (E[Qu — Q])°

£=0

Note If @y — @ (in a mean square sense), then Var (Y,) —“%m 0



Simple demonstration of key ML-MF concepts
Multilevel MC: optimal resource allocation

Let us consider the numerical cost of the estimator

L
c@y) => NC,
£=0

Determining the ideal number of samples per level (i.e. minimum cost at fixed
variance)

L "
=2 N
£=0 Lagrange multiplie 2 L Var (Y{r)
i P Ne= 5| > (Var (Vi) Cy)'/* o
SN War (Y,) = £2/2 i
— J l v J | v
\ Y : Level Level
Balance ML estimator variance independent dependent
(stochastic error) and residual \ |
bias (deterministic error) '
- don’t over-resolve one at Optimal sample profile

the expense of the other



Background: multifidelity Monte Carlo (MFMC)

Optimal LF over-sample

Sandia
National
Laboratories

HF samples from budget

Correlations o Jun(pls = pla) N Following p estimation,
Costs v wi(l— p2,) LT T budget p exhausted
’ - No iteration
12
a; = PLiTL —> Expectations from shared, refined

T;

Background: approximate control variate (ACV)

C = covariance matrix among Q,
¢ = covariance vector among Q; and Q

GAVIS _ [{- . F{IS}: - [diag (F19) M.:|

. 1V -1
var[Qﬁﬂ—IS{gﬁﬂ—ls) _ al'N[Q] (] B Rimjs)- where R2qy.js =a' [Co FUS}] a

-1
QNVMF _ [c o FMF) [diag (F”““) 5 c] .

. 1V -1
Var[Qﬂw'MF{gﬁw'ij_ _ HJTJQ] (1 N Riw-mp)- where Rcy_y ¢ =a' [CD F:MF}] a

a = [diag (F'®) oc] and F"*" € RM*M has elements

a = [diag (FMP)) o €] and F™MF) € RM*M nas elements

ps), _ SIS pOME) % ifi # j < Differs only in off-diagonal
J "=l otherwise ! Bl otherwise terms + sample sets

M

Nmi}& log(Jacv(N,r, K, L)) subjecttoN(w+2wiri) <C, N=1, n=1
ul 1=

Optimal r*,N* w/i budget from
C,c estimates = No iteration

Peherstorfer, Willcox, Gunzburger, “Optimal Model Management For Multifidelity Monte Carlo Estimation”, SISC, Vol. 38, No. 5.

Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelit



Formulations for Multilevel PCE / SC
Starting point (2012): prescribed ML/MF resolutions w/ adaptivity

N[o th.

fril€) = ngo&)L +2Af<£ L) |N,>>N,

1. Optimal resource allocation: parameterize estimator variance - optimal N,
5 Global xand y >0
g VarlY /1 [}
s o Var(ly B . e i1 vV ar|ly
S - VarlY)] = TN~ — N = J ay Z A Var[Y]Cr
(O}
-'% E., G. Geraci, J.D. Jakeman, “Multilevel Monte Carlo Hybrids Exploiting Multidelity
o Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne.
Main challenge: abrupt transitions in sparse / low rank recovery
g‘ 2. Restricted Isometry Property (RIP) for sparse recovery (BLUE for OLS, FTT N, scaling w/ rank)
() n
< N; > s EQQS(SE) L; E[}IQ‘(CE) Jakeman, Narayan, and Zhou, 2016 oz -
a- . . 0.12904 - . _..'---";'; = ¥
< Main challenge: compressible fns .
S - increasing s I oo
5 - feedback not well controlled for CS (better for FTT?) o2 |
> | 3. Greedy Multilevel refinement ST i
ro) Eq. Numbser of HF
g 7 ML competition with multiple level candidate generators
© . Main challenges: scalable refinement schemes, loss of precision

1000

Relative Error in Std Dev

-

=1
G

]

r = MhilNlo = 6 P e—p—
CS multi

—&— 5 single
—8— 5 multi
—8—SGsingle

—B— e

10"

Equivalent Number of High-Fidelity Model Evaluations

10" 10° 10"

10’

tiom

Ermivirsim
E 2 - 2 ¥ E B =

Pk 1 b — 05 Low Sy - 4 chngres

0.037

001385 -
0036 -
0.01355 -
035 -

0.01345
10

g Frig iy prwistes

N = 600, degree=4

Standard Deviation

100
Eq. Mumber of HF
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Surrogate approaches: Greedy multilevel refinement Lanoracories

Or ~ Qo +Yr A, for Ay = Q1 — Q1

Compete refinement candidates across model levels: max induced change / cost
* 1 or more refinement candidates per model level

« Measure impact on final Qol statistics (roll up multilevel estimates)
* norm of change in response covariance (default)
* norm of change in level mappings (goal-oriented: z/p//(¥)
normalized by relative cost of level increment (# new points * cost / point)

* Greedy selection of best candidate, which then generates new candidates for this model level

Level candidate generators:

* Uniform refinement: 1 exp order / grid level candidate per model level e J ncromancy sste
* Tensor / sparse grids: projection PCE, nodal/hierarchical SC N 'l
* Regression PCE: least squares / compressed sensing e 21 1
* Anisotropic refinement: 1 exp order / grid level candidate per model level n ill' e o
» Tensor/ sparse grids LR wdadd
* Index-set refinement: many candidates per level } ' [
* Generalized sparse grids: projection PCE, nodal/hierarch SC

* Regression PCE

* Adapted candidate basis: ~3 frontier advancements per model level

* Regression PCE (Jakeman, E., Sargsyan, “Enhancing £1-minimization estimates of
polynomial chaos expansions using basis selection,” J. Comp. Phys., Vol. 289, May 2015.)




Sandia

Multilevel — Multifidelity Sampling Methods National

Research Direction: leveraging active directions (example 2)

Ny Ny Ay
Low-fidelity 5 50 36 x 10~ 4

High-fidelity || 801 | 600 | 30 x 10—°

Wave propagation test problem

ME = 250 Estimator Realizations (Eqg. Tot Cost 40 HF)
8 'MF.AS = N 0.4 T T T T T T T T T T
- L ] [ o m—
0.35 |- MC-AS ]
6 - 5 .sl MC-MF [
= ° : MC-MFAS [
g st 1 2
I.'; .,.-"f.." {]25 B =
4 — &
E E 0.2
3 _
£ 015
2r : 3
e 0.1
1r . o
0 h | | | | | 1 1 | 0.05
0 1 2 3 4 & 6 7 8 a 0
High-fidelity 28 3 32 34 36 38 4 42 44 46 48 5
Expected Value
Active Direction Agnostic sampling: p2 = 0.89 Method HF runs LF runs
MC 40 -
Active Direction Aware sampling: MC-MF 38 5946
p? = 0.99 MC-MFAS 32 21185

Enhances correlation (even if initially high) and links (dissimilar) model parameterizations



