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Algorithms: design optimization, model calibration, uncertainty quantification, DACE, GSA, parametric studies

Framework: plug and play method selection, composition of methods/models with nesting, recasting, surrogates

Computing: supports multiple levels of parallelism for scalability on both capability and capacity HPC resources

Interfacing: can be used as either a stand-alone application or as a set of library services

C++ toolkit that provides a variety of non-intrusive 
algorithms for performing iterative analysis with 
simulation codes.

G(u)

Expected
Improvement

Core forward UQ components
• Sampling: Monte Carlo, Latin hypercube;  Incremental, Importance
• Reliability: Local (FORM, AMV+, TANA/QMEA); Global (EGRA, GPAIS, POF Darts)
• Stoch. expansion: PCE (project, regress), SC (nodal, hierarch), FTT (regress, cross appr.)
• Epistemic: Interval estimation (local, global);  Dempster-Shafer

Advanced (multi-component) capabilities
• Bayesian methods:  QUESO, GPMSA, DREAM, MUQ;  Emulator-based MCMC
• Nested studies:  Mixed aleatory-epistemic UQ;  Optimization under uncertainty
• Multilevel-Multifidelity:  sampling, surrogates, hybrid
• Dimension reduction:  Active subspaces, adapted basis PCE



DAKOTA Output Files
• Raw data (all x- and f-values)
• Sensitivity info
• Statistics on f-values
• Optimality info

CALORE thermal analysis
ALEGRA shock physics
SALINAS structural dynam
Premo high speed flow
          (your code here)

Code
Input

Code
Output

DAKOTA Parameters File
{x1 = 123.4}
{x2 = -33.3}, etc.

Use APREPRO/DPREPRO 
to cut-and-paste x-values 
into code input file

User-supplied automatic 
post-processing of code 
output data into f-values 

DAKOTA executes 
sim_code_script 
to launch a simulation 

job

DAKOTA Results File
999.888 f1
777.666 f2, etc.

DAKOTA Input File
• Commands
• Options
• Parameter definitions
• File names

DAKOTA Executable
Sensitivity Analysis, 

Optimization, Uncertainty 
Quantification, Parameter 

Estimation

DAKOTA 
Executable

Simulation Executable
Black-box

responses
file

parameters
file

script-driven file 
system interface with 
separate executables

DAKOTA Library

Simulation Application
Alegra, Xyce, Trilinos,

Albany, Matlab, Python
param

eters

re
sp
on
se
suse C++ API 

for in-core 
data 

transfers 

Integrated Executable

Simulation interfacing 
• Black box
• Embedded service

Intrusive to coupling (IDF)

• All residuals eliminated, 
coupling satisfied

• DAKOTA optimization & UQ

• Indiv. physics residuals eliminated; 
coupling enforced by opt/UQ

• DAKOTA opt/UQ & ROL opt.

• No residuals eliminated
• ROL opt., Stokhos UQ

Non-intrusive (NAND / MDF)

Intrusive to physics (SAND / AAO)

Agile Components Vision, ~2012



High-Performance Computing for Enabling High-Fidelity Opt/UQ
Exploiting multiple sources of parallelism

1. Algorithmic coarse-grained: concurrency in data requests:
• Iterators: Gradient-based, Nongradient-based, Surrogate-based
• Strategies with concurrent Iterators: Multi-start, Pareto, Hybrid, 
MINLP

• Nested Models: OUU/MCUU, Mixed UQ
2. Algorithmic fine-grained: computing the internal linear algebra of an 
opt. algorithm in parallel (e.g., large-scale opt., SAND)

3. Fn eval coarse-grained: concurrent execution of separable simulations 
within a fn. eval. (e.g., multiple loading cases)

4. Fn eval fine-grained: parallelization of the solution steps within a single 
analysis code (e.g., ALEGRA, Xyce, SIERRA)

Recursive partitioning & scheduling 
with MPI Communicators

Production (~1998):  Multilevel parallelism via MPI + “X” (= asynchronous local system call, fork, thread), 
effectively separating internal Dakota from external resource scheduling

Next-Gen Exploratory (2020): Asynchronous many task (AMT) parallelism
• Ensemble-based UQ workflows amplify the aggregate task graph

• Heterogeneity in simulation fidelities and computing hardware
• Fine-grained task optimizations expected to outperform coarse-grained job scheduling

• Collaboration w/ Stanford on Legion + ensembles via PSAAP2, PSAAP3

Legion task graph for Soleil-X (PSAAP2)



May/November Releases: v6.14 released May 2021
Supported platforms: Linux, Mac, Windows
Modern SQE: Nightly builds/testing, gitlab, cmake
GNU LGPL: free downloads worldwide 
Community development: moving to git pull requests
Community support: dakota-users list, [user forums]

http://dakota.sandia.gov
Manuals, Publications, Training matls. online

Resources

Dakota UI: integrate study wizards, docs, 
pilot analysis for method selection



UQ & Optimization: DOE/DOD Mission Deployment

Stewardship (NNSA ASC)
Safety in abnormal environments

Energy (ASCR, EERE, NE)
Wind turbines, nuclear reactors

Climate (SciDAC, CSSEF, ACME)
Ice sheets, CISM, CESM, ISSM, CSDMS

Common theme across these applications:
• High-fidelity simulation models: push forward SOA in computational M&S w/ HPC
 Severe simulation budget constraints (e.g., a handful of runs)
 Significant dimensionality, driven by model complexity (multi-physics, multiscale)

Additional Office of Science: 
(SciDAC, EFRC, BES)

Comp. Matls: waste forms / 
hazardous matls (WastePD, CHWM)

MHD: Tokamak disruption (TDS)
Quantum Chem: soot modeling

Statistical Inference for TDS

Pareto-
informed

Uniform

WastePD: 
posterior

CHWM: push fwd



Research Thrusts for UQ

• Focus: Compute dominant uncertainty effects despite key challenge of high–{D,Fidelity}

• Foundational: Emphasize scalability through exploitation of special structure
• Adaptivity: p- and h- refinement of stochastic expansions
• Adjoints: gradient enhancement for PCE / SC / GP
• Sparsity: compressed sensing
• Low rank: tensor / function train (w/ UMich)
• Dimension reduction: active subspaces (w/ CU Boulder), adapted basis (w/ USC)

• Building on foundation: Compound efficiencies
• Multilevel-Multifidelity with sampling & CS/FT surrogates (new: ROM, NN, GP)
• Active subspaces/Adapted basis: link dissimilar parameterizations, enhance correlation

• Building on foundation: Address complexity w/ component-based approach
• Emulator-based Bayesian inference, Mixed aleatory-epistemic UQ, 

Optimization under uncertainty, Optimal experimental design

• Position UQ for next generation architectures
• Current (imperative): multilevel parallelism (MPI comm. partitioning + nested scheduling)
• Future (declarative): collaborations with Legion in Stanford PSAAP{2,3}



“Science Pipeline” Metaphor

Algorithm
Research

Software
Development

Mission
Impact

Prototyping
(MATLAB, Python, 
lightweight C++ codes)

Advanced/supervised
deployments with 
partners/early adopters

Feedbacks

Trajectory simulation
NASA

V&V Methods V&V Software Advanced Deployment

FASTMath UQ Tokamaks
(OFES)

Scalable UQ, DUU Nozzles, Scramjets

DOE/
NNSA

DOE/
SC

DOD

EERE
BES



“Science Pipeline” Metaphor

Upstream 
Research

Product 
Development

Mission 
Integration

In FY20, we began organizing around the constituent components as project thrusts

• Each thrust has its own team, planning, and set of prioritized goals
• The project defines a set of integrated milestones that emphasize the flow through the R/D/A pipeline



Historical
• UQ modernization for thermal analysis community

Current
• Multifidelity methods
• Bayesian inference with MCMC (follow MF UQ)

Looking forward
• Model management with “trustworthy AI/ML”

Connecting the pipeline
Selected vignettes in mission-driven R&D

• Heavy reliance on 1970s technology in DOE mission work

• Mission connections dominated by HF M&S on HPC
• MCMC = too expensive, posteriors are slow to converge

• Machine learning is the new wild-west!



Historical
• UQ modernization for thermal analysis community • Heavy reliance on 1970s technology in DOE mission work

• Mean Value First-Order Second-Moment (MVFOSM)
• Latin Hypercube Sampling (LHS)

Advanced Deployment: Deploy modern UQ approaches for 
which barriers to adoption are minimal (~same sample sets):

• L1 sparse grid as alternative to MVFOSM w/ central FD
• Compressed sensing PCE as post-processor of LHS data

• Can “advanced UQ” demonstrate tangible benefits relative 
to current MV/LHS approaches?

Leverage these foundations into mixed A-E UQ deployment
• For mixed UQ, are current simplifying assumptions valid, 
or are we discarding realism for efficiency?

Our starting point here is cultural: gain acceptance for newer UQ approaches from 
our internal user community.  CRITICAL for connecting our R&D to mission impact.

Connecting the pipeline
Selected vignettes in mission-driven R&D



Compressed Sensing

UQ modernization for thermal analysis community (Part 1): PCE methods

L1 sparse grid Variance Decomposition

Greater resolution and additional insight while retaining same cost / reusing same data as MV/LHS

Established approach: MVFOSM (linear Taylor series) with central finite differences (2n+1 evaluation stencil)
• Compared to level 1 sparse grid PCE: captures nonlinear main effects and supports nonlinear sensitivity analysis

• 2n+1 evaluations at Gauss points  quadratic main effects, no interactions
• First set of active indices within a generalized sparse grid approach

• Naturally leads to subsequent refinement: Index set(s) with greatest DQoI  higher-order main + interaction effects
 Identified cases of mild and severe nonlinearity (MV ok, MV not ok) in thermal response

Established (entrenched?) approach: LHS with coarse sampling (one set of N stratified samples, no replicates)
• Post-process this unstructured data using regression PCE

• Over-determined: SVD for low-order expansions
• Under-determined: compressed sensing for higher-order expansion candidates
• K-fold cross-validation  search over {exp. order, noise tol} to mitigate over-fitting of sparse data

 Identified dominant main + interaction terms within candidate set, efficient GSA via VBD (Sobol’ indices)



Context: safety assessments must contend with a mixture of variability +
lack of knowledge when computing probability of loss of assured safety (PLOAS)
Existing approaches/tools make strong assumptions about the epistemic uncertainty
• Rely on nested LHS, which is intractable in general for HF simulations
• Assumption: epistemic UQ is limited to post-processing vars that short circuit nested sampling

• Arguments can be made that these vars have both reducible and irreducible 
components and are mis-characterized, and other thermal variables have reducible 
uncertainty.

• Investigate impact of these assumptions – are we discarding rigor for tractability?

Approach: Dakota enables removal of these strong assumptions and renders mixed A
-E studies tractable though use of scalable algorithms that are tailored for each loop
• Epistemic: surrogate-based global optimization (EGO) for interval bounds
• Aleatory: spectral convergence / efficient tail sampling via adaptive PCE

UQ modernization (Part 2): Mixed Aleatory-Epistemic Safety Analyses

Not a 
bound!

Results: explored spectrum of formulations that provide more 
realistic A-E separation
• Strong assumptions (red) give conservative probability bounds under 

specific conditions
• In other cases, bounds on tail probabilities shown to be inaccurate by orders 

of magnitude, indicating over-prediction of safety / under-prediction of risk
• Accuracy lost where it is most important for PLOAS estimation

 rigorous aleatory-epistemic modeling is critical for these safety analyses
• Key takeaway (again): socialization of R&D investments  mission impact



Current
• Multifidelity methods • Mission connections dominated by HF M&S on HPC

Connecting the pipeline
Selected vignettes in mission-driven R&D

Optimization Under Uncertainty

• Production: manage simulation 
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)
• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.: 
extend TRMM to deep hierarchies

Derivative-free methods (DARPA Scramjet)
• SNOWPAC (w/ MIT, TUM) with goal-
oriented MLMC error estimates

• On the horizon: Gaussian process-based 
approaches: multifidelity EGO; Optimal 
experimental design (OED)

Monte Carlo UQ Methods Surrogate UQ Methods (PCE, SC)

• Production (v6.10+):  
ML PCE w/ projection & regression; 
ML SC w/ nodal/hierarchical interp; 
greedy ML adaptation (DARPA 
SEQUOIA), multilevel fn train (ASC V&V)

• Emerging: multi-index stochastic 
collocation; multiphysics/multiscale 
integration  (ASC V&V); new surrogates 
(GP, ROM, NN) w/ error mgmt. fmwk 
(LDRD, SciDAC); learning latent variable 
relationships (MFNets, LDRD)

• On the horizon: unification of surrogate 
+ sampling approaches (LDRD)

• Production: optimal resource 
allocation for multilevel, 
multifidelity, combined (DARPA 
EQUiPS, Wind, Cardiovascular)

• Emerging: active dimensions 
(LDRD, SciDAC), generalized 
fmwk for approx control variates 
(ASC V&V), goal orientation 
(rare events), hybrid methods 
for GSA

• On the horizon: control of time avg; 
model tuning / selection (LDRD)

Robust

Highly active area with a multifaceted research roadmap



A clear hierarchy of fidelity (from low to high)
• Exploit less expensive models to render HF practical

• Multifidelity Opt, UQ, inference
• Support general case of discrete model forms

• Discrepancy does not go to 0 under refinement

Multiple Model Forms in UQ & Opt
Discrete model choices for simulation of same physics

An ensemble of peer models lacking clear preference structure / 
cost separation: e.g., SGS modeling options
• With data: model selection, inadequacy characterization

• Criteria: predictivity, discrepancy complexity
• Without (adequate) data: epistemic model form propagation

• Intrusive, nonintrusive
• In MF context: correlation analysis, model tuning, ensemble selection

Discretization levels / resolution controls
• Exploit special structure: discrepancy  0 at order of 
spatial/temporal convergence

Combinations for 
multiphysics, multiscale



2018/2019 Vignettes: ML, MF, MLMF Monte Carlo

Model forms: 
• 2D, 3D
Discretizations: 
• d/{8,16,32,64}

CardiovascularWind

UCAV NozzleScramjet

Nalu LES for Q0 is too 
coarse with limited 
predictive value

Project basis for ML 
emulator-based 
inference to follow

OpenFAST

No variance 
decay for higher 
turbulence levels

Non-predictive 
LF stress prior to 

reformulation

0D has greater 
predictive value, 
for which MF 
outperforms ML
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Recent Deployment Vignettes: ML/MF Monte Carlo/Polynomial Chaos

Geologic Disposal

Prediction of Tokamak instability (SciDAC)Crash & Burn Multiphysics (ASC L2 Milestone)

Network Cybersecurity (SECURE GC LDRD)
• Deployed ACV for forward UQ with HF emulation (minimega) and LF 
discrete event simulation (ns-3)

• Investigated the efficiency of MF UQ by tuning ns-3 models  
• Demonstrated increased efficiency for tail est. given a minimega dataset

Forward UQ: ACV1 vs MC ns-3 tuning effect on ACV performance

PIC

Z-PINCH 
EXPERIMENT

MULTI-
FLUID

CIS LDRD: 
non-hierarchical 
ensemble (models 
+ experiments)

NW Repository

PFLOTRAN

Points where I129 tracked
GDSA 
example 
simulation 
and QOI:

Emerging

BES QC: 
exploration of 
the C3H6 PES 
with KinBot 

Forward UQ w/ explicit (LF) + implicit (HF) SIERRA mechanics
• Multilevel MC across model resolutions for LF model
• Multifidelity MC with HF implicit + selection of most effective LF explicit

Successful demonstration of 
advanced UQ methods, 
integrated alongside emerging
ASC workflows for 
multiphysics simulation

Mechanical loading of mock device

• Deployed MF PCE for GSA to a problem related 
to geologic disposal safety assessment (GDSA)
• Sobol’ indices for model response as fn. of time
• Indices practically identical with ~80 equivalent 
HF evaluations for MF PCE compared to 713 
evaluations for equivalent accuracy SF PCE.

Magneto-hydrodynamics (Drekar)
• Model resolutions are well 

correlated for demo problem
• MLMC is sufficient to obtain 30x 

reduction in cost for same accuracy

Tokamaks



Multilevel performance on elliptic model PDEs is compelling, but does not accurately represent Sandia mission areas
• Extensions for multidimensional hierarchies, including multiphysics / multiscale (multi-index collocation)
• Investments in non-hierarchical MF methods: ACV and MFNets

Popular MF approaches neglect important practicalities
• "Oracle” correlations assumed  iterated versions of MFMC, ACV
• Imperfect data  embedded cross validation
• Dissimilar parameterizations  shared subspaces
• Free hyper-parameters  model tuning (currently a joint focus with NASA Langley)
• Stochastic simulation, simulation/surrogate error estimation  extended error management framework

Key mission feedbacks



Background: multifidelity sampling methods of interest

Sample set 
definitions

Theoretical perf. bounds for recursive vs. non-recursive
• Recursive limited by variance reduction of perfect m1 (OCV-1)
• Non-recursive can exploit potential gap between OCV-1 and OCV

Methods minimize estimator variance over number of truth evals N 
and approximation oversample ratios r
• MFMC has closed form for optimal r*,N* (given ordered/reordered models)
• ACV solves numerically for r*,N* (does not require ordering)

Monomial 
test problem

Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity uncertainty quantification,” JCP 408 (2020)



Iterated ACVIterated MFMC

2) N(i) shared samples  Estimate r2LH(i)   Estimate r(i) 
3) Estimate N(i+1) using prescribed { budget C || tolerance e }
4) Compute one-sided DN for shared samples from N(i) to N(i+1)

A. Optional: apply under-relaxation factor g
B. If non-zero increment, advance (i) and return to 1)

Performance degradation from pilot over-estimation is not significant
• ACV-MF demonstrates greater flexibility / resilience:

locates near-optimal solutions that incorporate large pilots
• Starting pts on left are for budget = pilot (moves quickly from MC to ACV)

Std errors averaged 
across 10 seeds

Performance degradation from pilot over-estimation is clearly evident
• Analytic r* reduces numerical burden but also limits flexibility

Std errors averaged 
across 10 seeds

1) N(i) shared samples  CovLL(i), CovLH(i) (“C”, “c”)  opt. solver  r*, N*
2) Compute one-sided DN for shared samples from N(i) to N*

A. Optional: apply under-relaxation factor g
B. If non-zero increment, advance (i) and return to 1)

Initialize: select a small shared pilot sample N(0) expected to under-shoot the optimal profile
1) Sample all models

Finalize: apply r* for LF eval increments, estimate a  apply controls to compute final expectation(s)

TO DO: PULL FROM SLIDE COMMENTS?



Surrogates with Greedy MF Refinement: PCE (sparse grids, regression) and FTT (regression): 
Integrated MF competition including embedded cross validation

Greedy ML PCE: compressed sensing 
with uniform candidate refinement

Greedy ML PCE: sparse grids with
uniform / generalized refinement

Steady state diffusionModel 
problem 
results

Greedy MF FTT regression: embedded CV over rank, order, both

Greedy MF PCE regression: embedded CV over basis order

Critical for preventing 
error propagation in 
recursive emulation 
schemes



From Multi-Index to (De-)Coupled Multi-Physics

Application test problem:
• System inputs x, model 
resolutions α, and system QoI y3

• 3-physics satellite design 
problem Final refinement level for adaptive 

multiphysics, multilevel manager

Extent of Adaptive 
Refinement

Equivalent 
HF Evals

None (Fixed RV, MP, Fid) 6240

RV only (Fixed MP + Fid) 1740

RV + MP (Fixed Fid) 608

RV + MP + MF 119

RV + MF + MP adaptivity reduces expense by 50x

Multi-level/fidelity/index + Multiphysics
• Create multi-index sparse grid (random + model resolution vars) for each 
physics

• Decouple through surrogates (+ re-representation)
• Compete candidate grid refinements for each physics in terms of impact on 
system QoI goals per unit cost 

• Investigate impact of integrated adaptive refinement
• Random vars (black box MP, fixed resolution)
• RV + decoupled MP (fixed resolution)
• RV + decoupled MP + multilevel resolution

Greedy multi-index PCE: sparse 
grids with generalized refinement

Jakeman, E., Geraci, Gorodetsky, “Adaptive Multi-index Collocation 
for Uncertainty Quantification and Sensitivity Analysis,” in review.

Advection diffusion



Multilevel – Multifidelity Sampling Methods
Leveraging active directions (ECCOMAS, WCCM) 

• Active subspaces, ridge approximation, adapted basis, …

• Main ideas:
• For each model independently one can compute active directions
• Sample along these shared active directions and map back to original model coords.
• Principal directions for a shared QoI can bridge dissimilar parameterizations and 

demonstrate underlying shared processes

G. Geraci, E., “Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification,” SAND2018-10817, Sept. 2018



Multilevel – Multifidelity Sampling Methods
Research Direction: leveraging active directions (example 1)

r2 = 0.05 r2 = 0.9

G. Geraci, E., “Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification,” SAND2018-10817, Sept. 2018

• Fixed computational budget of 300 equiv HF runs (LF cost ratio = 
100)

• 1000 realizations for each estimator  pdf of estimated Expected 
Value

• Active subspace discovery for each realization during pilot sample 
phase



Exploration of hyper-parameter model tuning

Tunable model problem (from JCP paper on ACV*)
• 1 parameter is tunable: q1
• 2 parameters are fixed: q  = p/2, q2 = p/6

Model Definitions

Correlations (variances are scaled to 1)

q1 controls:

* Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity uncertainty quantification,” JCP 408 (2020)



Exploration of hyper-parameter model tuning
Model tuning performed within the context of a particular estimator (here, ACV-MF)

Nested or AAO optimization:
• For ACV, hyper-parameters integrate as additional decision vars for minimizing estimator variance
• For analytic allocation cases (e.g., MFMC), there is no need for AAO opt. and we simplify to argminq 
since r(q),w(q)  r*,N*  R2*

Mid-fidelity model (Q1) is tuned 
for ACV at ~ midpoint q1

* = p/3

TO DO: PULL FROM SLIDE COMMENTS?



Current
• Bayesian inference with MCMC (follow MF UQ)

Connecting the pipeline
Selected vignettes in mission-driven R&D

• MCMC = too expensive, slow to converge, poor reliability

Model-form 
uncertainty

Inverse UQ: 
Characterization of 
input uncertainties 
through data 
assimilation

Random inputs 
(prior)

Random inputs 
(prior  posterior)

Model-form 
uncertainty

InferencePrior
uncertainty

data data

Quantities of 
interest (QoI)

Propagation

Atmosphere to electrons (A2e)
• Forward UQ: WindSE resolutions (RANS) within Greedy MF PCE
• Data assimilation: integrate wake data from experiments / HF LES
• Opt. Under Uncertainty: wind plant design using SNOWPAC + MLMC 

FY19 EERE: Emulator-based Bayesian inference leveraging multifidelity PCE

Nalu-Wind simulated wake 
data 5D downwind 
(inference target is 

averaged)



(ML-MF) Emulator-based Bayesian inference

Gaussian Likelihood

Negative Log Likelihood = Misfit

Hessian of Misfit

Gauss-Newton approx. Hessian 
(if only emulator grads) 

MCMC sampling performed on emulator, leveraging differentiable emulator structure
• Pre-solve for MAP (maximum a posteriori probability) point: full Newton min of –log(posterior)
• Accurate MCMC proposal: emulator derivatives  Hessian of misfit  MVN proposal covariance
• mitigates sample rejection in high D: for 10D Rosenbrock test, 98% rejection rate reduced to 30%

Laplace approx.: MVN proposal covariance defined by 
inverse Hessian of negative log posterior 

• augmenting misfit: Hessian of negative log prior provides 
regularization for priors w/ curvature (normal, beta, gamma)

• Posterior Hessian-based proposal balances likelihood and prior, 
performing better than either alone

Rosenbrock Problem; Prior ~ N(0,1)

MLE

MAP



Inference results for u compared to Nalu Data:

WindSE (RANS) Inference Results for MF PCE

Impacts
• 5x speedup for forward emulation using MF PCE
• Inverse problem comes for free (post-processing of MF PCE using 

Hessian-preconditioned MCMC)
• Added expense: iteratively refine MF PCE in regions of high 

posterior probability
• Reduction of epistemic RANS uncertainty through assimilation of LES data
• Demonstration of Robust / Reliable Inference at affordable cost: 

effective alternative to simulation-based MCMC (and ML MCMC) 

Marginal slices 
of 6D posterior 

distribution

Inference Details
• MCMC chain of 250k samples  effective sample sizes of 103 – 104

• MAP solution has Eff. Th., lmax at bounds
• significant improvement in wake capturing relative to mean soln

• Data is informative, especially for Eff. Th., lmax , Ax. IF
• significant info gain w.r.t. uniform priors



Looking forward
• Model management with ”trustworthy AI/ML”

Connecting the pipeline
Selected vignettes in mission-driven R&D

• Machine learning is the new wild-west!

From “Implementation of RNN, LSTM, and GRU,” C.C. Chatterjee

Within DOE, much effort is currently being invested in “UQ for Machine Learning” 
• General recognition that AI/ML models must be used with care
• Goal: estimates of prediction variance due to uncertainty in quality of network training

Challenge: “Machine Learning for UQ” leveraging these estimates
• Given emerging capabilities for NN prediction variance + our experience in MF surrogates, 

extend our model management / data fusion approach to incorporate AI/ML models

Opportunity to demonstrate a rigorous approach



Model Management for UQ with Machine Learning

Discrepancy-based, Sequence-based, Hybrid architectures
• Motivated by existing MF approaches (Monte Carlo, PCE)

• Mapping from x to HF QoI is composed of multiple 
(traditional) feed-fwd NNs, one per model in hierarchy
• Following first NN mapping  x  Q0 ,  can map x  Dl    

or Ql-1  Ql   or combine x,Ql-1  Ql  or  x,Dl-1  Dl 
• Differential training: tailor to predictive value vs. cost, 

targeting decay in mapping complexity

Greedy MF refinement / Active learning
• Compete candidate grid refinements across parameter 

and model investments for MF prediction of PES for 
heavy carbon clustering (soot)

Quantum 
Chemistry

Convolutional encoder/decoder assembly networks
• inspired by the recent success in image classification 

and segmentation shown by deep convolutional
encoder-decoder networks (DCNN)

• We investigate encoding-decoding DCNN where 
fidelities are learned all-at-once during training.

Fluid 
Dynamics



Model Management for UQ Aggregating Additional Error Models

• Beyond MC estimator variance + residual bias
• Must be estimable and controllable

• Prediction variance in surrogates
• Underlying simulation stochasticity         
• …

• Intent is AAO optimization over all relevant parameters (generalized “model management” for aggregate MSE)
• Special cases (as below) may collapse to smaller optimizations, given explicit theory for portions

E.g., within SNL:
• Turbulent flows/Combustion: finite time-window used for flow stats
• Radiation transport: finite number of particle histories
• Subsurface transport (repositories): finite number of transport domains



Summary Remarks
Dakota: a flexible, extensible software tool for UQ
• Algorithms: design optimization, model calibration, UQ, DACE, GSA, parametric studies
• Framework: plug and play method selection, composition of methods/models with nesting, recasting, surrogates
• Computing: multiple levels of parallelism for scalability on both capability / capacity HPC
• Interfacing: either a stand-alone application or a set of library services

The Pipeline from Upstream Research  Product Development  Mission Integration
• Vignettes: 

• UQ Modernization efforts
• Multifidelity methods
• Robust / affordable Bayesian inference
• “ML for UQ” leveraging “UQ for ML”

Lessons Learned: 
• Milestones and other “advanced deployment” opportunities: critical for demonstration and socialization of 

emerging methodologies
• Organizing around these principles has helped us formalize the different roles and ensure their health
• Feedbacks from these mission integration efforts are identifying the most critical directions for R&D investment
• …



Extra



MF deep Neural Networks for Quantum Chemistry

Discrepancy-based Multifidelity NN modeling 
• Motivated by MF approaches for Monte Carlo and stochastic emulation
• Decomposition-based approach: mapping from x to HF QoI is 

composed of multiple feed-forward NNs, one per model in hierarchy
• Differential training: tailor to predictive value vs. cost, targeting decay in mapping complexity
• Following first NN mapping  x  Q0 ,  can map either x  Dl  or  Ql-1  Ql

Recurrent architecture for MF NN
• Used for modeling a sequence, typically for time-dependence
• Our sequence is the model dependence mapping Ql-1  Ql
• As for co-kriging / GPs, correlation  benefits in integrated modeling
• Approach can be applied to any DAG  generalized model dependency
• Explore LSTM, independent RNN, hierarchical RNN

Greedy MF refinement / Active learning
• Compete candidate grid refinements across parameter and model investments

for MF prediction of PES for heavy carbon clustering (soot)



Releases: v6.14 released in May
Supported platforms: Linux, Mac, Windows
Modern SQE:; Nightly builds/testing, gitlab, Cmake
GNU LGPL: free downloads worldwide 
Community development: moving to pull request model
Community support: dakota-users list, [user forums]

Black box:
Sandia simulation codes
Commercial simulation codes

Library mode (semi-intrusive):
ALEGRA (shock physics),
Xyce (circuits), Sage (CFD),
Albany/TriKota (Trilinos-based),
MATLAB, Python, ModelCenter, 
SIERRA (multiphysics)

DAKOTA
  Optimization
  Uncertainty Quant.
  Parameter Est.
  Sensitivity Analysis

Model
Parameters

Design
Metrics

Iterative systems analysis
Multilevel parallel computing
Simulation management

http://dakota.sandia.gov
Manuals, Publications, Training matls. online



Emphasis on Scalable Methods for High-fidelity UQ on HPC

Compounding effects:
• Mixed aleatory-epistemic uncertainties (segregation  nested iteration)
• Requirement to evaluate probability of rare events (resolve PDF tails for QoI)
• Nonsmooth QoI (exp conv in spectral methods exploits smoothness)

Core (Forward) UQ Capabilities:
• Sampling methods: MC, LHS, QMC, et al.
• Reliability methods: local (MV, AMV+, FORM, …), 

global (EGRA, GPAIS, POFDarts)
• Stochastic expansion methods: PCE, SC, fn train
• Epistemic methods: interval est., Dempster-Shafer evidence

G(u)

Expected
Improvement

Steward Scalable Algorithms within



Iterator 

Model 

Strategy: control of multiple iterators and models

Iterator 

Model 

Iterator 

Model 

Coordination:
Nested
Layered
Cascaded
Concurrent
Adaptive/Interactive

Parallelism:
Asynchronous local
Message passing
Hybrid
4 nested levels with
    Master-slave/dynamic
    Peer/static

DAKOTA Framework

Parameters

Model:

Design
continuous
discrete

Uncertain
normal/logn
uniform/logu
triangular
exp/beta/gamma
EV I, II, III
histogram
interval

State
continuous
discrete

Application
system
fork
direct
grid

Approximation
global
polynomial 1/2/3, NN,
kriging, MARS, RBF

multipoint – TANA3
local – Taylor series
multifidelity
ROM

Functions
objectives
constraints
least sq. terms
generic

ResponsesInterfaceParameters

LHS/MC

Iterator 

Optimizer ParamStudy

COLINYNPSOLDOT OPT++

LeastSqDoE
GN

Vector

MultiD

List

DDACE CCD/BB

UQ

Reliability

DSTE

JEGACONMIN

NLSSOL
NL2SOLQMC/CVT

Gradients
numerical
analytic

Hessians
numerical
analytic
quasiNLPQL

CenterPCE/SC

Strategy

Uncertainty LeastSq

Hybrid

SurrBased
OptUnderUnc

Branch&Bound/PICO

Optimization

IntervalValProb

UncOfOptima
Pareto/MStart

ModelCalUnderUnc



High-Level Vision for Next Generation Architecture
Dakota-MPI, Dakota-X, Py-Dakota, …

MPI + “X” AMT

Algorithm Core
(Iterators, Models, …)

Front ends
(Research to Production)

Back ends
(Black box to Embedded plug-ins)

…

…

Stand-alone GUIInput 
file 
editors

…



response metric

Interval-
valued and 
second-order 
statistics

Traditional approach: nested sampling
 Expensive sims  under-resolved 
sampling (especially @ outer loop)

 Under-prediction of credible outcomes

epistemic
sampling

aleatory
sampling

simulation

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge 
uncertainty): insufficient info to specify objective probability distributions

Increasing epistemic 
structure (stronger 
assumptions)

Algorithmic approaches
• Interval-valued probability (IVP), aka probability bounds analysis (PBA)
• Dempster-Shafer theory of evidence (DSTE)
• Second-order probability (SOP), aka probability of frequency

Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions

Address accuracy and efficiency
• Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined)
• Outer loop:

• IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP)
• SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)



Drekar RANS turbulence: Spalart-Allmaras, 
k-e with Neumann BC, k-e with Dirichlet BC

Multiple cells 
within DSTE

Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions

Interval est w/ mixed-integer global opt

Uncertain model forms (Rosenbrock)

Fully converged area interval = [75., 375.], β interval = [−2.18732, 11.5900]

IVP SC SSG Aleatory: b interval converged to 5-6 digits by 300-400 evals

IVP nested LHS sampling: converged to 2-3 digits by 108 evals



Multifidelity Methods: Sampling UQ, Surrogate UQ, OUU

Scramjet
UCAV 
Nozzle

A2e wake dynamics Tokamaks

NW Repository

Geologic disposal

Points where I129 tracked

PIC

Z-PINCH 
EXPERIMENT

MULTI-
FLUID

Quantum chemistry

Abnormal thermal-
mechanical

2018/2019:

2020/2021:

Optimization Under Uncertainty

• Production: manage simulation 
and/or stochastic fidelity

• Emerging:
Derivative-based methods (DARPA SEQUOIA)
• Multigrid optimization (MG/Opt)
• Recursive trust-region model mgmt.: 
extend TRMM to deep hierarchies

Derivative-free methods (DARPA Scramjet)
• SNOWPAC (w/ MIT, TUM) with goal-
oriented MLMC error estimates

• On the horizon: Gaussian process-based 
approaches: multifidelity EGO; Optimal 
experimental design (OED)

Monte Carlo UQ Methods Surrogate UQ Methods (PCE, SC)

• Production (v6.10+):  
ML PCE w/ projection & regression; 
ML SC w/ nodal/hierarchical interp; 
greedy ML adaptation (DARPA 
SEQUOIA), multilevel fn train (ASC V&V)

• Emerging: multi-index stochastic 
collocation; multiphysics/multiscale 
integration  (ASC V&V); new surrogates 
(GP, ROM, NN) w/ error mgmt. fmwk 
(LDRD, SciDAC); learning latent variable 
relationships (MFNets, LDRD)

• On the horizon: unification of surrogate 
+ sampling approaches (LDRD)

• Production: optimal resource 
allocation for multilevel, 
multifidelity, combined (DARPA 
EQUiPS, Wind, Cardiovascular)

• Emerging: active dimensions 
(LDRD, SciDAC), generalized 
fmwk for approx control variates 
(ASC V&V), goal orientation 
(rare events), hybrid methods 
for GSA

• On the horizon: control of time avg; 
model tuning / selection (LDRD)

Robust



Cu
m

ul
at

iv
e 

Pr
ob

ab
ili

ty

1

Peak I129 Concentration
10− 10 10− 6
0

Recent Deployment Vignettes: ML/MF Monte Carlo/Polynomial Chaos

Geologic Disposal

A2e Wind (EERE Milestone)Crash & Burn Multiphysics (ASC L2 Milestone)

Network Cybersecurity (SECURE GC LDRD)

• Forward UQ: LES + potential flow in MLMF MC
• Data assimilation: integrate experimental wake data from SWiFT facility
• Opt. Under Uncertainty: wind plant design using SNOWPAC + MLMC 

FY19 EERE program milestone: 
Emulator-based Bayesian inference leveraging multifidelity PCE
• 5x speedup for forward emulation; inverse problem via post-processing 
using Hessian-preconditioned Markov chain Monte Carlo

• Deployed ACV for forward UQ with HF emulation (minimega) and LF 
discrete event simulation (ns-3)

• Investigated the efficiency of MF UQ by tuning ns-3 models  
• Demonstrated increased efficiency for tail est. given a minimega dataset

Forward UQ: ACV1 vs MC ns-3 tuning effect on ACV performance

PIC

Z-PINCH 
EXPERIMENT

MULTI-
FLUID

CIS LDRD: 
non-hierarchical 
ensemble (models 
+ experiments)

NW Repository

PFLOTRAN

Points where I129 tracked
GDSA 
example 
simulation 
and QOI:

Emerging

BES QC: 
exploration of 
the C3H6 PES 
with KinBot 

Forward UQ w/ explicit (LF) + implicit (HF) SIERRA mechanics
• Multilevel MC across model resolutions for LF model
• Multifidelity MC with HF implicit + selection of most effective LF explicit

Successful demonstration of 
advanced UQ methods, 
integrated alongside emerging
ASC workflows for 
multiphysics simulation

Mechanical loading of mock device

• Deployed MF PCE for GSA to a problem related 
to geologic disposal safety assessment (GDSA)
• Sobol’ indices for model response as fn. of time
• Indices practically identical with ~80 equivalent 
HF evaluations for MF PCE compared to 713 
evaluations for equivalent accuracy SF PCE.



SciDAC Partnership: FASTMath/UQ + TDS

Prediction of a basic Tokamak instability using Drekar:
 Multilevel hierarchy: 3 discretizations (constant CFL)

Pilot sample: 20 samples per level



Simple demonstration of key ML-MF concepts
Monte Carlo Sampling: MSE for mean estimator



Simple demonstration of key ML-MF concepts
Multilevel MC: decomposition of estimator variance



Simple demonstration of key ML-MF concepts
Multilevel MC: optimal resource allocation

Balance ML estimator variance 
(stochastic error) and residual 
bias (deterministic error) 

 don’t over-resolve one at 
the expense of the other

Optimal sample profile

Level 
independent

Level 
dependent

M. Giles, “Multilevel Monte Carlo path simulation,” 2008.



Background: multifidelity Monte Carlo (MFMC)

Correlations
Costs

Expectations from shared, refined

Optimal LF over-sample HF samples from budget

Peherstorfer, Willcox, Gunzburger, “Optimal Model Management For Multifidelity Monte Carlo Estimation”, SISC, Vol. 38, No. 5.
Gorodetsky, Geraci, E., Jakeman, “A generalized approximate control variate framework for multifidelity uncertainty quantification,” JCP 408 (2020)

Following r estimation, 
budget p exhausted 
 No iteration

Background: approximate control variate (ACV) C = covariance matrix among Qi
c = covariance vector among Qi and Q

Optimal r*,N* w/i budget from 
C,c estimates  No iteration

 Differs only in off-diagonal
     terms + sample sets



Formulations for Multilevel PCE / SC
Starting point (2012): prescribed ML/MF resolutions w/ adaptivity 
(no optimization of resource allocations)

Nlo >> Nhi

1. Optimal resource allocation: parameterize estimator variance  optimal Nl 
Global k and g > 0 

Main challenge: abrupt transitions in sparse / low rank recovery

E., G. Geraci, J.D. Jakeman, “Multilevel Monte Carlo Hybrids Exploiting Multidelity 
Modeling and Sparse Polynomial Chaos Estimation," SIAM UQ 2016, Lausanne.R
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Jakeman, Narayan, and Zhou, 2016

2. Restricted Isometry Property (RIP) for sparse recovery (BLUE for OLS, FTT Nl scaling w/ rank)

Main challenge: compressible fns 
 increasing s 
 feedback not well controlled for CS (better for FTT?)R
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3. Greedy Multilevel refinement
ML competition with multiple level candidate generators
Main challenges: scalable refinement schemes, loss of precisionG
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Surrogate approaches: Greedy multilevel refinement

Compete refinement candidates across model levels: max induced change / cost
• 1 or more refinement candidates per model level
• Measure impact on final QoI statistics (roll up multilevel estimates)

• norm of change in response covariance (default)
• norm of change in level mappings (goal-oriented: z/p/b/b*)

normalized by relative cost of level increment (# new points * cost / point)
• Greedy selection of best candidate, which then generates new candidates for this model level

Level candidate generators:
• Uniform refinement: 1 exp order / grid level candidate per model level

• Tensor / sparse grids: projection PCE, nodal/hierarchical SC
• Regression PCE: least squares / compressed sensing

• Anisotropic refinement: 1 exp order / grid level candidate per model level
• Tensor / sparse grids

• Index-set refinement: many candidates per level
• Generalized sparse grids: projection PCE, nodal/hierarch SC
• Regression PCE

• Adapted candidate basis: ~3 frontier advancements per model level
• Regression PCE  (Jakeman, E., Sargsyan, “Enhancing ℓ1-minimization estimates of 

polynomial chaos expansions using basis selection,”  J. Comp. Phys., Vol. 289, May 2015.)



Multilevel – Multifidelity Sampling Methods
Research Direction: leveraging active directions (example 2)

Wave propagation test problem

Enhances correlation (even if initially high) and links (dissimilar) model parameterizations


