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Goals of Study

* Investigate leakage currents in Si/SiO, MOSFETs due to TDDB with
EDMR via SDTAT.

* Analyze interface damage via dc |-V SDR/EDMR to develop an
understanding of the initial stages of TDDB.

* Explore the kinetics of SDTAT and chemical changes at the interface
throughout high-field stressing via NZFMR.



Time Dependent Dielectric Breakdown (TDDB)

 TDDB is one of the most important :igmi"
reliability problems in solid-state 350 | 60 min
electronics.

300 ¢
* Device structures can be aged through

high constant voltage stressing.

]
o
o

* This stressing results in a change in
both the stress-induced leakage

current (SILC) and changes in Fowler- b \

Leakage Current (nA)
Mo
n
o

Nordheim tunneling. 100 - - - .
0 1000 2000 3000

Stress time (sec)



Overview of Magnetic Resonance
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Electrically Detected Magnetic Resonance (EDMR)

* Classical EPR is not sensitive
enough to study traps in practical
MOSFETs (sensitivity =
101%defects).

» EDMR sensitivity is about 107
times greater than EPR [1].

* This sensitivity boost makes EDMR
an incredibly powerful analytical
tool for analyzing the chemical
nature of paramagnetic defects in
technologically meaningful
devices.
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Spin-Depenc

ent Trap Assisted

Tunneling (S

DTAT)

* Works on the principles of variable range

hopping.

* Trap to trap tunneling events conserve
intrinsic angular momentum; they are a
function of both energy and tunneling

distance.

* RF induced resonance events can “flip” the
spins of oxide defects, allowing forbidden
tunneling transitions to occur.
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EDMR via Spin-Dependent Recombination

(SDR)

* Shockley-Read-Hall Model for
Recombination.

* Pauli Exclusion Principle forbids
capture if conduction electron/deep
level electron have the same spin
guantum number.

* Magnetic resonance “flips” the defect
electron spin, allowing previously

forbidden capture and recombination.

* This increases the recombination
current at resonance.
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Gated Diode (dc |-V) EDMR !
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* Developed by Grove and Fitzgerald [2], dc |-V can be oue

used to calculate interface densities using the |
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Experimental

* Identical 1.89 x 10 cm? Si/SiO, total gate area nMOSFETS with 7.5
nm thick oxides.

* MOS structures consisting of 126 devices, all with 15 by 1 um channel
dimensions.

* During EDMR, dc |-V source/drain biases used were -0.33 V.

* All high-field stressing was done at a constant gate bias of -9 V for
various lengths of time.

* All EDMR measurements were done with the magnetic field
perpendicular to the (100) interface plane.



SDTAT Results on High-Field Stressed

MOSFETS

* Signal of SDTAT response increases
with high-field stressing time.

* Dominant features were the Py,

(g = 2.0065) and P, (g = 2.0032)
center.

* The EDMR results are in close
correspondence with the increase in
D;; measured via dc I-V.
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Low-Temperature dc |-V EDMR

* Along with the P,y and Py, there is an
additional feature that forms at g = 2.000
with high-field stressing.

* This defect could only be due to an E’
center.

* All evidence points to the generation of E’
with high-field stressing: So where is the E
in SDTAT?

* Overwhelmed by the P;, response.
* Rate-limiting interactions.
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Near-Zero Field Magnetoresistance (NZFMR)

* Can detect both SDTAT and SDR without an RF microwave source.
* No B, is necessary; great potential for analyzing “packaged” devices.

* NZFMR utilizes the mixing of states at near-zero fields due to local
magnetic field interactions.

* The theoretical NZFMR response can be modeled via the Stochastic
Quantum Liouville Equation (SLE), a theory developed by Flatté and
Harmon [3] and advanced for use in MOS devices by Frantz, Harmon,
and Flatté [4].



NZMFER via SDR

* Changes in line shape are critical in the
analysis of NZFMR spectra.

* These changes can only be due to two
factors: kinetics and hyperfine
Interactions.

* For a constant Vf, the recombination
kinetics must be constant.

* Only magnetic nuclei in system are 2°Si
nucle1 (4.7%) and H (100%).

* The results demonstrate that hydrogen is
being redistributed throughout high-field
stressing.
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NZFMR SDTAT: Changes With Bias During

NZFMR Measurement

* In this case, NZFMR spectral
changes will be due to kinetics.

* The NZFMR spectra show large
changes in the unusually large
linewidths of the signals.

* This NZFMR technology, paired
with modeling via the SLE, could
be used as a figure of merit for
hopping rates/trap distances for
modeling TDDB.

NZFMR Amplitude (arb. u.)

o
—_—

o
o
oo

g
o
=3

R

o
=
[}]

=

o
=
[

004 |
006 |

-0.08

5 0 5
Magnetic Field (mT)

10

15



Conclusions

* We provide evidence and chemical identification of both interface
(P, and Ppq) traps and oxide (E") defects generated in Si/SiO,
MOSFETs during the early to middle stages of TDDB.

* We find that the dominant defect in the SDTAT spectrum in these
high-field stressed MOSFETs are the P,y and P, defects.

* We show that the interface-to-oxide tunneling event is the rate-
limiting step in Si/SiO, in the earlier stages of TDDB.
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