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Goals of Study

• Investigate leakage currents in Si/SiO2 MOSFETs due to TDDB with 
EDMR via SDTAT.
• Analyze interface damage via dc I-V SDR/EDMR to develop an 

understanding of the initial stages of TDDB.
• Explore the kinetics of SDTAT and chemical changes at the interface 

throughout high-field stressing via NZFMR.



Time Dependent Dielectric Breakdown (TDDB)

• TDDB is one of the most important 
reliability problems in solid-state 
electronics.
• Device structures can be aged through 

high constant voltage stressing.
• This stressing results in a change in 

both the stress-induced leakage 
current (SILC) and changes in Fowler-
Nordheim tunneling.  



Overview of Magnetic Resonance



Electrically Detected Magnetic Resonance (EDMR)



Spin-Dependent Trap Assisted 
Tunneling (SDTAT)
• Works on the principles of variable range 

hopping.
• Trap to trap tunneling events conserve 

intrinsic angular momentum; they are a 
function of both energy and tunneling 
distance.

• RF induced resonance events can “flip” the 
spins of oxide defects, allowing forbidden 
tunneling transitions to occur.
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EDMR via Spin-Dependent Recombination 
(SDR)
• Shockley-Read-Hall Model for 

Recombination.
• Pauli Exclusion Principle forbids 

capture if conduction electron/deep 
level electron have the same spin 
quantum number.
• Magnetic resonance “flips” the defect 

electron spin, allowing previously 
forbidden capture and recombination.
• This increases the recombination 

current at resonance. 



Gated Diode (dc I-V) EDMR

.



Experimental



SDTAT Results on High-Field Stressed 
MOSFETs



Low-Temperature dc I-V EDMR 



Near-Zero Field Magnetoresistance (NZFMR)



NZMFR via SDR



NZFMR SDTAT: Changes With Bias During 
NZFMR Measurement
• In this case, NZFMR spectral 

changes will be due to kinetics.
• The NZFMR spectra show large 

changes in the unusually large 
linewidths of the signals.
• This NZFMR technology, paired 

with modeling via the SLE, could 
be used as a figure of merit for 
hopping rates/trap distances for 
modeling TDDB.



Conclusions
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