

Analysis Report documenting the Assessment of the Solubility of Lead,
2 EDTA and other Organic Ligands in non-Sulfide systems performed under TP
3 08-02 and under TP 20-01

4 Revision 0

5

6 Analysis Report for the Lead Experimental Data obtained under TP 08-02 Revision 0 and TP 20-01
7 Revision 0 per Analysis Plan AP-192 Revision 0

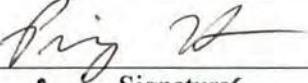
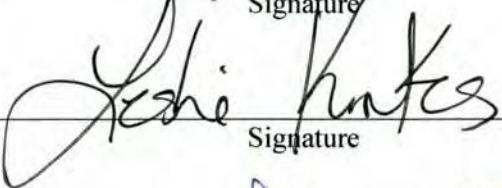
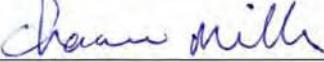
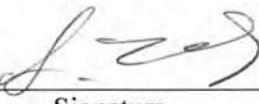
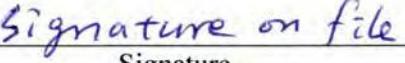
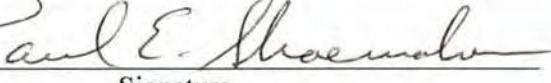
8

9 Jay Jang, Priya Hora, Leslie Kirkes, Chammi Miller, and Luheng Zhang

10

11 SNL WIPP Geochemistry (8882)

12 Sandia National Laboratories







13 Carlsbad, New Mexico, U.S.A.

14

15 Effective Date: *November 23 2021*
SS 2/7/21

WIPP:4.4.2.2.1: TD:QA-L:RECERT:576380

16 APPROVALS

Authored by:	Jay Jang Print Name	 Signature	11/18/2021 Date
Authored by:	Priya Hora Print Name	 Signature	11/18/2021 Date
Authored by:	Leslie Kirkes Print Name	 Signature	11/22/21 Date
Authored by:	Chammi Miller Print Name	 Signature	11/18/2021 Date
Authored by:	Luzheng Zhang Print Name	 Signature	11/18/2021 Date
Reviewed by:	Carlos Jove-Colon Print Name Technical Reviewer	 Signature	11/18/2021 Date
Reviewed by:	Shelly R. Nielsen Print Name Quality Assurance Reviewer	 Signature	11-19-2021 Date
Approved by:	Paul Shoemaker Print Name Senior Manager	 Signature	11/23/2021 Date

17

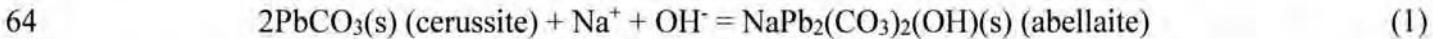
18

19 I. INTRODUCTION

20 The objective of this report is to accept or reject the hypothesis that the experiments conducted under TP
21 08-02 Revision 0 (Ismail et al., 2008) were affected by CO₂(g) intrusion and sample contamination. The
22 test of the hypothesis is accomplished by comparing the experimental data collected under the protocols
23 of TP 08-02 Revision 0 and TP 20-01 Revision 0 (Kirkes and Zhang, 2020). The protocols of TP 20-01
24 Revision 0 minimize the possibilities of CO₂(g) intrusion and sample contamination. The experimental
25 data sets obtained under both TPs will be assessed statistically to see if they are identical or not.

26 Under TP 08-02 Revision 0, lead solubility experiments were conducted under ambient atmosphere
27 conditions where the partial pressure of CO₂(g) or PCO_{2(g)} is assumed to be 10^{-3.5} atm (Stumm and
28 Morgan, 1996). On the other hand, experiments under TP 20-01 Revision 0 were conducted in
29 minimum CO₂(g) gloveboxes. In this report we will discuss in detail the differences in experimental
30 protocols under the two Test Plans (TP), and document and compare the results of solubility
31 experiments performed under each TP.

32 I.1. Experiments conducted under TP 08-02 Revision 0


33 Under TP 08-02 Revision 0, the experiments were aged in sealed reactors, i.e., screw cap with a few
34 rounds of paraffin film over the screw cap. The experiments were prepared in large volume reactors
35 (typically larger than 50 mL) to allow for repeated sampling of supernatant over long aging times. The
36 number of repeated sampling entries usually exceeded 5 times, and the aging time was typically on the
37 order of multiple years. Thus, it is reasonable to hypothesize that the gas in the headspace of the
38 reactors was replaced or mixed with the ambient atmosphere when the reactors were opened for
39 repeated sampling over the duration of the experiments. Considering multiple years of aging time,
40 possible diffusion of CO₂(g) through the container wall and cap, i.e., in or out depending on the partial
41 pressure gradient, cannot be excluded. The solution chemistry inside the reactors may have been
42 influenced by the gain or loss of CO₂(g). In addition, it is possible that contamination may have
43 occurred in the samples, due to the repeated sample retrieval from the reactors.

44 To investigate the solubility of a lead sulfate mineral, PbSO₄(s) (anglesite), excess PbSO₄(s) was added
45 to solutions of six incremental concentrations of sodium sulfate (Na₂SO₄) spiked with sodium chloride
46 (NaCl) in duplicate (12 reactors in total). This set of experiments did not contain carbonate in the
47 starting solution and solid; however, the experiments were prepared under ambient conditions open to
48 the atmosphere, sealed, and aged under normal atmosphere where PCO_{2(g)} ≈ 10^{-3.5} atm. Thus, the

49 changes in the chemistry due to the CO₂(g) intrusion would impact the measured concentrations of the
50 reactive components, e.g., ΣPb.

51 To investigate the solubility of a lead carbonate mineral, PbCO₃(s) (cerussite), excess PbCO₃(s) was
52 added in solutions of four incremental concentrations of sodium bicarbonate (NaHCO₃) spiked with
53 sodium chloride (NaCl) at 0.15 m in duplicate (8 reactors). For the highest concentration of NaHCO₃,
54 additional reactors spiked with 0.3 m NaCl were prepared in duplicates, thus, this set of experiments
55 consisted of 10 reactors in total. The composition of background solutions indicates the partial
56 pressure CO₂(g) of this set of experiments ranges from 10^{-3.1} to 10^{-0.3} atm due to the NaHCO₃ loading.
57 Considering the atmospheric partial pressure of CO₂(g) ≈ 10^{-3.5} atm (Stumm and Morgan, 1996), this
58 set of reactors could have experienced loss of CO₂(g). The reactors were aged under ambient
59 atmosphere, and experienced repeated sampling events over long aging times. When the solids in the
60 10 reactors were analyzed with XRD at the termination of the experiments, a secondary mineral,
61 abellaite (NaPb₂(CO₃)₂(OH)(s)), was identified from one of the duplicates representing one condition
62 (Reactor ID: PbCO₃ 0.5/0.15-1; Kirkes and Xiong, 2019).

63 Formation of abellaite at the expense of cerussite can be expressed by the following reaction:

65 As shown in Reaction (1), the formation of abellaite at the expense of cerussite, PbCO₃(s), requires
66 excess Na⁺ and/or OH⁻. Discussion with DOE on the possible sources of the excess Na⁺ and/or OH⁻
67 included the following: (i) sample contamination, and (ii) CO₂(g) intrusion due to repeated entries for
68 sampling over long aging time. However, CO₂(g) intrusion cannot increase the OH⁻.¹

69 For the repeated sampling entries into the reactors, care has been exercised to not cross-contaminate
70 the content of the reactors. It is part of general laboratory practice at SNL WIPP Geochemistry
71 Program to (i) rinse the pH electrode with DI water prior to inserting the electrode into the reactors,
72 and (ii) use new pipet tips, transfer pipets, syringes, filters, temporary containers, etc., in between the
73 sampling of supernatants from individual reactors. However, the SNL WIPP Geochemistry Program
74 did not exclude the possibility of inadvertent contamination due to the repeated entries.

¹ CO₂(g) intrusion generates H⁺ via the following reaction: CO₂(g) + H₂O = H⁺ + HCO₃⁻. CO₂(g) intrusion cannot increase OH⁻.

75 I.2. Verification experiments conducted under the protocols of TP 20-01

76 Three Experiments were selected through AP-192 Revision 0 (Jang et al., 2021) and prepared under
77 the protocols described in TP 20-01 Revision 0 (Kirkes and Zhang, 2020). They resemble the
78 experiments conducted under TP 08-02 Revision 0. The protocols of TP 20-01 Revision 0 were set up
79 to exclude the uncertainties associated with the CO₂(g) intrusion and sample contamination. At the
80 same time, the protocols introduced new sources of uncertainty, such as different aging times and
81 bottle materials. They are tabulated in Table 1 of AP-192 Revision 0 (Jang et al., 2021).

82 Under the protocols of TP 20-01 Revision 0, (1) the reactors were prepared and stored in minimal
83 CO₂(g) gloveboxes, and (2) instead of using large volume to allow repeated entries, replicates were
84 prepared for each condition in smaller volume (20 mL) with the same solid:solution ratio as employed
85 in TP 08-02 Revision 0 to allow for sacrificial sampling of the reactors. For time-dependent
86 measurements of the components, two replicates representing a condition (i.e., composition of matrix
87 solution) were used up to obtain filtered solution and solid after recording the pH². For filtration, 0.2
88 μm syringe filters were used.

89 Use of the gloveboxes would prevent the possible CO₂(g) intrusion for non-carbonated experiment.
90 For the carbonated experiment, the loss of CO₂(g) could occur only once while taking the pH² from the
91 selected replicates (usually less than 15 minutes without stirring). Remaining replicates would not be
92 opened until the next sampling.

93 Experiments 1 and 2 below repeat two experiments conducted under TP 08-02 Revision 0. Experiment
94 3 was not conducted under TP 08-02 Revision 0. It was selected as a control experiment to explain the
95 thermodynamics of the mineral paragenesis observed from the PbCO₃(s) experiment (i.e., Experiment
96 2):

97 Experiment 1. PbSO₄(s) - Na₂SO₄ - NaCl - H₂O: The solid PbSO₄(s), anglesite, was added
98 in excess to the background solutions of incremental concentration of Na₂SO₄ (0.01, 0.10,
99 0.50, 1.00, 1.50, and 1.80 m) with NaCl concentration fixed at 0.15 m. This set is a
100 repetition experiment for a direct comparison with data obtained from the same experiment
101 performed under TP 08-02 Revision 0.

² pH² is the reading from the display of pH meters calibrated with commercial pH buffers of low ionic strength.

102 Experiment 2. $\text{PbCO}_3(\text{s})$ - NaHCO_3 - NaCl - H_2O : The solid $\text{PbCO}_3(\text{s})$, cerussite, was added
 103 in excess to the background solutions of incremental concentration of NaHCO_3 (0.01, 0.05,
 104 0.50, and 1.00 m) with NaCl concentration fixed at 0.15 m. Experiment of NaHCO_3 = 1.00
 105 m solution is prepared with NaCl = 0.30 m in parallel. This set is a repetition experiment
 106 for direct comparison with data obtained from the same experiment performed under TP 08-
 107 02 Revision 0.

108 Experiment 3. $\text{PbCO}_3(\text{s})$ - Na_2CO_3 - H_2O : The solid $\text{PbCO}_3(\text{s})$, cerussite, will be added in
 109 excess to the solutions of incremental concentration of Na_2CO_3 (0, 0.01, 0.10, 0.50, 1.00,
 110 1.50, 2.00, and 2.50 m). This experiment was not conducted under TP 08-02 Revision 0.
 111 This experiment requires measurement of ΣCO_3 at concentrations lower than the detection
 112 limit of our current instrument (a Carbon Coulometer). This experiment was planned
 113 hoping for the timely procurement and operation of a new analytical instrument to measure
 114 total organic carbon (TOC analyzer). This instrument can also measure total inorganic
 115 carbon (TIC), with a lower detection limit. The TOC/TIC analyzer was installed and tested
 116 on 6/24/2021, and is in need of an approved activity specific procedure before data can be
 117 produced for project deliverables.³

118 II. EXPERIMENTS AND MEASUREMENTS

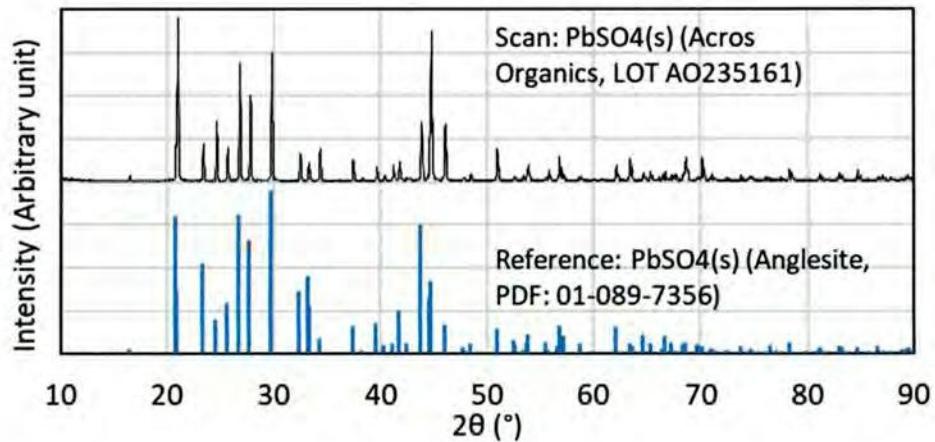
119 II.1. Experiment 1

120 Under TP 08-02 Revision 0, background solutions were prepared by mixing 1 kg of DI water with the
 121 prescribed mass of salts, Na_2SO_4 and NaCl (Table II.1-1). 100 mL of the prepared solution was mixed
 122 with 2.0 grams of $\text{PbSO}_4(\text{s})$ (SN⁴ WIPP-Solubility-3, pages 18, 20). Table II.1-1 summarizes the
 123 following: prescribed mass of salts, molality and Molarity of the salts in the prepared solutions,
 124 calculated and measured density of the prepared solutions, calculated pH⁵ and Molarity-to-molality
 125 conversion factor (M:m, L/kg) (Jang, 2020). XRD scan of the purchased $\text{PbSO}_4(\text{s})$ is presented in
 126 Figure II.1-1.

127 Table II.1-1. Recipe for the background solutions used for Experiment 1 under TP 08-02
 128 Revision 0.

129 Recipe	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	9999

³ Technical Review of Activity Specific Procedure (SP) for the TOC under SNL WIPP QA program was completed on 11/4/2021.


⁴ SN: Scientific Notebook, where laboratory activities are recorded.

⁵ $\text{pH} = -\log \{\text{H}^+\}$, i.e., pH is negative base 10 logarithm of H^+ activity.

Solution ID	Na ₂ SO ₄ , g	NaCl, g	H ₂ O, g			Na ₂ SO ₄	NaCl	ΣNa	ΣSO ₄	ΣCl	
0.01-Na ₂ SO ₄ +0.15-NaCl	1.4206	8.7663	1000			0.0100	0.150	0.171	0.0100	0.150	
0.1-Na ₂ SO ₄ +0.15-NaCl	14.2027	8.7676	1000			0.100	0.150	0.351	0.100	0.150	
0.5-Na ₂ SO ₄ +0.15-NaCl	71.0101	8.7669	1000			0.502	0.150	1.154	0.502	0.150	
1.0-Na ₂ SO ₄ +0.15-NaCl	142.0393	8.7692	1000			1.00	0.151	2.16	1.00	0.151	
1.5-Na ₂ SO ₄ +0.15-NaCl	213.05	8.7697	1000			1.50	0.151	3.16	1.50	0.151	
1.8-Na ₂ SO ₄ +0.15-NaCl	255.66	8.7787	1000			1.81	0.151	3.76	1.81	0.151	
Properties	Density, g/mL					Molarity (M, mol/L)					
Solution ID	Calculated	Measured [#]	%Deviation ^{###}	M:m, L/kg	pH ^{##}	Na ₂ SO ₄	NaCl	ΣNa	ΣSO ₄	ΣCl	
0.01-Na ₂ SO ₄ +0.15-NaCl	1.0075	1.0097	0.2%	1.0027	7.03	0.0100	0.150	0.170	0.0100	0.150	
0.1-Na ₂ SO ₄ +0.15-NaCl	1.0156	1.0186	0.3%	1.0073	7.18	0.100	0.149	0.349	0.100	0.149	
0.5-Na ₂ SO ₄ +0.15-NaCl	1.0508	1.0678	1.6%	1.0278	7.29	0.488	0.146	1.12	0.488	0.146	
1.0-Na ₂ SO ₄ +0.15-NaCl	1.0929	1.1213	2.6%	1.0535	7.32	0.952	0.143	2.05	0.952	0.143	
1.5-Na ₂ SO ₄ +0.15-NaCl	1.1329	1.1719	3.4%	1.0791	7.33	1.39	0.139	2.93	1.39	0.139	
1.8-Na ₂ SO ₄ +0.15-NaCl	1.1561	1.1523	-0.3%	1.0945	7.34	1.65	0.138	3.44	1.65	0.138	

129 [#] WIPP-Solubility-21, p.89 per Jang (2021a).
130 ^{##} Modeled pH using EQ3/6, Version 8.0a (Wolery and Jarek, 2003).⁶ The pH is negative base 10 logarithm of H⁺ activity,
131 i.e., pH = - log {H⁺}, of background solution calculated using PACE⁷ and selected PIPs⁸ in the approved data0.fm1, not
132 taking into consideration the dissolution of anglesite. EQ3/6, Version 8.0a is not included in the Software List of AP-192
133 Revision 0 (Jang et al., 2021), thus, the calculation of pH in this report is considered a deviation from the AP per NP 9-1
134 Revision 11 Section 2.1.2. (Nielsen, 2020).
135 ^{###} %Deviation of density = (Measured - Calculated)/Calculated × 100%.

136 Figure II.1-1. XRD scan for the initial PbSO₄(s) (Acros Organics LOT AO235161,
137 WIPP-Solubility-3, page 20) used in Experiment 1 conducted under TP 08-02
138 Revision 0.

139 140 Under the protocols of TP 20-01 Revision 0, background solutions were prepared by mixing 500 g of
141 de-gassed DI water with the prescribed masses of Na₂SO₄ and NaCl. 20 mL of the prepared solution
142 was mixed with 0.4 g of PbSO₄(s) (SN WIPP-Pb-3, pages 5-8). Table II.1-2 summarizes the
143 following: prescribed mass of salts, molality and Molarity of the salts in the prepared solutions,

⁶ This reference is the users' manual for Version 8.0, and is applicable to Version 8.0a.

⁷ PACE: Pitzer Activity Coefficient Equation

⁸ PIPs: Pitzer Interaction Parameters

144 calculated density of the prepared solutions, calculated pH and Molarity-to-molality conversion factor
 145 (M:m, L/kg; Jang, 2020). For the fifth solution in Table II.1-2 (Solution ID: 1.5-Na₂SO₄+0.15-NaCl),
 146 slightly different concentrations of Na₂SO₄ and NaCl were applied due to addition of extra mass of DI
 147 water. XRD scan of the purchased PbSO₄(s) is presented in Figure II.1-2.

148 Table II.1-2. Recipe for the background solutions used for Experiment 1 under TP 20-01
 149 Revision 0. For the fifth solution, slightly different concentrations of Na₂SO₄ and
 150 NaCl were applied, i.e., instead of 1.50 and 0.15 m, 1.47 m Na₂SO₄ and 0.147 m
 151 NaCl were applied.

Recipe	Na ₂ SO ₄ , g	NaCl, g	H ₂ O, kg	molality (m, mol/kg)				
				Na ₂ SO ₄	NaCl	ΣNa	ΣSO ₄	ΣCl
0.01-Na ₂ SO ₄ +0.15-NaCl	0.7106	4.3833	500.05	0.0100	0.150	1.70E-01	1.00E-02	1.50E-01
0.1-Na ₂ SO ₄ +0.15-NaCl	7.1016	4.3833	500.02	0.100	0.150	3.50E-01	1.00E-01	1.50E-01
0.5-Na ₂ SO ₄ +0.15-NaCl	35.5054	4.3831	500.02	0.500	0.150	1.15E+00	5.00E-01	1.50E-01
1.0-Na ₂ SO ₄ +0.15-NaCl	71.0197	4.3837	500.03	1.00	0.150	2.15E+00	1.00E+00	1.50E-01
1.5-Na ₂ SO ₄ +0.15-NaCl	106.525	4.3838	509.45	1.47	0.147	3.09E+00	1.47E+00	1.47E-01
1.8-Na ₂ SO ₄ +0.15-NaCl	127.8306	4.383	500.02	1.80	0.150	3.75E+00	1.80E+00	1.50E-01
Properties	Density, g/mL			Molarity (M, mol/L)				
Solution ID	Calculated	Measured	%Deviation [#] ##	M:m, L/kg	pH ^{##}	Na ₂ SO ₄	NaCl	ΣNa
0.01-Na ₂ SO ₄ +0.15-NaCl	1.0075	NA	NA	1.0027	7.03	0.0100	0.150	1.70E-01
0.1-Na ₂ SO ₄ +0.15-NaCl	1.0156	NA	NA	1.0073	7.18	0.0993	0.149	3.47E-01
0.5-Na ₂ SO ₄ +0.15-NaCl	1.0508	NA	NA	1.0278	7.29	0.486	0.146	1.12E+00
1.0-Na ₂ SO ₄ +0.15-NaCl	1.0929	NA	NA	1.0535	7.32	0.949	0.142	2.04E+00
1.5-Na ₂ SO ₄ +0.15-NaCl	1.1301	NA	NA	1.0772	7.33	1.37	0.137	2.87E+00
1.8-Na ₂ SO ₄ +0.15-NaCl	1.1561	NA	NA	1.0945	7.34	1.64	0.137	3.43E+00

152 ^{##} Modeled pH using EQ3/6, Version 8.0a (Wolery and Jarek, 2003). The pH is negative base 10 logarithm of H⁺ activity,
 153 i.e., pH = - log {H⁺}, of background solution calculated using PACE and selected PIPs in the approved data0.fm1, not taking
 154 into consideration the dissolution of anglesite. EQ3/6, Version 8.0a is not included in the Software List of AP-192 Revision
 155 0 (Jang et al., 2021), thus, the calculation of pH in this report is considered a deviation from the AP per NP 9-1 Revision 11
 156 Section 2.1.2. (Nielsen, 2020).

157 ^{###} %Deviation of density = (Measured - Calculated)/Calculated × 100%.

158 Figure II.1-2. XRD scan of the initial PbSO₄(s) used in Experiment 1 conducted under TP
 159 Revision 0 (Acros Organics, LOT AO235161).

160

161 II.2. Experiment 2

162 Under TP 08-02 Revision 0, background solutions were prepared by mixing 1 L (i.e., 0.997 kg at
 163 25 °C) of de-gassed DI water with the prescribed masses of NaHCO₃ and NaCl. 100 mL of the
 164 prepared solution was mixed with 2.0 g of PbCO₃(s) (SN WIPP-Solubility-3, pages 14, 15, 17). Table
 165 II.2-1 summarizes the prescribed mass of salts, molality and Molarity of the salts in the solutions,
 166 calculated and measured density of the solutions, calculated pH and Molarity-to-molality conversion
 167 factor (M:m, L/kg; Jang, 2020). Note that the actual molalities of NaHCO₃ are slightly different from
 168 the values used in the solution IDs. XRD of the purchased PbCO₃(s) is presented in Figure II.2-1.

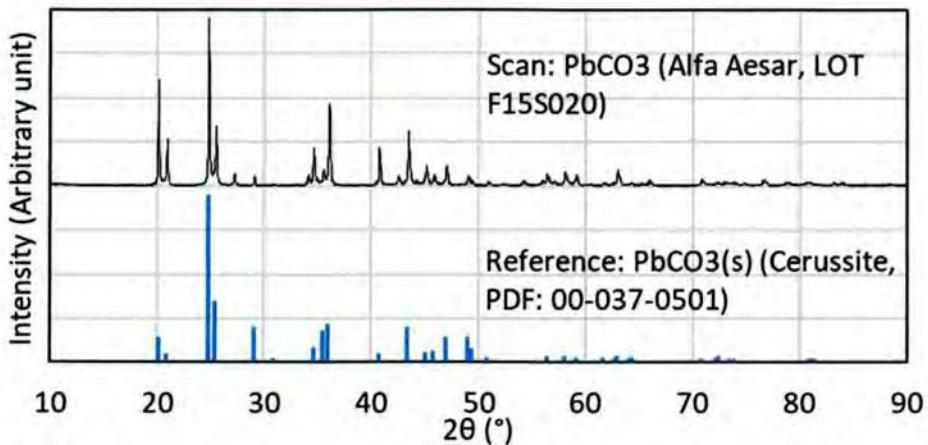
169 **Table II.2-1. Recipe for the background solutions used for Experiment 2 under TP 08-02**
 170 **Revision 0.**

Recipe	NaHCO ₃	NaCl	H ₂ O, kg		molality (m, mol/kg)					
					NaHCO ₃	NaCl	ΣNa	ΣHCO ₃	ΣCl	
Solution ID										
0.01-NaHCO ₃ +0.15-NaCl	0.7200	8.7664	0.997		8.60E-03	1.50E-01	1.59E-01	8.60E-03	1.50E-01	
0.05-NaHCO ₃ +0.15-NaCl	3.5998	8.7664	0.997		4.30E-02	1.50E-01	1.93E-01	4.30E-02	1.50E-01	
0.5-NaHCO ₃ +0.15-NaCl	35.9979	8.7664	0.997		4.30E-01	1.50E-01	5.80E-01	4.30E-01	1.50E-01	
1.0-NaHCO ₃ +0.15-NaCl	71.9959	8.7664	0.997		8.60E-01	1.50E-01	1.01E+00	8.60E-01	1.50E-01	
1.0-NaHCO ₃ +0.30-NaCl	71.9959	17.5328	0.997		8.60E-01	3.01E-01	1.16E+00	8.60E-01	3.01E-01	
Properties	Density, g/mL				Molarity (M, mol/L)					
Solution ID	Calculated	Measured [#]	%Deviation ^{###}	M:m, L/kg	pH ^{##}	NaHCO ₃	NaCl	ΣNa	ΣHCO ₃	ΣCl
0.01-NaHCO ₃ +0.15-NaCl	1.0070	1.0073	0.0%	1.0025	8.64	8.58E-03	1.50E-01	1.59E-01	8.58E-03	1.50E-01
0.05-NaHCO ₃ +0.15-NaCl	1.0088	1.0121	0.3%	1.0035	8.03	4.28E-02	1.50E-01	1.93E-01	4.28E-02	1.50E-01
0.5-NaHCO ₃ +0.15-NaCl	1.0292	1.0327	0.3%	1.0151	7.89	4.23E-01	1.48E-01	5.72E-01	4.23E-01	1.48E-01
1.0-NaHCO ₃ +0.15-NaCl	1.0512	1.0539	0.3%	1.0281	7.80	8.36E-01	1.46E-01	9.82E-01	8.36E-01	1.46E-01
1.0-NaHCO ₃ +0.30-NaCl	1.0565	1.0602	0.4%	1.0313	7.76	8.34E-01	2.92E-01	1.13E+00	8.34E-01	2.92E-01

171 [#] WIPP-Solubility-21, p.91 per Jang (2021a).

172 ^{##} Modeled pH using EQ3/6, Version 8.0a (Wolery and Jarek, 2003). The pH is negative base 10 logarithm of H⁺ activity,
 173 i.e., pH = - log {H⁺}, of background solution calculated using PACE and selected PIPs in the approved data0.fm1, not taking
 174 into consideration the dissolution of cerussite. EQ3/6, Version 8.0a is not included in the Software List of AP-192 Revision
 175 0 (Jang et al., 2021), thus, the calculation of pH in this report is considered a deviation from the AP per NP 9-1 Revision 11
 176 Section 2.1.2. (Nielsen, 2020).

177 ^{###} %Deviation of density = (Measured - Calculated)/Calculated × 100%.


178

179

180

Figure II.2-1. XRD of initial solid used for Experiment 2 under TP 08-02 Revision 0:
181 PbCO₃(s) (Alfa Aesar, LOT F15S020; WIPP-Solubility-3, page 17).

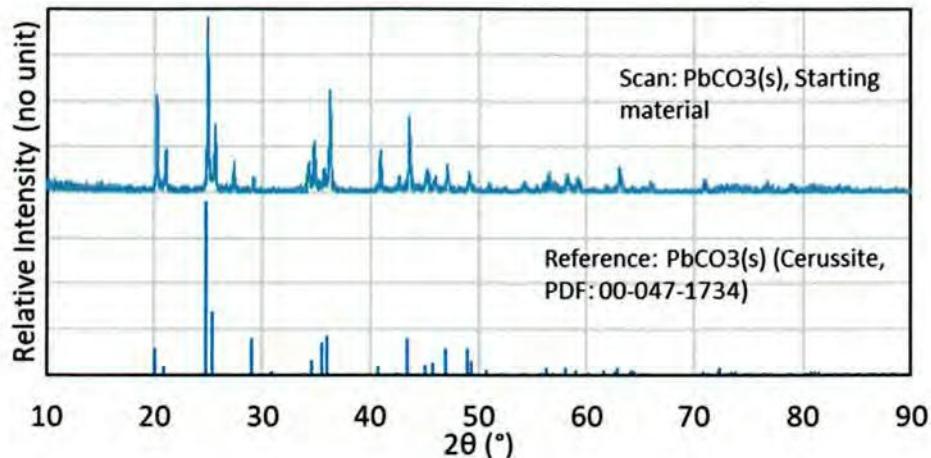
182

190

191

Table II.2-2. Recipe for the background solutions used for Experiment 2 under TP 20-01 Revision 0.

Recipe	molality (m, mol/kg)							
Solution ID	NaHCO ₃ , g	NaCl, g	H ₂ O, g	NaHCO ₃	NaCl	ΣNa	ΣCO ₃	ΣCl
0.01-NaHCO ₃ +0.15-NaCl	0.4208	4.3830	500.00	0.0100	0.150	1.60E-01	1.00E-02	1.50E-01
0.05-NaHCO ₃ +0.15-NaCl	2.1002	4.3828	500.00	0.0500	0.150	2.00E-01	5.00E-02	1.50E-01
0.5-NaHCO ₃ +0.15-NaCl	21.0026	4.3829	500.07	0.500	0.150	6.50E-01	5.00E-01	1.50E-01
1.0-NaHCO ₃ +0.15-NaCl	42.0056	4.3834	500.04	1.000	0.150	1.15E+00	1.00E+00	1.50E-01
1.0-NaHCO ₃ +0.30-NaCl	42.0055	8.7664	500.80	0.998	0.300	1.30E+00	9.98E-01	3.00E-01
Properties	Molarity (M, mol/L)							
Solution ID	Calculated	Measured	%Deviation ^{###}	M:m, L/kg	pH ^{##}	NaHCO ₃	NaCl	ΣNa
0.01-NaHCO ₃ +0.15-NaCl	1.0071	NA	NA	1.0025	8.05	0.0100	0.150	1.60E-01
0.05-NaHCO ₃ +0.15-NaCl	1.0092	NA	NA	1.0037	8.03	0.0498	0.149	1.99E-01
0.5-NaHCO ₃ +0.15-NaCl	1.0328	NA	NA	1.0173	7.88	0.491	0.147	6.39E-01
1.0-NaHCO ₃ +0.15-NaCl	1.0583	NA	NA	1.0323	7.78	0.969	0.145	1.11E+00
1.0-NaHCO ₃ +0.30-NaCl	1.0634	NA	NA	1.0354	7.75	0.964	0.289	1.25E+00


192

Modeled pH using EQ3/6, Version 8.0a (Wolery and Jarek, 2003). The pH is negative base 10 logarithm of H⁺ activity, i.e., pH = - log {H⁺}, of background solution calculated using PACE and selected PIPs in the approved data0.fm1, not taking into consideration the dissolution of cerussite. EQ3/6, Version 8.0a is not included in the Software List of AP-192 Revision 0 (Jang et al., 2021), thus, the calculation of pH in this report is considered a deviation from the AP per NP 9-1 Revision 11 Section 2.1.2. (Nielsen, 2020).

%Deviation of density = (Measured - Calculated)/Calculated × 100%.

198

199

Figure II.2-2. XRD starting $\text{PbCO}_3(s)$ for Experiment 2 under TP 20-01 Revision 0.

200

201 II.3. Sample Treatment and Measurements

202 Preparation of solution samples: Mass-to-volume dilutions were applied for filtered supernatants to
203 prepare samples to measure the concentrations of components of interest under both TPs. When
204 further dilutions were needed, volume-to-volume dilutions were applied. Some components in the
205 background solutions used for Experiments 1 and 2 conducted under the protocols of TP 20-01
206 Revision 0 were measured from the prepared background solutions prior to adding $\text{PbSO}_4(s)$ or
207 $\text{PbCO}_3(s)$ to confirm the preparation; samples injected to the instruments were diluted by volume-to-
208 volume technique.

209 Preparation of solid samples: Under TP 08-02 Revision 0, solids were collected at the end of
210 experiments. Under TP 20-01 Revision 0, solids were collected by filtering entire volume of replicates
211 on the prescribed timed-investigation day.

212 Measurements: Concentrations of total dissolved cations, ΣPb and ΣNa , were measured using ICP-
213 AES.⁹ Concentrations of total dissolved anions, ΣSO_4 and ΣCl , were measured using IC.¹⁰ Concentration of total dissolved carbonate, ΣCO_3 , was measured by a Coulometer. Solids were
214 characterized using XRD.¹¹ The pH is recorded from the pH meter display after the pH reading
215 stabilized when the pH electrode is in contact with the solution of interest. Most of solutions of
216

⁹ Inductively Coupled Plasma - Atomic Emission Spectroscopy

¹⁰ Ion Chromatography

¹¹ X-ray Diffraction

217 interest in this report have higher ionic strength, so the change of pH_r reflects the change of pH, but
218 pH_r does not directly represent the pH.

219 **III. RESULTS**

220 The objective of this report is to directly compare data from Experiments 1 and 2 conducted under the
221 experimental protocols of two test plans, TP 08-02 Revision 0 (Ismail et al., 2008) and TP 20-01
222 Revision 0 (Kirkes and Zhang, 2020). Even though experimental protocols are different, the recipes of
223 Experiments 1 and 2 are nearly identical for data-to-data comparison (Table II.1-1 and Table II.1-2 for
224 Experiment 1 under each TP; Table II.2-1 and Table II.2-2 for Experiment 2 under each TP). The
225 measurement data are reported in units of Molarity (M, mol/L). The values for pH_r¹² were compared
226 without converting to pcH¹³ and pmH.¹⁴

227 The measurement data obtained under TP 08-02 Revision 0 for Experiments 1 and 2 were imported from
228 Kirkes et al. (2014). Exceptions are the measurement data of (i) pH_r in Table III.1-1, Figure III.1-1,
229 Table III.1-2, and Figure III.1-3A of Section III.1.1, and (ii) ΣPb in Table III.1-5, Figure III.1-4, Table
230 III.1-6, and Figure III.1-6A of Section III.1.2. They were newly transcribed from the corresponding
231 Scientific Notebooks (SNs).

232 Note that in Kirkes et al. (2014) the concentration values in the lead solubility sections are mistakenly
233 reported in units of molality (m, mol/kg). The correct unit for the concentration values reported therein
234 is Molarity (M, mol/L).

235 In Section III.1 below, results of Experiment 1 obtained under both TPs are compared in a component-
236 by-component manner, including solid characterization results. The last Subsection III.1.7 provides a
237 summary of the observation.

238 In Section III.2 below, results of Experiment 2 obtained under both TPs are compared in a component-
239 by-component manner, including solid characterization results. The last Subsection III.2.7 provides a
240 summary of the observation.

241 Black squares and red error bars in the time-dependent plots stand for the averages and twice the
242 standard deviations (2SDs) of the time-dependent measurements. The time-dependent measurements

¹² pH_r is the reading from the display of pH meters when the meter and pH electrode in use are calibrated with commercial pH buffers of low ionic strength.

¹³ Negative base 10 logarithm of H⁺ concentration in Molarity (M).

¹⁴ Negative base 10 logarithm of H⁺ concentration in molality (m).

243 are plotted individually to the right (blue dots and circles). For reactive/non-conservative components,
 244 the labels to the black squares list the following four statistics: average, 2SD,¹⁵ %2SD,¹⁶ and counts (i.e.,
 245 number of measurements used to calculate the statistics) (Example: pH_r in Figure III.1-1). For non-
 246 reactive/conservative components, the labels list the following five statistics: average,
 247 2SD, %2SD, %Deviation, and the counts (i.e., number of measurements used to calculate the statistics)
 248 (Example: ΣNa in Figure III.1-10). %Deviation is calculated using the following equation:

249
$$\text{%Deviation} = (\text{Average} - \text{Loading})/\text{Loading} \times 100\% \quad (2)$$

250 Measurements contained in this report are traceable to the Scientific Notebooks through the associated
 251 Excel file, "VOL_CRC_GEOC-21-03_Mgmt.xlsx". The Excel file is archived at
 252 "/cvs/CVSLIB/WIPP_EXTERNAL/ap192".

253 III.1. Experiment 1: PbSO₄(s) - Na₂SO₄ - NaCl - H₂O

254 Recipes for this Experiment 1 under each TP are summarized in Table II.1-1 and Table II.1-2,
 255 respectively.

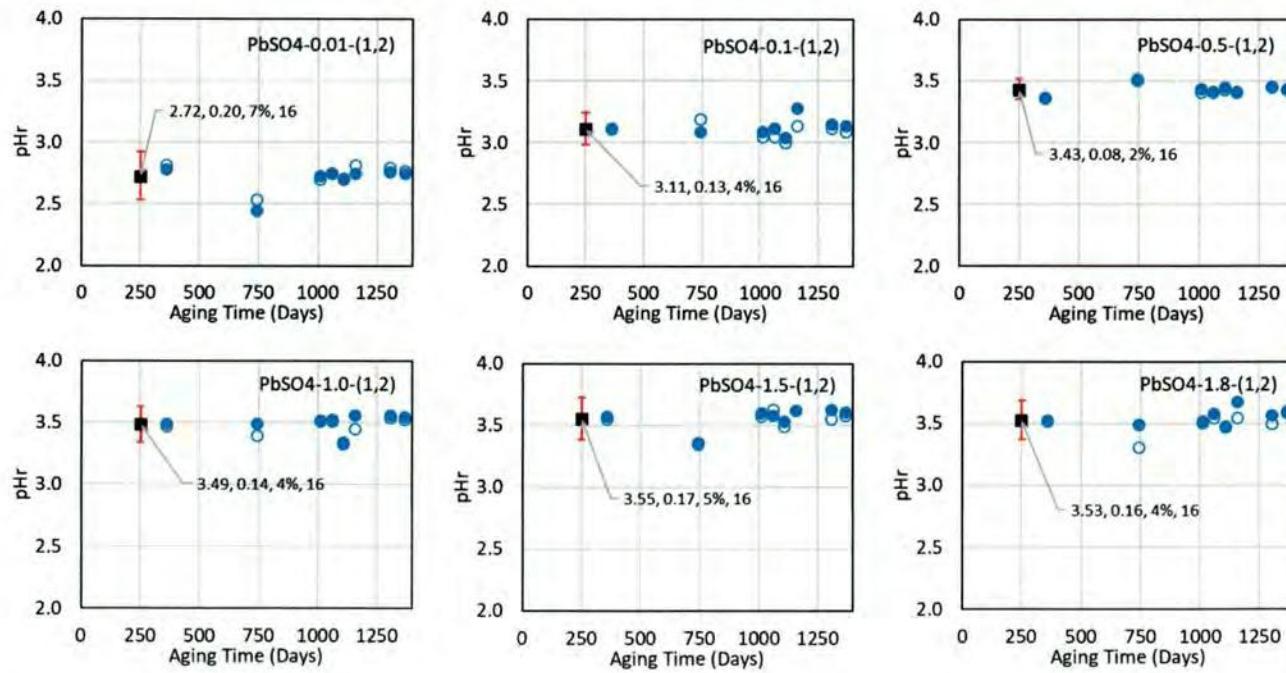
256 III.1.1. pH_r

257 Table III.1-1 provides the pH_r values recorded as a function of aging time from Experiment 1
 258 conducted under TP 08-02 Revision 0. Plots of the pH_r vs. aging time are in Figure III.1-1. The pH_r
 259 values showed scatter. For PbSO₄-0.01-(1,2), the scatter is confined around the averages within the
 260 maximum 2SD of 0.20 pH unit (%2SD = 7%), which means that the precision of the measurements
 261 was better than 7%. Statistically, the pH_r for the first two loadings of Na₂SO₄ are experimentally
 262 resolved (i.e., statistically different average values), and the pH_r values for the remainder are
 263 identical (Figure III.1-1, Table III.1-2, and Figure III.1-3A).

264 Listed in Table III.1-3 are the pH_r values recorded as a function of aging time from Experiment 1
 265 conducted under the protocols of TP 20-01 Revision 0. Plots of the pH_r vs. aging time are displayed
 266 in Figure III.1-2. The pH_r values showed scatter. The scatter is confined around the averages within
 267 the maximum 2SD of 0.14 pH unit (%2SD = 4%), which means that the precision of the
 268 measurements was better than 4%. Statistically, the pH_r for the first two loadings of Na₂SO₄ are
 269 experimentally resolved (i.e., the average values are apart from each other with the difference
 270 exceeding the length of error bars), and the pH_r values for the remainders are identical (Figure

¹⁵ 2SD: Twice the Standard Deviation

¹⁶ %2SD: Percentile Twice the Standard Deviation: 2SD/Average × 100 %


271 III.1-2, Table III.1-4, and Figure III.1-3B). The results of pH_r measurements in Experiments 1 under
 272 both TPs are statistically identical (compare A and B of Figure III.1-3).

273 **Table III.1-1. Time-dependent measurements of pH_r in Experiment 1 under TP 08-02**
 274 **Revision 0.**

Aging time (Days)	PbSO ₄ -0.01-1	PbSO ₄ -0.01-2	PbSO ₄ -0.1-1	PbSO ₄ -0.1-2	PbSO ₄ -0.5-1	PbSO ₄ -0.5-2	PbSO ₄ -1.0-1	PbSO ₄ -1.0-2	PbSO ₄ -1.5-1	PbSO ₄ -1.5-2	PbSO ₄ -1.8-1	PbSO ₄ -1.8-2
360	2.78	2.82	3.11	3.12	3.37	3.36	3.49	3.47	3.57	3.55	3.52	3.53
743	2.45	2.54	3.09	3.19	3.52	3.51	3.49	3.40	3.36	3.35	3.49	3.31
1010	2.73	2.70	3.09	3.05	3.44	3.41	3.52	3.51	3.6	3.57	3.52	3.51
1059	2.75	2.75	3.12	3.05	3.41	3.42	3.53	3.51	3.58	3.63	3.58	3.55
1107	2.70	2.71	3.04	3.00	3.45	3.43	3.33	3.34	3.53	3.49	3.47	3.48
1158	2.75	2.82	3.28	3.14	3.42	3.41	3.56	3.45	3.62	3.68	3.55	
1305	2.76	2.80	3.15	3.12	3.45	3.46	3.56	3.54	3.63	3.55	3.57	3.50
1368	2.75	2.77	3.14	3.09	3.44	3.43	3.55	3.53	3.61	3.58	3.59	3.60

275

276 **Figure III.1-1. Plot of the time-dependent measurements of pH_r from Experiment 1 under**
 277 **TP 08-02 Revision 0 in Table III.1-1. Black squares and red error bars located on**
 278 **250 days are averages and twice the standard deviations of all the measurements**
 279 **displayed to the right at their aging time (blue dots and circles, which represent**
 280 **data from duplicate reactors).**

284

Table III.1-2. Statistics of measurements of pHr from Experiment 1 under TP 08-02
285 Revision 0 in Table III.1-1.

Reactor ID	Average	2SD	%2SD	Counts
PbSO4-0.01-(1,2)	2.72	0.20	7%	16
PbSO4-0.1-(1,2)	3.11	0.13	4%	16
PbSO4-0.5-(1,2)	3.43	0.08	2%	16
PbSO4-1.0-(1,2)	3.49	0.14	4%	16
PbSO4-1.5-(1,2)	3.55	0.17	5%	16
PbSO4-1.8-(1,2)	3.53	0.16	4%	16

286

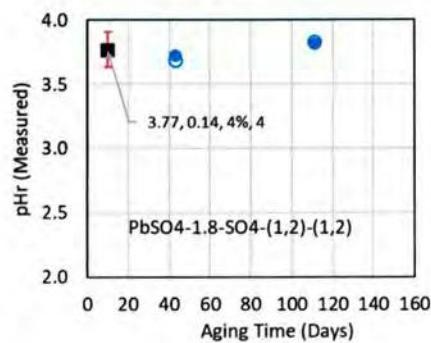
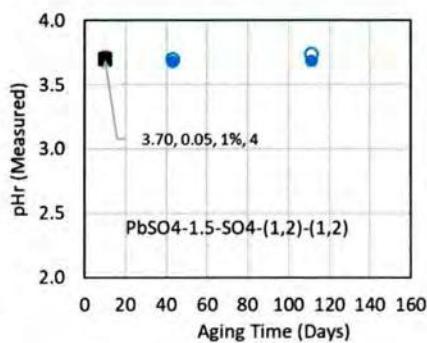
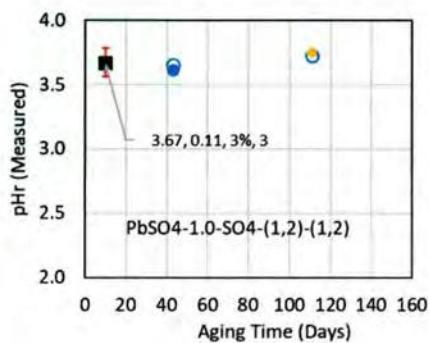
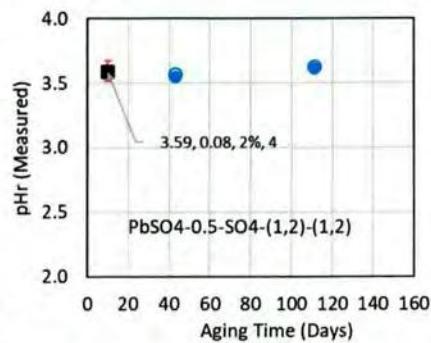
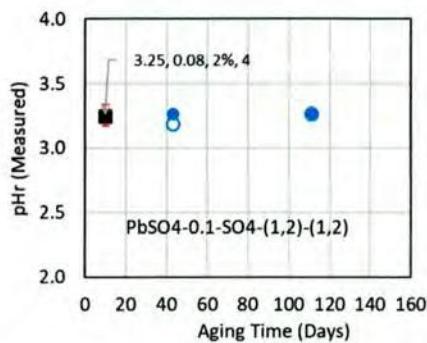
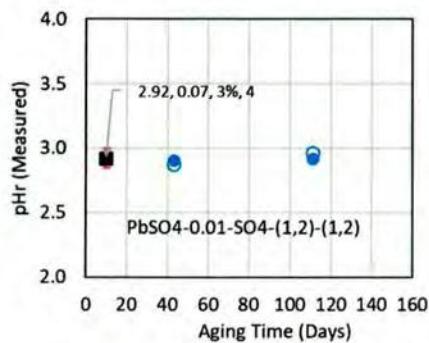
287
288Table III.1-3. Time-dependent measurements of pHr from Experiment 1 under TP 20-01
Revision 0.

Aging time (Days)	43	111
Reactor ID (n =)	1	2
PbSO4-0.01-SO4-1-n	2.91	2.92
PbSO4-0.01-SO4-2-n	2.88	2.97
PbSO4-0.1-SO4-1-n	3.27	3.27
PbSO4-0.1-SO4-2-n	3.19	3.27
PbSO4-0.5-SO4-1-n	3.55	3.62
PbSO4-0.5-SO4-2-n	3.57	3.63
PbSO4-1.0-SO4-1-n	3.62	<i>3.75</i>
PbSO4-1.0-SO4-2-n	3.66	3.73
PbSO4-1.5-SO4-1-n	3.68	3.69
PbSO4-1.5-SO4-2-n	3.70	3.74
PbSO4-1.8-SO4-1-n	3.73	3.82
PbSO4-1.8-SO4-2-n	3.69	3.83

289

290

Red italic: pH electrode broken while measurement. The value follows the trend but was not included in calculating the statistics. The value is displayed as the orange dot in Figure III.1-2.







291

292
293
294

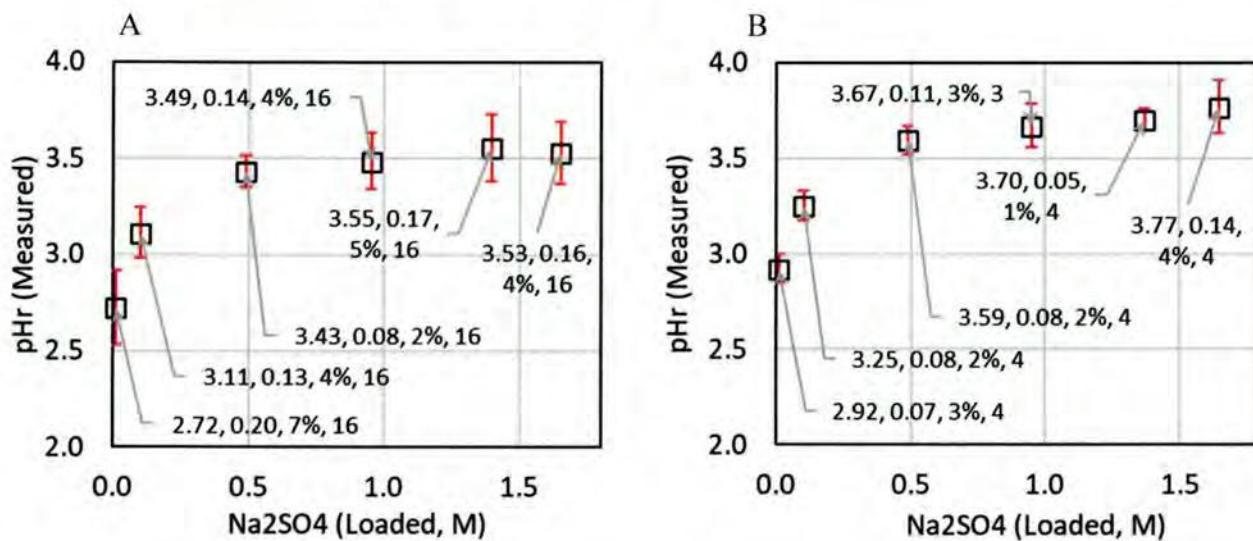
Figure III.1-2. Plot of the time-dependent measurements of pHr from Experiment 1 under TP 20-01 Revision 0 in Table III.1-3. Black squares and red error bars are averages and twice the standard deviations of all the measurements displayed to

295
296

the right at their aging time (blue dots and circles). Orange dot in the lower left panel is the value in red italic in Table III.1-3.

298

299
300


Table III.1-4. Statistics of measurements of pHr under TP 20-01 Revision 0 in Table III.1-3.

Reactor ID	Average	2SD	%2SD	Counts
PbSO ₄ -0.01-SO ₄ -(1,2)	2.92	0.07	3%	4
PbSO ₄ -0.1-SO ₄ -(1,2)	3.25	0.08	2%	4
PbSO ₄ -0.5-SO ₄ -(1,2)	3.59	0.08	2%	4
PbSO ₄ -1.0-SO ₄ -(1,2)	3.67	0.11	3%	3
PbSO ₄ -1.5-SO ₄ -(1,2)	3.70	0.05	1%	4
PbSO ₄ -1.8-SO ₄ -(1,2)	3.77	0.14	4%	4

301

302
303Figure III.1-3. Plot of the statistics of pH_r in: A. Table III.1-2 (TP 08-02 Revision 0), and
B. Table III.1-4 (TP 20-01 Revision 0).

304

305

306 III.1.2. ΣPb

307 Listed in Table III.1-5 are the measured ΣPb values as a function of aging time from Experiment 1
308 conducted under TP 08-02 Revision 0. Plots of the measurements are in Figure III.1-4. Statistics are
309 tabulated and displayed in Table III.1-6 and Figure III.1-6A.

310 From Experiment 1 conducted under TP 08-02 Revision 0, the ΣPb showed wider scatter at the
311 beginning of the experiments and became stable at the later stage of the experiment. The scatter
312 happened for the first measurements, including re-runs, made on the filtrates sampled on 360 days of
313 aging (Figure III.1-4) indicating potential reproducibility issues initially with the method.

314 Open squares and dashed red error bars in Figure III.1-4 stand for the averages and 2SDs calculated
315 for all valid measurements in Table III.1-5 using the normal distribution, including the data in red
316 italics. The statistics of the open squares and dashed red error bars are listed in the upper half of
317 Table III.1-6. Data points in green ovals are outliers because they are outside the range defined by
318 average \pm 2SD as shown in Figure III.1-4. From the statistical points (represented by the open squares
319 and dashed red error bars), those data points are outside the 95% confidence intervals. The outliers
320 were excluded from the overall dataset and averages and standard deviations were re-calculated (solid

321 squares and solid red error bars in Figure III.1-4; new statistics are listed in the lower half of Table
 322 III.1-6). The new statistics are illustrated in Figure III.1-6A.¹⁷

323 Summarized in Table III.1-7 are the measured ΣPb values as a function of aging time from
 324 Experiment 1 conducted under the protocols of TP 20-01 Revision 0. Plots of the measurements are
 325 presented in Figure III.1-5. The ΣPb values are stable. Precision of the measurements was better
 326 than 9%. Statistics are summarized and presented in Table III.1-8 and Figure III.1-6B.

327 Figure III.1-6 indicates that the ΣPb measurements were not fully resolved (i.e., showed no statistical
 328 difference) as a function of the experimental conditions, i.e., loading of Na_2SO_4 , under TP 08-02
 329 Revision 0, and they are resolved under TP 20-01 Revision 0.¹⁸ While the data points generated
 330 under TP 08-02 overlap within the error, they display a trend similar to the one observed for the data
 331 generated under TP 20-01.

332 The results of ΣPb measurements in Experiments 1 under both TPs are statistically identical (compare
 333 A and B of Figure III.1-6).

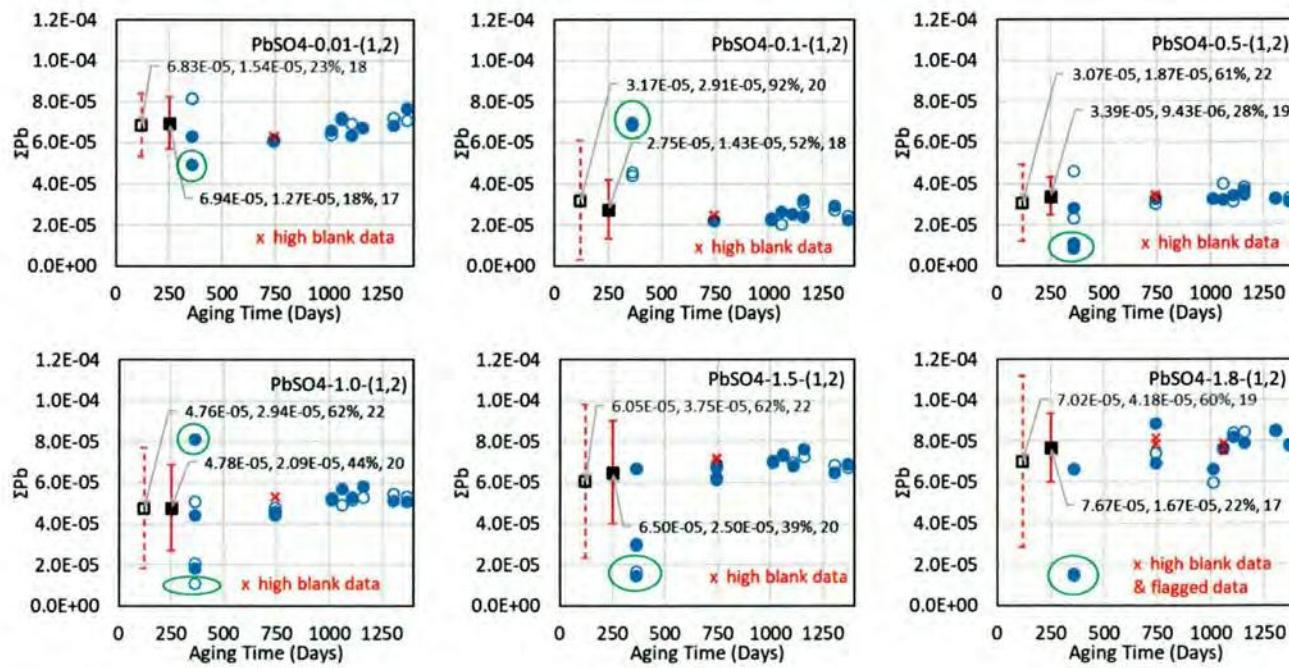
334 **Table III.1-5. Time-dependent measurements of ΣPb (M, mol/L) from Experiment 1
 335 under TP 08-02 Revision 0.**

Aging time (Days)	PbSO ₄ -0.01-1	PbSO ₄ -0.01-2	Aging time (Days)	PbSO ₄ -0.1-1	PbSO ₄ -0.1-2	Aging time (Days)	PbSO ₄ -0.5-1	PbSO ₄ -0.5-2
360	<i>4.99E-05</i>	8.19E-05	360	<i>7.00E-05</i>	4.60E-05	360	<i>1.11E-05</i>	2.34E-05
360	6.33E-05	8.19E-05	360	<i>6.87E-05</i>	4.43E-05	360	<i>8.64E-06</i>	<i>1.12E-05</i>
743	6.08E-05	6.15E-05	743	2.21E-05	2.27E-05	360	2.85E-05	4.63E-05
743	<i>6.28E-05[#]</i>	<i>6.31E-05[#]</i>	743	<i>2.46E-05[#]</i>	<i>2.46E-05[#]</i>	743	3.30E-05	3.04E-05
1010	6.61E-05	6.41E-05	1010	2.27E-05	2.35E-05	743	<i>3.36E-05[#]</i>	<i>3.45E-05[#]</i>
1059	7.14E-05	7.24E-05	1059	2.67E-05	2.03E-05	1010	3.30E-05	3.30E-05
1107	6.36E-05	6.95E-05	1107	2.55E-05	2.55E-05	1059	3.23E-05	4.03E-05
1158	6.73E-05	6.75E-05	1158	3.23E-05	3.09E-05	1107	3.45E-05	3.16E-05
1305	6.85E-05	7.24E-05	1158	2.42E-05	2.46E-05	1158	3.70E-05	3.88E-05
1368	7.70E-05	7.11E-05	1305	2.95E-05	2.76E-05	1158	3.53E-05	3.50E-05
			1368	2.27E-05	2.48E-05	1305	3.28E-05	3.35E-05
						1368	3.17E-05	3.35E-05
Aging time (Days)	PbSO ₄ -1.0-1	PbSO ₄ -1.0-2	Aging time (Days)	PbSO ₄ -1.5-1	PbSO ₄ -1.5-2	Aging time (Days)	PbSO ₄ -1.8-1	PbSO ₄ -1.8-2
360	4.43E-05	2.07E-05	360	2.97E-05	3.02E-05	360	<i>1.49E-05</i>	<i>1.55E-05</i>
360	1.83E-05	<i>1.11E-05</i>	360	<i>1.47E-05</i>	<i>1.68E-05</i>	360	6.65E-05	6.65E-05
360	<i>8.12E-05</i>	5.12E-05	360	6.68E-05	6.71E-05	743	8.89E-05	7.45E-05
743	4.62E-05	4.79E-05	743	6.73E-05	6.92E-05	743	6.94E-05	NA
743	4.42E-05	4.47E-05	743	6.15E-05	6.24E-05	743	<i>7.86E-05[#]</i>	<i>8.15E-05[#]</i>

¹⁷ This process is called statistical data reduction in this report. This process can be repeated until all data are encompassed within the 2SD but practiced once in this report.

¹⁸ Goal of performing screening experiment at reduced scale is achieved.

743	5.30E-05 [#]	5.29E-05 [#]	743	7.21E-05 [#]	7.13E-05 [#]	1010	6.67E-05	6.00E-05
1010	5.19E-05	5.26E-05	1010	7.06E-05	6.99E-05	1059	7.68E-05	7.66E-05
1059	5.73E-05	4.95E-05	1059	7.33E-05	7.40E-05	1059	7.51E-05 ^{##}	7.88E-05 ^{##}
1107	5.28E-05	5.18E-05	1107	6.83E-05	6.97E-05	1107	8.24E-05	8.43E-05
1158	5.84E-05	5.31E-05	1158	7.65E-05	7.28E-05	1158	7.94E-05	8.46E-05
1305	5.13E-05	5.47E-05	1305	6.48E-05	6.88E-05	1305	8.55E-05	8.53E-05
1368	5.08E-05	5.36E-05	1368	6.92E-05	6.72E-05	1368	7.86E-05	7.82E-05


336 **Italicized values in red** are considered outliers because they fall outside the error range. Although they were not flagged by
 337 the lab (i.e., valid under SNL WIPP QA Program), they were not included in the further data processing tabulated in the
 338 lower half of Table III.1-6. See argument in Figure III.1-4. They are marked with green ovals/circles therein.

339 [#] High blank data: had to be discarded because the lower detection limit has never been defined, so never knew if such shift is
 340 larger or smaller than the uncertainty associated with the general laboratory operation. They are consistent with other valid
 341 measurements within the statistics, so could be useful to strengthen the statistics.

342 ^{##} Flagged by lab: had to be discarded a priori only because the readings did not fall within the calibration range, so never
 343 knew if such deviation is larger or smaller than the uncertainty associated with the general laboratory operation. They are
 344 consistent with other valid measurements within the statistics.

345

346 **Figure III.1-4. Plot of the time-dependent measurements of ΣPb (M, mol/L) from
 347 Experiment 1 under TP 08-02 Revision in Table III.1-5. Open squares and red
 348 dashed error bars stand for the average and 2SD of all data in Table III.1-5, except
 349 those with # and ## therein. Solid squares and red solid error bars stand for the
 350 average and 2SD of data, excluding those in green ovals or circles.**

351

352

353
354

Table III.1-6. Statistics of measurements of ΣPb (M, mol/L) from Experiment 1 under TP 08-02 Revision 0 in Table III.1-5.

All Valid Data Statistics				
Reactor ID	Average	2SD	%2SD	Counts
PbSO4-0.01-(1,2)	6.83E-05	1.54E-05	23%	18
PbSO4-0.1-(1,2)	3.17E-05	2.91E-05	92%	20
PbSO4-0.5-(1,2)	3.07E-05	1.87E-05	61%	22

PbSO ₄ -1.0-(1,2)	4.76E-05	2.94E-05	62%	22
PbSO ₄ -1.5-(1,2)	6.05E-05	3.75E-05	62%	22
PbSO ₄ -1.8-(1,2)	7.02E-05	4.18E-05	60%	19
Once-Reduced Data Statistics				
PbSO ₄ -0.01-(1,2)	6.94E-05	1.27E-05	18%	17
PbSO ₄ -0.1-(1,2)	2.75E-05	1.43E-05	52%	18
PbSO ₄ -0.5-(1,2)	3.39E-05	9.43E-06	28%	19
PbSO ₄ -1.0-(1,2)	4.78E-05	2.09E-05	44%	20
PbSO ₄ -1.5-(1,2)	6.50E-05	2.50E-05	39%	20
PbSO ₄ -1.8-(1,2)	7.67E-05	1.67E-05	22%	17

355

356

Table III.1-7. Time-dependent measurements of Σ Pb (M, mol/L) from Experiment 1
under TP 20-01 Revision 0.

357

Aging time (Days)	43	111
Reactor ID (n =)	1	2
PbSO ₄ -0.01-SO ₄ -1-n	6.55E-05	7.07E-05
PbSO ₄ -0.01-SO ₄ -2-n	6.86E-05	7.05E-05
PbSO ₄ -0.1-SO ₄ -1-n	2.66E-05	2.45E-05
PbSO ₄ -0.1-SO ₄ -2-n	2.62E-05	2.43E-05
PbSO ₄ -0.5-SO ₄ -1-n	3.16E-05	3.18E-05
PbSO ₄ -0.5-SO ₄ -2-n	3.38E-05	3.39E-05
PbSO ₄ -1.0-SO ₄ -1-n	5.08E-05	5.45E-05
PbSO ₄ -1.0-SO ₄ -2-n	4.96E-05	5.21E-05
PbSO ₄ -1.5-SO ₄ -1-n	6.64E-05	6.83E-05
PbSO ₄ -1.5-SO ₄ -2-n	6.87E-05	6.82E-05
PbSO ₄ -1.8-SO ₄ -1-n	7.93E-05	7.83E-05
PbSO ₄ -1.8-SO ₄ -2-n	7.66E-05	8.03E-05

358

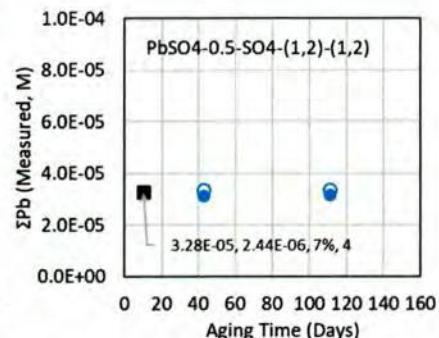
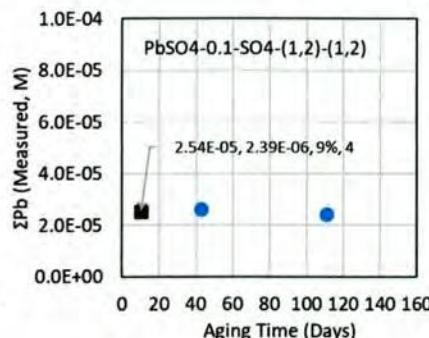
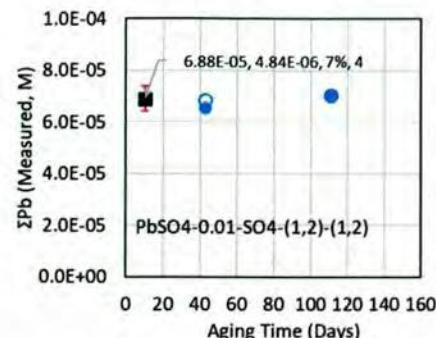
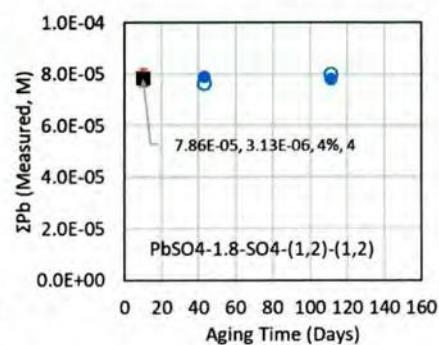
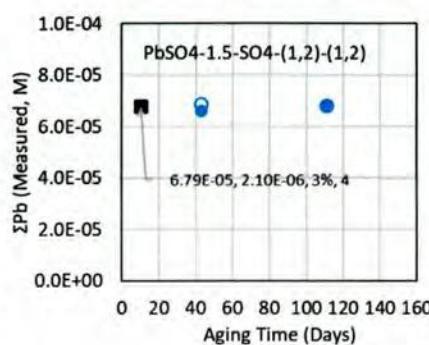
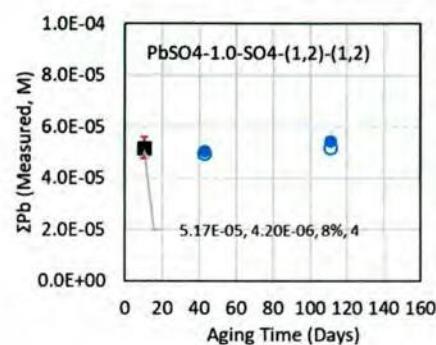



359

Figure III.1-5. Plot of the time-dependent measurements of Σ Pb (M, mol/L) from
Experiment 1 under TP 20-01 Revision in Table III.1-7. Black squares and red




360

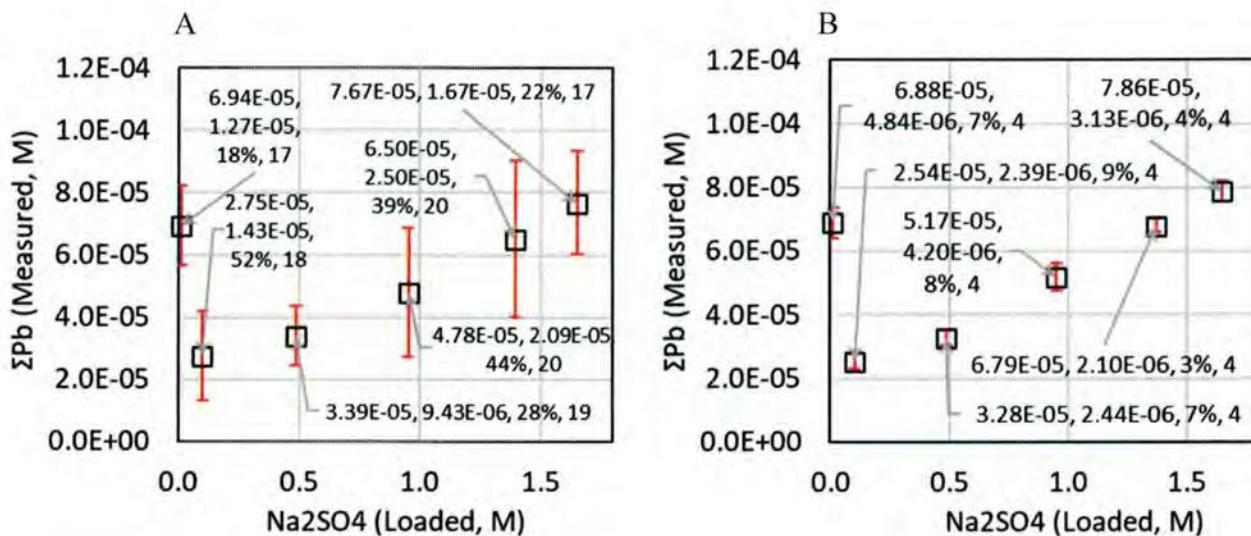
361

error bars located on 10 days are averages and twice the standard deviations of the
362 measurements to the right (blue dots and circles).

363

364

365


Table III.1-8. Statistics of measurements of Σ Pb (M, mol/L) under TP 20-01 Revision 0
366 in Table III.1-7.

Reactor ID	Average	2SD	%2SD	Counts
PbSO4-0.01-SO4-(1,2)	6.88E-05	4.84E-06	7%	4
PbSO4-0.1-SO4-(1,2)	2.54E-05	2.39E-06	9%	4
PbSO4-0.5-SO4-(1,2)	3.28E-05	2.44E-06	7%	4
PbSO4-1.0-SO4-(1,2)	5.17E-05	4.20E-06	8%	4
PbSO4-1.5-SO4-(1,2)	6.79E-05	2.10E-06	3%	4
PbSO4-1.8-SO4-(1,2)	7.86E-05	3.13E-06	4%	4

367

368
369Figure III.1-6. Plot of the statistics of ΣPb (M, mol/L) in Table III.1-6 (A) and Table III.1-8 (B).

370

371

372 III.1.3. ΣSO_4

373 In Experiment 1, known concentrations of sulfate were loaded by adding the salt, Na_2SO_4 . Sulfate is
 374 a component of the solid $\text{PbSO}_4(s)$ (anglesite). Therefore, the dissolution of $\text{PbSO}_4(s)$ increases the
 375 ΣSO_4 in addition to the sulfate loaded by Na_2SO_4 .

376

$$\Sigma\text{SO}_4 = [\text{Na}_2\text{SO}_4]_{\text{Loaded}} + [\text{PbSO}_4(s)]_{\text{Dissolved}}$$

377

$$= [\text{Na}_2\text{SO}_4]_{\text{Loaded}} + \Sigma\text{Pb} \quad (3)$$

378
379
380
381
382
383
384
385
386

where $[\text{PbSO}_4(s)]_{\text{Dissolved}} = \Sigma\text{Pb}$ by mass balance because $\text{PbSO}_4(s)$ is the sole source of dissolved lead. Sulfate is loaded by the salt, Na_2SO_4 , and the lowest loading is 0.01 M (Table II.1-1). ΣPb is less than 10^{-4} M (Figure III.1-4 and Figure III.1-5). Thus, when assuming the measurements of ΣPb are accurate, the maximum %Deviation of the measured ΣSO_4 from the loaded ΣSO_4 that can be expected from the dissolution of $\text{PbSO}_4(s)$ is less than 1%. From Equation (3), $[\text{Na}_2\text{SO}_4]_{\text{Loaded}} \gg [\text{PbSO}_4(s)]_{\text{Dissolved}} = \Sigma\text{Pb}$, thus, $\Sigma\text{SO}_4 \approx [\text{Na}_2\text{SO}_4]_{\text{Loaded}}$ within 1%. Therefore, although sulfate participates in the dissolution reaction, it can be considered a conservative component, and the dissolution does not affect the physical properties of the background solutions listed in Table II.1-1 and Table II.1-2.

387
388
389

Table III.1-9 provides the measured ΣSO_4 values as a function of aging time from Experiment 1 conducted under TP 08-02 Revision 0. Plots of the time-dependent measurements are presented in Figure III.1-7. The ΣSO_4 was stable through the aging time. Samples injected into the analytical

390 instrument were prepared by mass-to-volume dilution techniques. Statistics are tabulated and
391 displayed in Table III.1-10 and Figure III.1-9A.

392 Table III.1-11 lists the measured ΣSO_4 as a function of aging time from Experiment 1 conducted
393 under the protocols of TP 20-01 Revision 0. Plots of the time-dependent measurements are shown in
394 Figure III.1-8. Only one timed measurement was available as of 6/22/2021. Statistics are tabulated
395 and displayed in Table III.1-12 and Figure III.1-9B.

396 In performing Experiment 1 under the protocols of TP 20-01 Revision 0, ΣSO_4 was measured from
397 the background solutions prior to adding the solid $\text{PbSO}_4(s)$. Additional measurements of ΣSO_4 were
398 conducted after commencing the dissolution. The samples injected to the instrument for the
399 measurements of ΣSO_4 in the background solution prior to the addition of $\text{PbSO}_4(s)$ were prepared
400 by volume-to-volume dilution. The samples for the measurements of ΣSO_4 in the filtered
401 supernatants sampled after commencing the dissolution were prepared by mass-to-volume dilution.
402 All the measurements of ΣSO_4 are summarized in Table III.1-11 and plotted in Figure III.1-8.

403 In theory, the volume-to-volume dilution could result in underestimation of analyte concentration.
404 Volume-to-volume dilution means that a known volume of solution is mixed with diluent until the
405 total volume reaches a known value. In our practice of the volume-to-volume dilution, the volume of
406 a solution to be diluted is determined in the pipet tip by the vacuum held in the barrel of a fixed-
407 volume pipet. The calibration check of the fixed-volume pipet is performed using DI water prior to
408 use. When the calibration-checked pipet is used to transfer the same desired volume of a solution of
409 higher density than DI water, the actual volume of the high-density solution in the pipet tip would be
410 smaller than the desired volume because the vacuum held in the barrel of the fixed-volume pipet is
411 calibrated to lift the mass of DI water occupying the desired volume. Same mass of solution of
412 higher density occupies less volume than desired. In other words, the extent of the underestimation
413 becomes larger with increasing solution density. However, from Figure III.1-8, noticeable
414 underestimation of ΣSO_4 by volume-to-volume dilution happened 2 out of 6 times (compare the
415 orange \times and two black circles on each vertical axis) without showing density-dependency of the
416 underestimation (i.e., the measured concentration was lower than the loaded concentration
417 irrespective of solution density). Meanwhile, underestimation by mass-to-volume dilution (blue
418 circles and dots) happened 4 out of 6 times. When both techniques showed underestimation (third
419 and sixth panels of Figure III.1-8), the extent of underestimation by volume-to-volume dilution is
420 smaller or equal to the mass-to-volume dilution. Precision was higher for the data obtained by

421 volume-to-volume dilution (compare the scatter of two black circles and blue dot/circles in Figure
 422 III.1-8). The extent of underestimation is comparable for the two dilution techniques at the highest
 423 loading of ΣNa (sixth panel in Figure III.1-8), where the most visual difference would have been
 424 observed if the two dilution techniques are distinct from each other under SNL WIPP Geochemistry
 425 Program's general laboratory practice. Two dilution technique are indistinguishable from each other
 426 under the overall laboratory operation at SNL WIPP Geochemistry Program.¹⁹ Thus, statistics in
 427 Table III.1-12 were calculated using all measurements in Table III.1-11.

428 From the statistics illustrated in Figure III.1-9A, it can be stated with 95% confidence that the loaded
 429 ΣSO_4 was reproduced except for the one at the lowest loading of ΣSO_4 under TP 08-02 Revision 0.
 430 From the statistics presented in Figure III.1-9B, it can be stated with 95% confidence that the loaded
 431 ΣSO_4 was reproduced except the one at the highest loading of ΣSO_4 under TP 20-01 Revision 0.

432 The results of ΣSO_4 measurements in Experiments 1 under both TPs are statistically identical
 433 (compare the black squares at a condition at a time in A and B of Figure III.1-9).

434 **Table III.1-9. Time-dependent measurements of ΣSO_4 (M, mol/L) under TP 08-02
 435 Revision 0.**

Reactor ID	Aging time (Days)							
	360	743	1010	1059	1107	1158	1305	1368
PbSO4-0.01-1	NA	1.18E-02	1.17E-02	1.11E-02	1.11E-02	1.11E-02	1.15E-02	1.15E-02
PbSO4-0.01-2	NA	1.14E-02	1.21E-02	1.10E-02	1.12E-02	1.11E-02	1.15E-02	1.15E-02
PbSO4-0.1-1	NA	1.13E-01	1.13E-01	9.94E-02	9.96E-02	1.01E-01	1.04E-01	1.04E-01
PbSO4-0.1-2	NA	1.81E-01	1.10E-01	9.96E-02	1.02E-01	1.02E-01	1.05E-01	1.05E-01
PbSO4-0.5-1	5.18E-01	6.18E-01	5.60E-01	5.00E-01	5.07E-01	4.94E-01	5.05E-01	5.08E-01
PbSO4-0.5-2	5.27E-01	4.90E-01	5.38E-01	5.02E-01	4.87E-01	4.94E-01	5.01E-01	5.09E-01
PbSO4-1.0-1	1.01E+00	9.77E-01	1.01E+00	9.75E-01	9.62E-01	9.77E-01	1.01E+00	1.01E+00
PbSO4-1.0-2	1.04E+00	9.84E-01	1.03E+00	9.77E-01	9.88E-01	9.80E-01	9.89E-01	1.01E+00
PbSO4-1.5-1	1.46E+00	1.47E+00	1.48E+00	1.40E+00	1.44E+00	1.47E+00	1.32E+00	1.47E+00
PbSO4-1.5-2	1.39E+00	1.47E+00	1.55E+00	1.41E+00	1.44E+00	1.46E+00	1.31E+00	1.43E+00
PbSO4-1.8-1	1.36E+00	1.07E+00	1.48E+00	1.22E+00	1.38E+00	1.55E+00	1.31E+00	1.40E+00
PbSO4-1.8-2	1.40E+00	1.12E+00	1.31E+00	1.30E+00	1.39E+00	1.55E+00	1.33E+00	1.43E+00

436
 437 Figure III.1-7. Plot of the time-dependent measurements of ΣSO_4 (M, mol/L) under TP
 438 Revision 0 in Table III.1-9 (M, mol/L). Orange \times s on the vertical axes are
 439 the loading of ΣSO_4 by the recipe. Black squares and red error bars located on

¹⁹ Mass-to-volume dilution is more labor-intensive, and subject to higher chance of introducing error when practiced inside gloveboxes due to limited dexterity, continuous vibration, and airflow over the balance.

440
441
442

250 days are averages and twice the standard deviations of all the measurements displayed to the right at their aging time (blue dots and circles, which represent data from duplicate reactors).

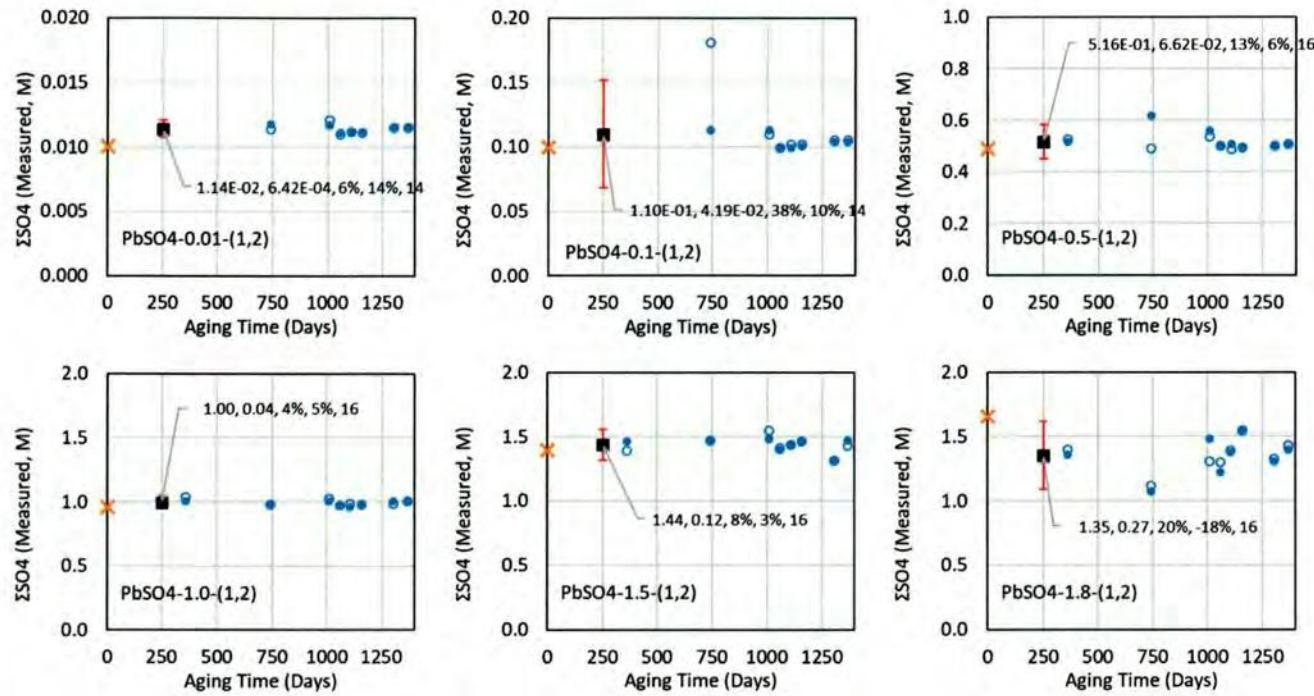
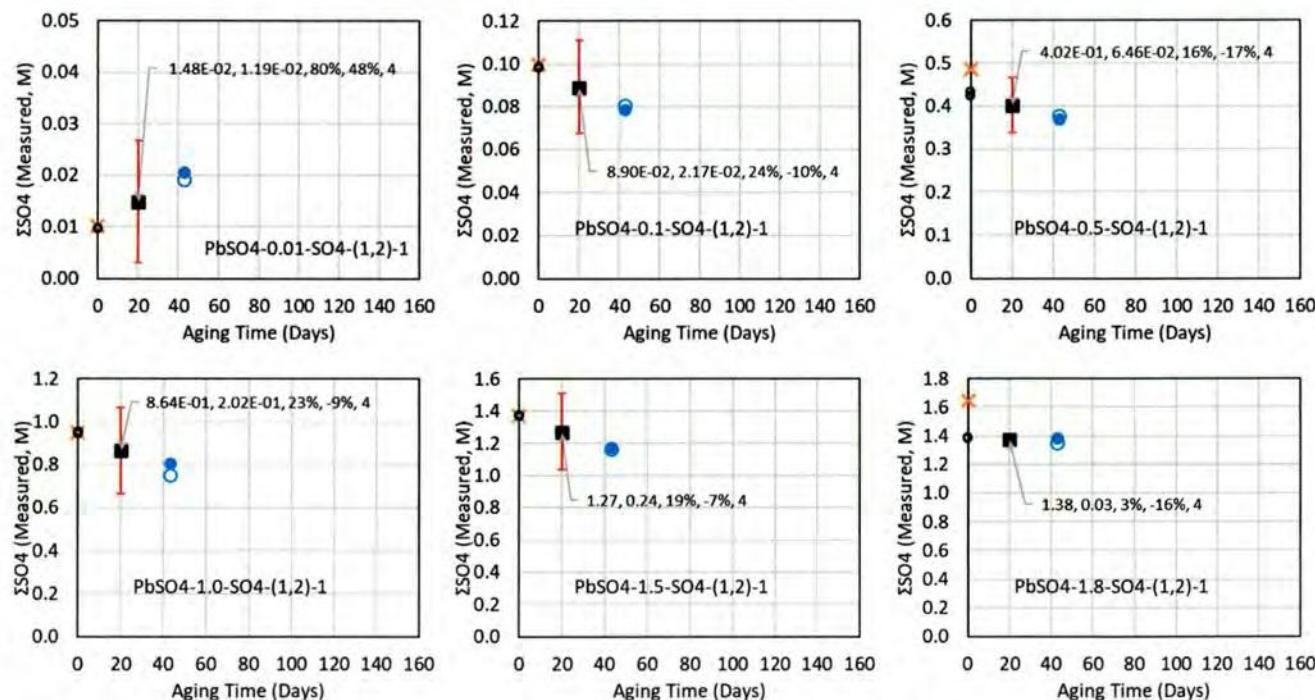


Table III.1-10. Statistics of measurements of ΣSO_4 (M, mol/L) under TP 08-02 Revision 0 in Table III.1-9.

Reactor ID	Average	2SD	%2SD	%Deviation	Counts
PbSO4-0.01-(1,2)	1.14E-02	6.42E-04	6%	14%	14
PbSO4-0.1-(1,2)	1.10E-01	4.19E-02	38%	10%	14
PbSO4-0.5-(1,2)	5.16E-01	6.62E-02	13%	6%	16
PbSO4-1.0-(1,2)	9.96E-01	4.40E-02	4%	5%	16
PbSO4-1.5-(1,2)	1.44E+00	1.20E-01	8%	3%	16
PbSO4-1.8-(1,2)	1.35E+00	2.66E-01	20%	-18%	16

Table III.1-11. Time-dependent measurements of ΣSO_4 (M, mol/L) under TP 20-01 Revision 0.


Aging time (Days)	0	43
Reactor ID (n =)	Before adding PbSO ₄ (s) [#]	1
PbSO ₄ -0.01-SO ₄ -1-n	9.64E-03	2.07E-02
PbSO ₄ -0.01-SO ₄ -2-n	9.72E-03	1.91E-02
PbSO ₄ -0.1-SO ₄ -1-n	9.86E-02	7.86E-02
PbSO ₄ -0.1-SO ₄ -2-n	9.82E-02	8.08E-02
PbSO ₄ -0.5-SO ₄ -1-n	4.25E-01	3.71E-01
PbSO ₄ -0.5-SO ₄ -2-n	4.34E-01	3.78E-01

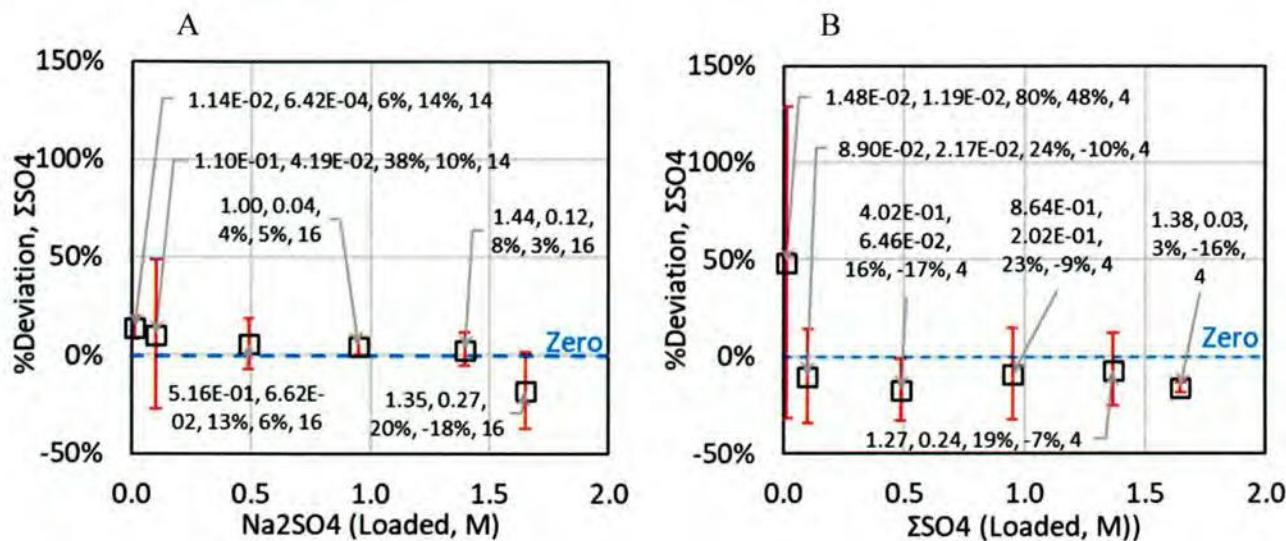
PbSO ₄ -1.0-SO ₄ -1-n	9.52E-01	8.07E-01
PbSO ₄ -1.0-SO ₄ -2-n	9.46E-01	7.51E-01
PbSO ₄ -1.5-SO ₄ -1-n	1.37E+00	1.17E+00
PbSO ₄ -1.5-SO ₄ -2-n	1.38E+00	1.16E+00
PbSO ₄ -1.8-SO ₄ -1-n	1.39E+00	1.39E+00
PbSO ₄ -1.8-SO ₄ -2-n	1.38E+00	1.35E+00

⁴⁵⁰⁴⁵¹#Duplicate measurements of the six solutions described in Table II.1-2 prior to adding to the solid-containing vials. Samples injected to the instrument were prepared by volume-to-volume dilution.

⁴⁵² Figure III.1-8. Plot of the time-dependent measurements of ΣSO_4 under TP 20-01

⁴⁵³⁴⁵⁴⁴⁵⁵⁴⁵⁶⁴⁵⁷⁴⁵⁸⁴⁵⁹ Revision in Table III.1-11 (M, mol/L). Orange \times s on the vertical axes are the initial loadings. Black circles are the measurements of ΣSO_4 from the background solutions prior to commencing the dissolution, where samples injected to the instrument (IC) were prepared by volume-to-volume dilution. Black squares and red error bars located on 20 days are averages and twice the standard deviations of all the measurements displayed (black circles, blue dots and circles). Blue dots and circles represent data from duplicate reactors).

⁴⁶⁰⁴⁶¹⁴⁶²⁴⁶³⁴⁶⁴ Table III.1-12. Statistics of measurements of ΣSO_4 under TP 20-01 Revision 0 in Table III.1-11 (M, mol/L).


Reactor ID	Average	2SD	%2SD	%Deviation	Counts
PbSO ₄ -0.01-SO ₄ -(1,2)	1.48E-02	1.19E-02	80%	48%	4
PbSO ₄ -0.1-SO ₄ -(1,2)	8.90E-02	2.17E-02	24%	-10%	4
PbSO ₄ -0.5-SO ₄ -(1,2)	4.02E-01	6.46E-02	16%	-17%	4
PbSO ₄ -1.0-SO ₄ -(1,2)	8.64E-01	2.02E-01	23%	-9%	4

PbSO ₄ -1.5-SO ₄ -(1,2)	1.27	0.24	19%	-7%	4
PbSO ₄ -1.8-SO ₄ -(1,2)	1.38	0.03	3%	-16%	4

465

466 Figure III.1-9. Plot of the statistics of Σ SO₄ in Table III.1-10 (A) and Table III.1-12 (B)
 467 (M, mol/L).

468

469

470

471 III.1.4. Σ Na

472 Sodium can be considered a non-reactive/conservative component, if there is no precipitation of
 473 solid(s) containing sodium. Total dissolved sodium concentration, Σ Na, can be defined as:

474
$$\Sigma\text{Na} = 2 \times [\text{Na}_2\text{SO}_4]_{\text{Loaded}} + [\text{NaCl}]_{\text{Loaded}} \quad (4)$$

475 Presented in Table III.1-13 are the Σ Na measured as a function of aging time from Experiment 1
 476 conducted under TP 08-02 Revision 0. Plots of the time-dependent measurements are presented in
 477 Figure III.1-10. The Σ Na were stable through the aging time (1368 days). Statistics are tabulated and
 478 displayed in Table III.1-14 and Figure III.1-12A.

479 The measurements were accurate within -6 to 2% deviation from the loaded Σ Na, except at the
 480 highest loading of Σ Na, which showed the largest negative deviation from the loaded amount (Figure
 481 III.1-10, Table III.1-14, and Figure III.1-12A). Our precision indicates that, at 95% confidence, we
 482 reproduced the loaded Σ Na concentration (Figure III.1-12A).

483 In performing the Experiment 1 under the protocols of TP 20-01 Revision 0, ΣNa was measured from
484 the background solutions prior to adding the solid, $\text{PbSO}_4\text{(s)}$. Additional measurements were
485 conducted after commencing solid dissolution. The samples injected to the instrument for
486 measurements of ΣNa in the background solution prior to the addition of $\text{PbSO}_4\text{(s)}$ were prepared by
487 volume-to-volume dilution. The samples injected into the instrument for the measurements of ΣNa in
488 the filtered supernatants sampled after commencing the dissolution were prepared by mass-to-volume
489 dilution. All the measurements of ΣNa are summarized in Table III.1-15, and plotted in Figure
490 III.1-11.

491 Similar to the measurements of ΣSO_4 described in Section III.1.3, no trend of underestimation of
492 ΣNa by volume-to-volume dilution was observed as a function of solution density. Black circles and
493 orange \times 's on the vertical axes in Figure III.1-11 stand for the ΣNa measurements from the samples
494 diluted by the volume-to-volume technique prior to commencing the dissolution and the loading of
495 ΣNa , respectively. Blue circles and dots are ΣNa measured from samples diluted by mass-to-volume
496 technique. No noticeable difference is observed between the two dilution techniques. Both dilution
497 techniques underestimated the ΣNa at the highest loading of ΣNa , where the two techniques would
498 have shown clearer difference. The extent of the underestimation of both techniques was comparable
499 to each other, meaning that the both dilution techniques have little or any discernable impact from the
500 solution density under the practice of SNL WIPP Geochemistry Program. Until SNL WIPP
501 Geochemistry Program improves the accuracy and precision of the overall laboratory operation,
502 volume-to-volume dilutions should suffice.²⁰

503 Orange dots in Figure III.1-11 are the measurements flagged by the lab because the instrument
504 readings were outside the range of calibration. They are not included in calculating the statistics.
505 However, those values are consistent with other measurements valid under SNL WIPP QA, which
506 could make analysts wonder about the need to discard them prior to statistical testing and
507 comprehensive review of the data. Statistical determinations would be strengthened by increasing the
508 number of observations. Knowledge of the interval for linear responses and low detection limit could
509 prevent discarding potentially useful data *a priori*.²¹

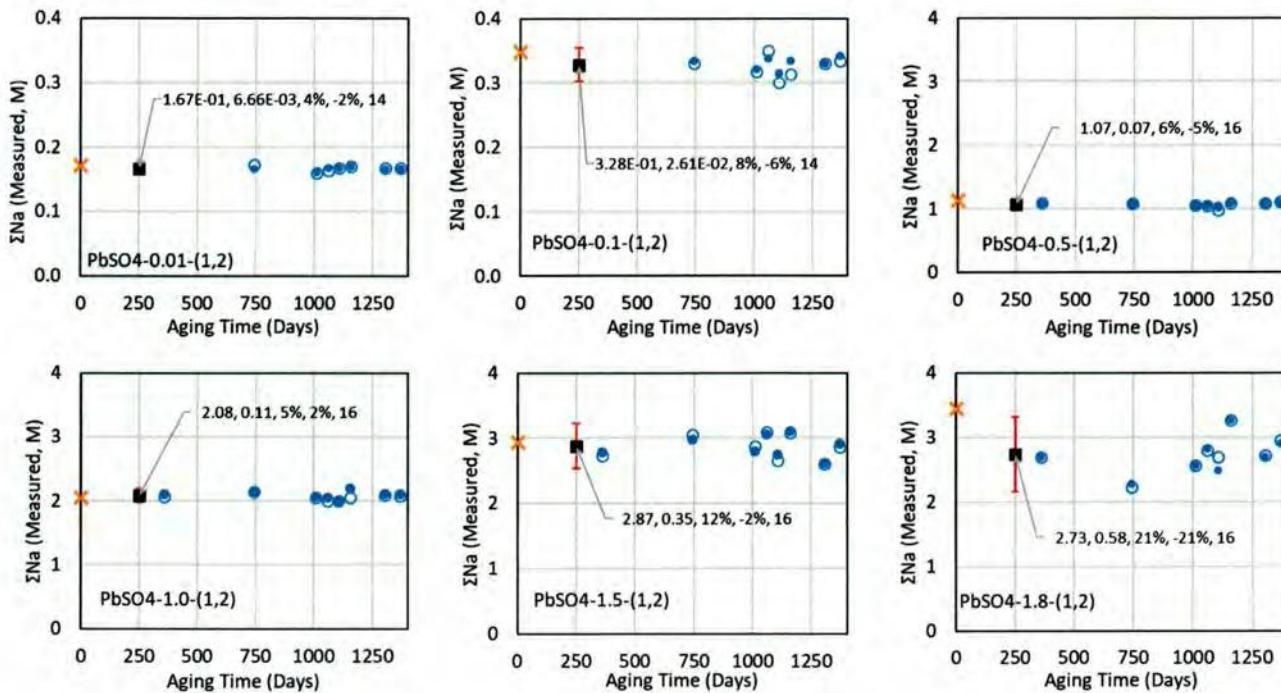
²⁰ Inside gloveboxes, increased chance of introducing larger uncertainty exists, such as limited dexterity, continuous air flow, and vibration interfering with accurate determination of mass of filtered solution in tared volumetric flasks.

²¹ SNL WIPP Geochemistry is considering to set low/high detection limits for analytical instruments, including mandating the use of a calibration standard of lowest concentration of analyte in the sample injection queue as a check standards.

510 The results of ΣNa measurements in Experiments 1 under both TPs are statistically identical
 511 (compare one black square in A and B of Figure III.1-12 at a condition at a time).

512 Table III.1-13. Time-dependent measurements of ΣNa under TP 08-02 Revision 0 (M,
 513 mol/L).

Reactor ID	Aging time (Days)							
	360	743	1010	1059	1107	1158	1305	1368
PbSO4-0.01-1	NA	1.66E-01	1.62E-01	1.68E-01	1.68E-01	1.70E-01	1.67E-01	1.66E-01
PbSO4-0.01-2	NA	1.73E-01	1.60E-01	1.64E-01	1.68E-01	1.70E-01	1.68E-01	1.68E-01
PbSO4-0.1-1	NA	3.34E-01	3.21E-01	3.38E-01	3.15E-01	3.35E-01	3.31E-01	3.42E-01
PbSO4-0.1-2	NA	3.30E-01	3.18E-01	3.50E-01	3.01E-01	3.13E-01	3.31E-01	3.35E-01
PbSO4-0.5-1	1.09E+00	1.09E+00	1.05E+00	1.06E+00	1.03E+00	1.10E+00	1.08E+00	1.08E+00
PbSO4-0.5-2	1.10E+00	1.09E+00	1.06E+00	1.04E+00	9.79E-01	1.08E+00	1.09E+00	1.11E+00
PbSO4-1.0-1	2.11E+00	2.14E+00	2.07E+00	2.06E+00	2.01E+00	2.20E+00	2.11E+00	2.11E+00
PbSO4-1.0-2	2.07E+00	2.15E+00	2.05E+00	2.00E+00	2.01E+00	2.05E+00	2.10E+00	2.08E+00
PbSO4-1.5-1	2.79E+00	2.98E+00	2.80E+00	3.05E+00	2.75E+00	3.11E+00	2.62E+00	2.92E+00
PbSO4-1.5-2	2.74E+00	3.06E+00	2.88E+00	3.09E+00	2.66E+00	3.08E+00	2.60E+00	2.86E+00
PbSO4-1.8-1	2.70E+00	2.28E+00	2.57E+00	2.83E+00	2.49E+00	3.27E+00	2.69E+00	2.90E+00
PbSO4-1.8-2	2.70E+00	2.23E+00	2.56E+00	2.80E+00	2.70E+00	3.27E+00	2.72E+00	2.96E+00


514

515 Figure III.1-10. Plot of the time-dependent measurements of ΣNa under TP 08-02
 516 Revision in Table III.1-13 (M, mol/L). Orange \times s on the vertical axes are initial
 517 loading of $\Sigma\text{Na} = 2 \times [\text{Na}_2\text{SO}_4] + [\text{NaCl}]$. Black squares and red error bars located
 518 on 250 days are averages and twice the standard deviations of all the

519

520

measurements displayed to the right at their aging time (blue dots and circles, which represent data from duplicate reactors).

521

522

Table III.1-14. Statistics of measurements of ΣNa (M, mol/L) under TP 08-02 Revision 0 in Table III.1-13.

Reactor ID	Average	2SD	%2SD	%Deviation	Counts
PbSO4-0.01-(1,2)	1.67E-01	6.66E-03	4%	-2%	14
PbSO4-0.1-(1,2)	3.28E-01	2.61E-02	8%	-6%	14
PbSO4-0.5-(1,2)	1.07E+00	6.67E-02	6%	-5%	16
PbSO4-1.0-(1,2)	2.08E+00	1.09E-01	5%	2%	16
PbSO4-1.5-(1,2)	2.87E+00	3.48E-01	12%	-2%	16
PbSO4-1.8-(1,2)	2.73E+00	5.77E-01	21%	-21%	16

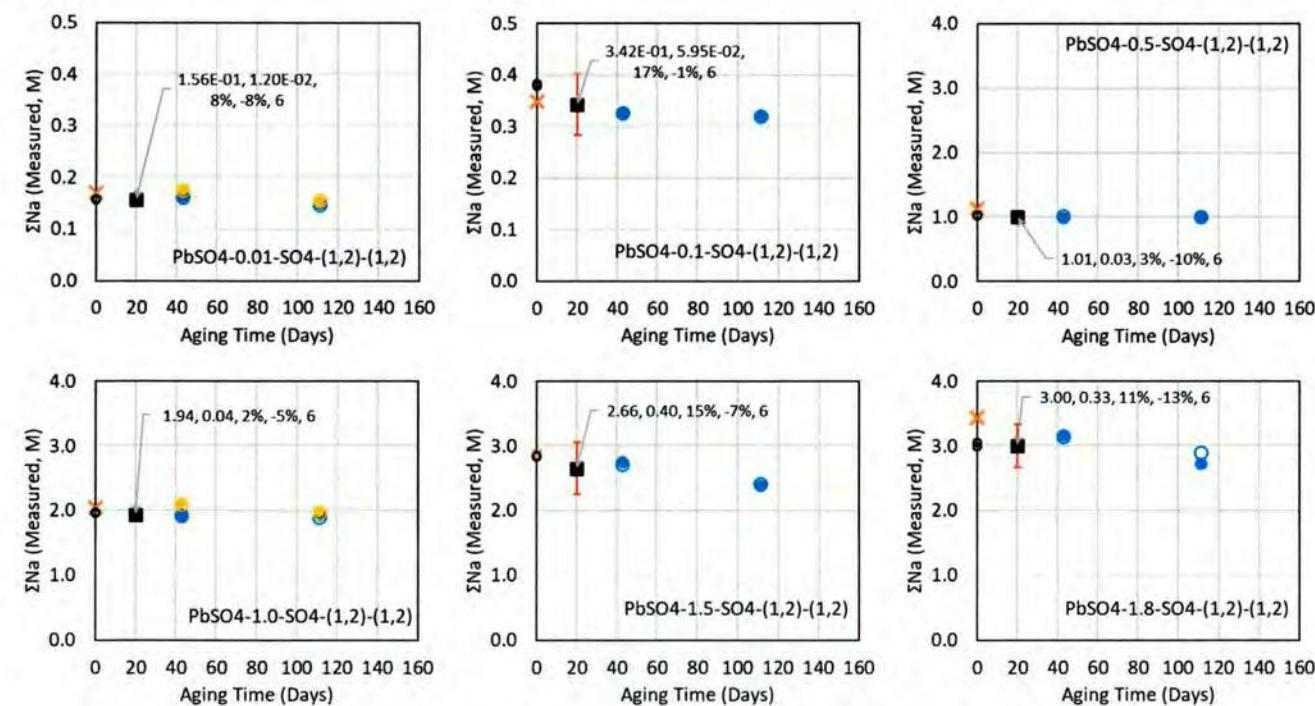
525

526

527

Table III.1-15. Time-dependent measurements of ΣNa under the protocols of TP 20-01 Revision 0 (M, mol/L).

Aging time (Days)	0	43	111
Reactor ID (n =)	Before adding PbSO ₄ (s) [#]	1	2
PbSO ₄ -0.01-SO ₄ -1-n	1.57E-01	1.63E-01	1.51E-01
		1.75E-01	1.55E-01
PbSO ₄ -0.01-SO ₄ -2-n	1.57E-01	1.62E-01	1.47E-01
		1.75E-01	1.54E-01
PbSO ₄ -0.1-SO ₄ -1-n	3.78E-01	3.25E-01	3.21E-01
PbSO ₄ -0.1-SO ₄ -2-n	3.83E-01	3.26E-01	3.20E-01
PbSO ₄ -0.5-SO ₄ -1-n	1.01E+00	9.96E-01	9.91E-01


PbSO ₄ -0.5-SO ₄ -2-n	1.03E+00	1.02E+00	1.01E+00
PbSO ₄ -1.0-SO ₄ -1-n	1.96E+00	1.93E+00	1.94E+00
		<i>2.09E+00</i>	<i>1.96E+00</i>
PbSO ₄ -1.0-SO ₄ -2-n	1.96E+00	1.93E+00	1.90E+00
		<i>2.10E+00</i>	<i>1.97E+00</i>
PbSO ₄ -1.5-SO ₄ -1-n	2.83E+00	2.75E+00	2.39E+00
PbSO ₄ -1.5-SO ₄ -2-n	2.84E+00	2.72E+00	2.42E+00
PbSO ₄ -1.8-SO ₄ -1-n	2.99E+00	3.17E+00	2.73E+00
PbSO ₄ -1.8-SO ₄ -2-n	3.04E+00	3.15E+00	2.89E+00

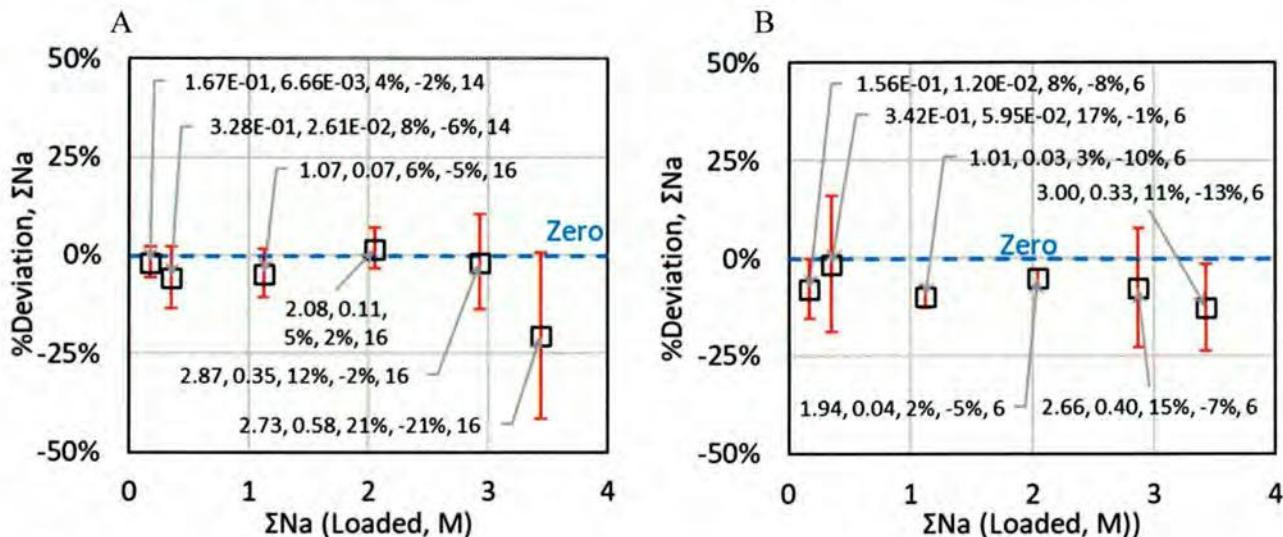
528 Italics in red fonts: Flagged by lab. Not used in the statistics. Presented here and in Figure III.1-11 to address importance of
 529 establishing sensitivity and/or low detection limit of analytical instruments.

530 #Duplicate measurements of the six solutions described in Table II.1-2 prior to adding to the solid-containing vials. Samples
 531 injected to the instrument were prepared by volume-to-volume dilution.

532

533 Figure III.1-11. Plot of the time-dependent measurements of ΣNa from Experiment 1
 534 under TP 20-01 Revision in Table III.1-15 (M, mol/L). Yellow dots were not
 535 included in calculating the statistics. See discussion in the text. Black squares
 536 and red error bars located on 20 days are averages and twice the standard
 537 deviations of all the measurements displayed to the right at their aging time (blue
 538 dots and circles, which represent data from duplicate reactors).

541 Table III.1-16. Statistics of measurements of ΣNa under TP 20-01 Revision 0 in Table
 542 III.1-15 (M, mol/L).


Reactor ID	Average	2SD	%2SD	%Deviation	Counts
PbSO ₄ -0.01-(1,2)	1.56E-01	1.20E-02	8%	-8%	6

PbSO ₄ -0.1-(1,2)	3.42E-01	5.95E-02	17%	-1%	6
PbSO ₄ -0.5-(1,2)	1.01	0.03	3%	-10%	6
PbSO ₄ -1.0-(1,2)	1.94	0.04	2%	-5%	6
PbSO ₄ -1.5-(1,2)	2.66	0.40	15%	-7%	6
PbSO ₄ -1.8-(1,2)	3.00	0.33	11%	-13%	6

543

544 Figure III.1-12. Plot of the statistics of ΣNa in A. Table III.1-14 (TP 08-02 Revision 0);
 545 B. Table III.1-16 (TP 20-01 Revision 0). $\Sigma\text{Na}_{\text{Loaded}} = [\text{NaCl}]_{\text{Loaded}} +$
 546 $2 \times [\text{Na}_2\text{SO}_4]_{\text{Loaded}}$.

547

548

549 III.1.5. ΣCl

550 Chloride can be considered a conservative component. Total dissolved chloride concentration, ΣCl ,
 551 should be close to the loaded NaCl concentration, if there is no precipitation of solid(s) containing
 552 chloride:

$$\Sigma\text{Cl} = [\text{NaCl}]_{\text{Loaded}} \quad (5)$$

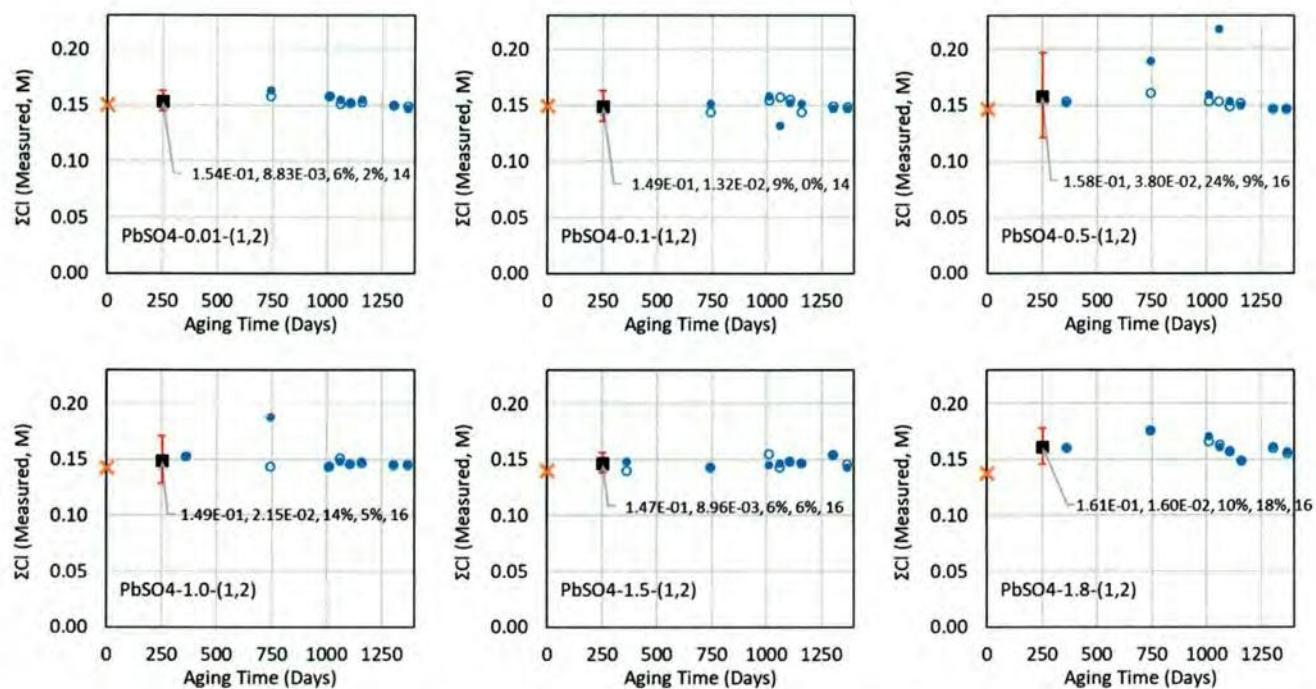
554 Summarized in Table III.1-17 are the ΣCl measured as a function of aging time from Experiment 1
 555 conducted under TP 08-02 Revision 0. Plots of the time-dependent measurements are presented in
 556 Figure III.1-13. The ΣCl were stable over the aging time. The observed scatters were confined
 557 within maximum %2SD of 24%. Statistics are tabulated and displayed in Table III.1-18 and Figure
 558 III.1-15A.

559 The measurements were accurate with the %Deviation ranging 0 to 18% from the loaded ΣCl (Figure
 560 III.1-13, Table III.1-18, and Figure III.1-15A). Our precision indicates that, with 95% confidence,

561 we reproduced the loaded ΣCl concentration (Figure III.1-15A), with one exception at the highest
 562 loading of ΣCl .

563 In performing the Experiment 1 under the protocols of TP 20-01 Revision 0, ΣCl was measured only
 564 from the background solutions without $\text{PbSO}_4(s)$. Additional measurements after commencing the
 565 dissolution are not available as of 6/22/2021 (Table III.1-19).²² The samples injected on the
 566 instrument for measurements of ΣCl in the background solution prior to the addition of $\text{PbSO}_4(s)$
 567 were prepared by volume-to-volume dilution. Solid black squares in Figure III.1-14 are the averages
 568 of two measurements in Table III.1-19.

569 The results of ΣCl measurements in Experiments 1 under both TPs are statistically identical (compare
 570 one black square in A and B of Figure III.1-15 at a condition at a time), except two data points at the
 571 highest Cl loading. We have no explanation for the overestimations for the last 4 data points with
 572 high precision in Figure III.1-15B.


573 Table III.1-17. Time-dependent measurements of ΣCl under TP 08-02 Revision 0 (M,
 574 mol/L).

Reactor ID	Aging time (Days)							
	360	743	1010	1059	1107	1158	1305	1368
PbSO ₄ -0.01-1	NA	1.63E-01	1.58E-01	1.55E-01	1.52E-01	1.55E-01	1.50E-01	1.47E-01
PbSO ₄ -0.01-2	NA	1.58E-01	1.58E-01	1.51E-01	1.52E-01	1.53E-01	1.50E-01	1.49E-01
PbSO ₄ -0.1-1	NA	1.51E-01	1.58E-01	1.32E-01	1.52E-01	1.51E-01	1.47E-01	1.47E-01
PbSO ₄ -0.1-2	NA	1.44E-01	1.54E-01	1.57E-01	1.55E-01	1.44E-01	1.49E-01	1.48E-01
PbSO ₄ -0.5-1	1.52E-01	1.90E-01	1.60E-01	2.18E-01	1.54E-01	1.50E-01	1.47E-01	1.46E-01
PbSO ₄ -0.5-2	1.54E-01	1.61E-01	1.54E-01	1.54E-01	1.49E-01	1.52E-01	1.47E-01	1.47E-01
PbSO ₄ -1.0-1	1.53E-01	1.88E-01	1.43E-01	1.48E-01	1.46E-01	1.48E-01	1.45E-01	1.45E-01
PbSO ₄ -1.0-2	1.53E-01	1.44E-01	1.44E-01	1.51E-01	1.46E-01	1.47E-01	1.45E-01	1.45E-01
PbSO ₄ -1.5-1	1.48E-01	1.43E-01	1.45E-01	1.47E-01	1.49E-01	1.47E-01	1.55E-01	1.43E-01
PbSO ₄ -1.5-2	1.40E-01	1.43E-01	1.55E-01	1.43E-01	1.48E-01	1.47E-01	1.54E-01	1.46E-01
PbSO ₄ -1.8-1	1.60E-01	1.76E-01	1.71E-01	1.61E-01	1.58E-01	1.48E-01	1.62E-01	1.57E-01
PbSO ₄ -1.8-2	1.60E-01	1.76E-01	1.66E-01	1.63E-01	1.57E-01	1.49E-01	1.60E-01	1.56E-01

575

²² The DIQ (Days In Queue) for the measurements of ΣCl for filtered supernatants sampled from -1 and -2 reactors of this Experiment 2 under the protocols of TP 20-01 Revision 0 appear to be quite long. The “-1” reactors were terminated on 2/25/2021, and “-2” on 5/4/2021. No measurements of ΣCl from them are completed, and they are not listed in Table III.1-19.

576

Figure III.1-13. Plot of the time-dependent measurements of ΣCl under TP 08-02 Revision in Table III.1-17 (M, mol/L).

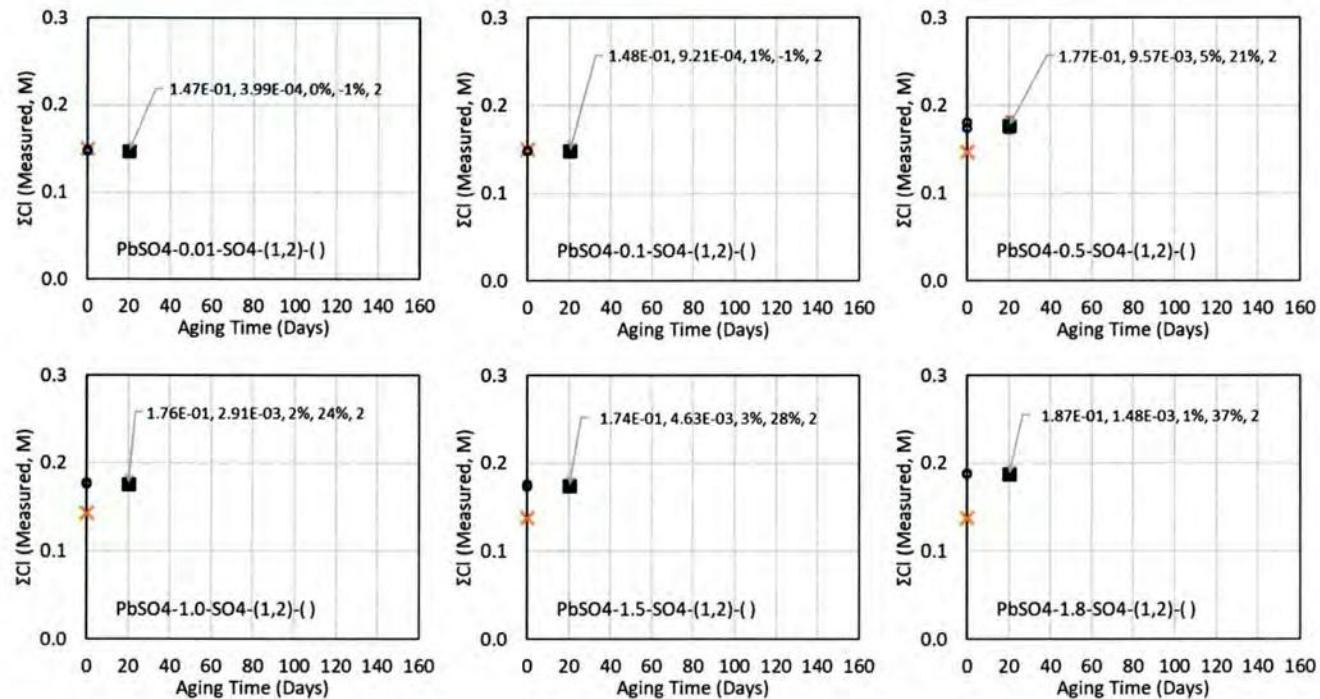
578

579

Table III.1-18. Statistics of measurements of ΣCl (M, mol/L) under TP 08-02 Revision 0 in Table III.1-17.

Reactor ID	Average	2SD	%2SD	%Deviation	Counts
PbSO4-0.01-(1,2)	1.54E-01	8.83E-03	6%	2%	14
PbSO4-0.1-(1,2)	1.49E-01	1.32E-02	9%	0%	14
PbSO4-0.5-(1,2)	1.58E-01	3.80E-02	24%	9%	16
PbSO4-1.0-(1,2)	1.49E-01	2.15E-02	14%	5%	16
PbSO4-1.5-(1,2)	1.47E-01	8.96E-03	6%	6%	16
PbSO4-1.8-(1,2)	1.61E-01	1.60E-02	10%	18%	16

582


Table III.1-19. Time-dependent measurements of ΣCl under the protocols of TP 20-01 Revision 0 (M, mol/L).

Aging time (Days)	0
Reactor ID (n =)	Before adding $\text{PbSO}_4(s)^{\#}$
PbSO4-0.01-SO4-1-n	1.47E-01
PbSO4-0.01-SO4-2-n	1.48E-01
PbSO4-0.1-SO4-1-n	1.48E-01
PbSO4-0.1-SO4-2-n	1.48E-01
PbSO4-0.5-SO4-1-n	1.81E-01
PbSO4-0.5-SO4-2-n	1.74E-01
PbSO4-1.0-SO4-1-n	1.75E-01

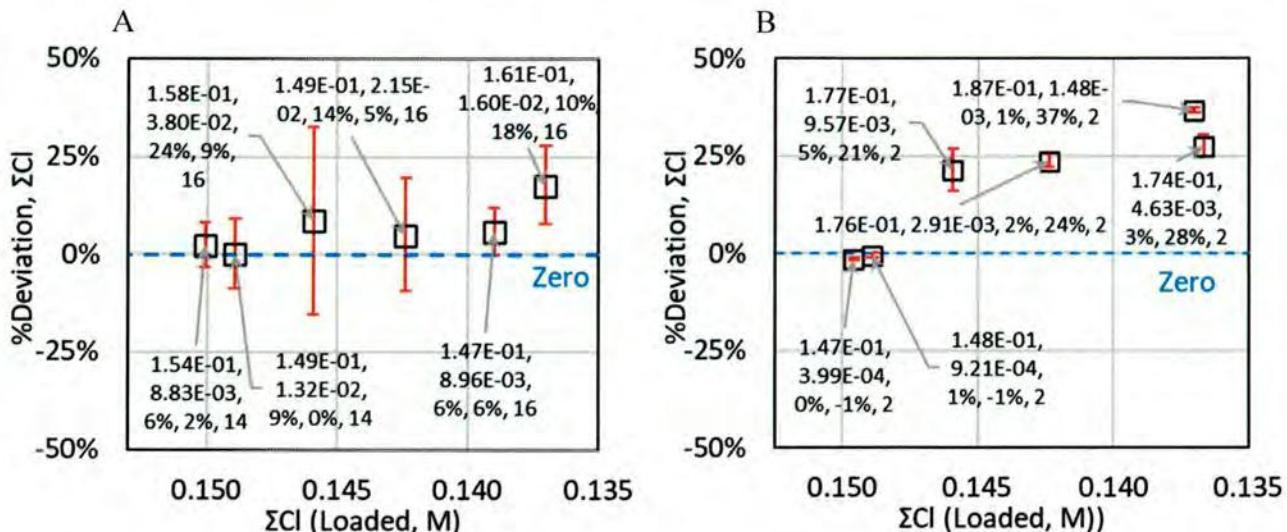
PbSO ₄ -1.0-SO ₄ -2-n	1.77E-01
PbSO ₄ -1.5-SO ₄ -1-n	1.73E-01
PbSO ₄ -1.5-SO ₄ -2-n	1.76E-01
PbSO ₄ -1.8-SO ₄ -1-n	1.88E-01
PbSO ₄ -1.8-SO ₄ -2-n	1.87E-01

585 [#] Duplicate measurements of the six solutions described in Table II.1-2 prior to adding to the solid-containing vials. v-v
 586 dilution.

587 Figure III.1-14. Plot of the time-dependent measurements of ΣCl under TP 20-01
 588 Revision in Table III.1-19 (M, mol/L).

591 Table III.1-20. Statistics of measurements of ΣCl (M, mol/L) under TP 20-01 Revision 0
 592 in Table III.1-19.

Reactor ID	Average	2SD	%2SD	%Deviation	Counts
PbSO ₄ -0.01-(1,2)	1.47E-01	3.99E-04	0%	-1%	2
PbSO ₄ -0.1-(1,2)	1.48E-01	9.21E-04	1%	-1%	2
PbSO ₄ -0.5-(1,2)	1.77E-01	9.57E-03	5%	21%	2
PbSO ₄ -1.0-(1,2)	1.76E-01	2.91E-03	2%	24%	2
PbSO ₄ -1.5-(1,2)	1.74E-01	4.63E-03	3%	28%	2
PbSO ₄ -1.8-(1,2)	1.87E-01	1.48E-03	1%	37%	2

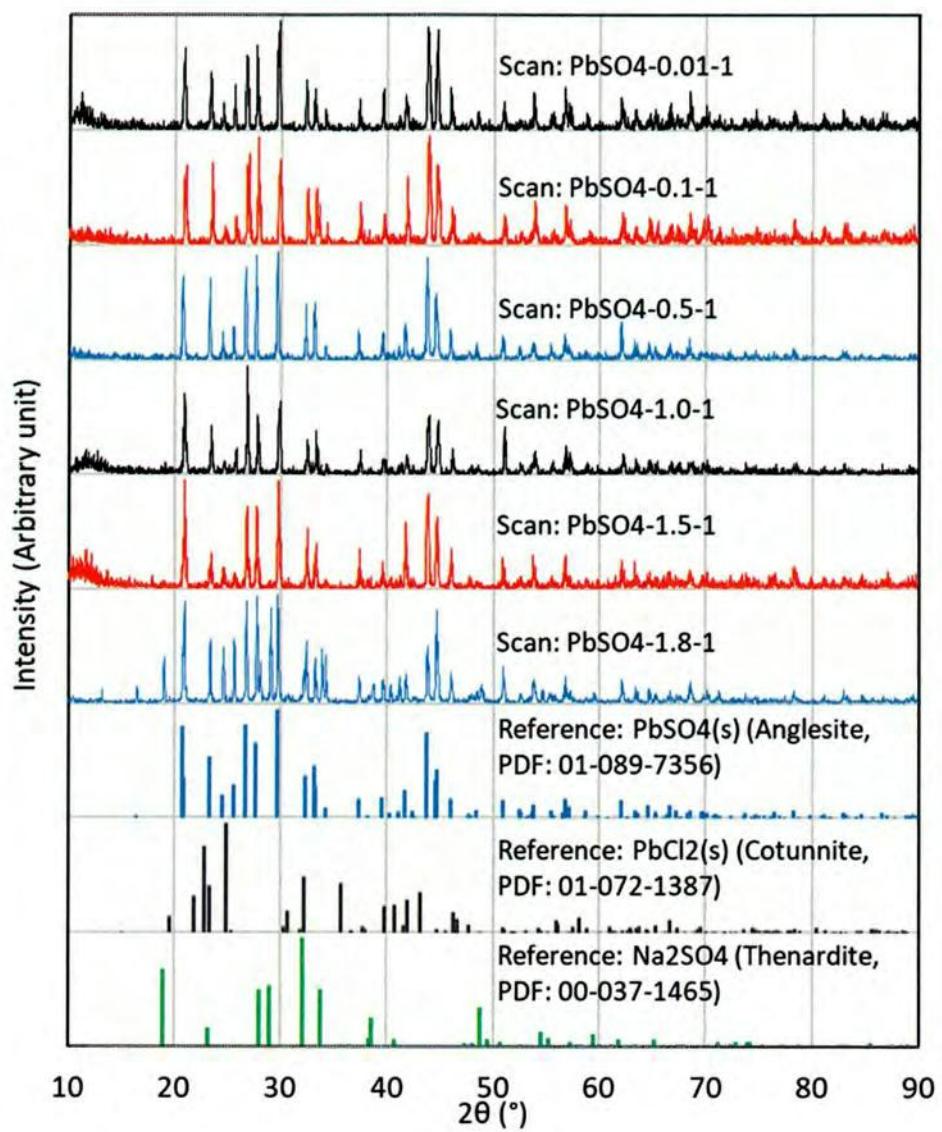

593

594 Figure III.1-15. Plot of the statistics of ΣCl in: A. Table III.1-18 (TP 08-02 Revision 0),
 595 B. Table III.1-20 (TP 20-01 Revision 0). The horizontal axes are reversed to be
 596 consistent with the order of increase of the loading of ΣNa (See lower halves of

597

598

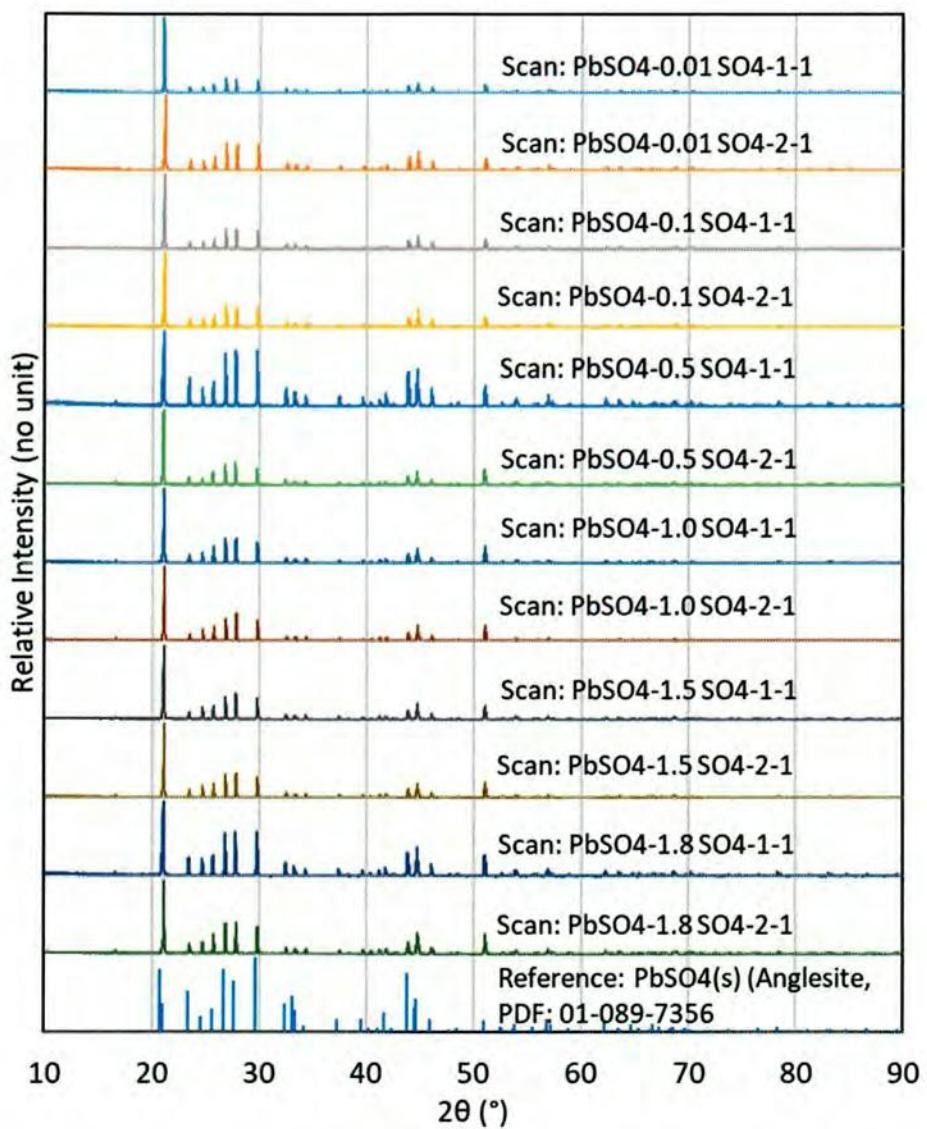
599


600

601

602

Under TP 08-02 Revision 0, a large volume of reactors was terminated to collect the solids after final sampling of the supernatants. One of the duplicate reactors for each condition (six conditions in total) was terminated. Six XRD scans are presented in Figure III.1-16.


Under TP 20-01 Revision 0, solids were collected at each sample date. As of 6/27/2021, XRD patterns for the first timed experiments, i.e., reactors with ID ending with “-1”, are available and presented in Figure III.1-17.

609
610Figure III.1-16. XRD scans of solids collected from Experiment 1 conducted under TP
08-02 Revision 0. Aging time exceeds 1300 days.

611

612

613 Figure III.1-17. XRD scans of solids collected from Experiment 1 conducted under TP
614 20-01 Revision 0 (The last digit of the scan ID, i.e., -1, means that the aging time
615 = 43 days).

618 III.1.7. Summary

619 Experiment 1, where excess $\text{PbSO}_4(s)$ (anglesite) was added to background solutions of incremental
620 concentrations of Na_2SO_4 spiked with a constant NaCl concentration, was performed using protocols
621 in TP 08-02 Revision 0 (assumed to be subject to $\text{CO}_2(g)$ intrusion and inadvertent contamination of
622 the reactors by unknown sources due to repeated entries for sampling and aging time extending
623 multiple years). The same experiment was performed under the protocols of TP 20-01 Revision 0:
624 use of minimal $\text{CO}_2(g)$ gloveboxes and preparation of multiple replicates for termination at each
625 timed investigation to exclude the possibilities of $\text{CO}_2(g)$ intrusion and inadvertent contamination of

626 the reactors. The last sampling under TP 20-01 Revision 0 was conducted on 111 days, which is
627 much earlier than the first sampling under TP 08-02 Revision 0 (360 days).

628 The recorded pH_r values are statistically identical (Figure III.1-3). The measured ΣPb are statistically
629 identical (Figure III.1-6). The measured ΣSO₄ are statistically identical (Figure III.1-9). The
630 measured ΣNa are statistically identical (Figure III.1-12). Measured ΣCl cannot be compared due to
631 the low accuracy observed in Figure III.1-15B. The accuracy demonstrated in the measurements of
632 other conservative components, i.e., ΣSO₄ and ΣNa (Figure III.1-9 and Figure III.1-12), shows that
633 the inaccuracy of ΣCl measurements could be due to a sensitivity artifact of the ion chromatography
634 column.

635 Mineralogical transformation of the initial PbSO₄(s) did not happen under the protocols of both TPs
636 (Figure III.1-16 and Figure III.1-17). One possible explanation for the observation of thenardite
637 (Na₂SO₄) in Figure III.1-16 (scan: PbSO₄-1.8-1) is the precipitation of thenardite from the
638 evaporation of background solutions captured in the pore space of collected solids. A second
639 possible explanation could be precipitation of thenardite in the reactor due to its own supersaturation.
640 The second explanation needs further investigation on what triggered thenardite supersaturation, and
641 why Experiment 1 conducted under TP 20-01 did not show the same observation, i.e., thenardite was
642 not observed in Figure III.1-17.

643 By repeating the Experiment 1 under the protocols of TP 20-01 Revision 0 where the two
644 contamination possibilities are eliminated by the experimental protocols, we proved that the influence
645 of CO₂(g) intrusion and contamination was not statistically observable, and the influence of such
646 contamination on the thermodynamic interpretation of the measurements would fall within analytical
647 and experimental uncertainties. Additionally, it was demonstrated that equilibrium was achieved
648 within 111 days suggesting that experimental durations can be reduced while still achieving valid and
649 representative results.

650 III.2. Experiment 2: PbCO₃(s) - NaHCO₃ - NaCl - H₂O

651 Recipes for this Experiment 2 under each TP are summarized in Table II.2-1 and Table II.2-2,
652 respectively.

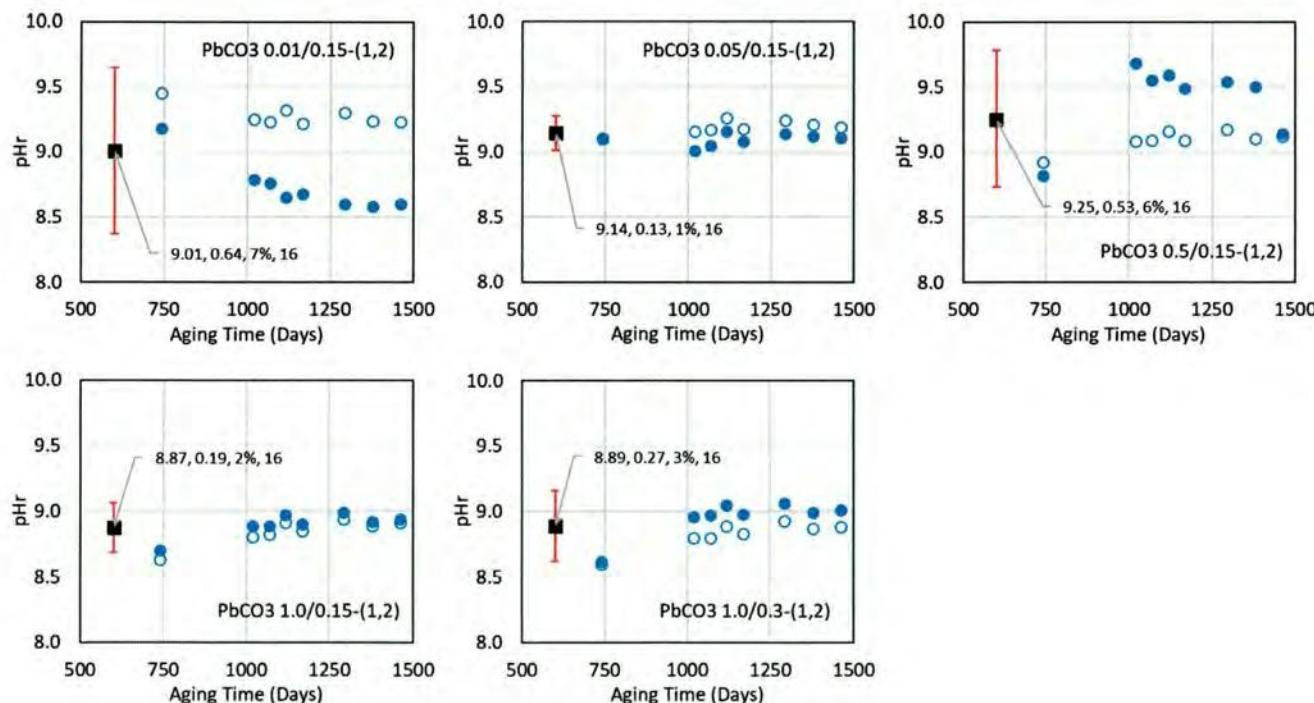
653 III.2.1. pH_r

654 In Table III.2-1 the pH_r values are recorded as a function of aging time from Experiment 2 conducted
655 under TP 08-02 Revision 0. Plots of the measurements are displayed in Figure III.2-1. The observed

656 scatters are confined around the averages within the maximum 2SD of 0.64 pH unit (7%), which
657 means that the precision of the measurements was better than 7%. Statistically, they are identical at
658 around 9 (Figure III.2-1, Table III.2-2, and Figure III.2-3A). Note that the last two background
659 solutions have the same loading of NaHCO_3 (0.9 m) but different NaCl loadings (0.15 and 0.30 m)
660 (Table II.2-1). NaHCO_3 buffers the pH, so the pH_r should remain close to each other, and they are at
661 95% confidence (Table III.2-2; Figure III.2-3A).

662 Table III.2-3 presents the pH_r values recorded as a function of aging time from Experiment 2
663 conducted under the protocols of TP 20-01 Revision 0. Plots of the measurements are presented in
664 Figure III.2-2. The scatter in pH_r values is confined around the averages within the maximum 2SD
665 of 0.14 pH unit (2%), indicating that the precision of the measurements was better than 2%. Unlike
666 the pH_r obtained under TP 08-02 Revision 0, the measurements of pH_r illustrated resolution for the
667 loadings of NaHCO_3 with 95% confidence (Figure III.2-2, Table III.2-4, and Figure III.2-3B). In
668 other words, the error bars = 2SD or %2SD and they are not overlapping with each other. Note that
669 the last two background solutions have the same loading of NaHCO_3 (1.0 m), and different NaCl
670 loadings (0.15 and 0.30 m) (Table II.2-2). NaHCO_3 buffers the pH, so the pH_r should remain close to
671 each other, and they are at 95% confidence (Table III.2-4; Figure III.2-3B).

672 Two groups are identified in Figure III.2-3. Green ovals indicate one group of reactors of statistically
673 identical pH_r values. Interpretation is minimal loss of $\text{CO}_2(\text{g})$ due to lower partial pressure of $\text{CO}_2(\text{g})$
674 (i.e., lower loading of NaHCO_3), so the minimal loss of $\text{CO}_2(\text{g})$ did not show up in pH_r regardless of
675 the experimental protocols. Orange ovals indicate the other group of reactors of statistically different
676 pH_r values. The interpretation is that significant loss of $\text{CO}_2(\text{g})$ due to higher partial pressure of
677 $\text{CO}_2(\text{g})$ (i.e., higher loading of NaHCO_3 in the recipe) over long aging times and repeated sampling
678 entries under TP 08-02 Revision 0 (orange oval in Figure III.2-3A), relative to the same experiment
679 conducted under the protocols of TP 20-01 Revision 0 (orange oval in Figure III.2-3B). Loss of
680 $\text{CO}_2(\text{g})$ drives the following reaction to the right by Le Chatelier's principle, producing OH^- (and
681 increasing pH):


683 Under the protocols of TP 20-01 Revision 0, multiples of identical reactors of one condition were
684 prepared, and two of them for each condition were terminated at each timed investigation to capture
685 the solution chemistry before Reaction (6) proceeds to the right.

686

Table III.2-1. Time-dependent measurements of pHr from Experiment 2 under TP 08-02
687 Revision 0.

pHr	Aging time (Days)							
Reactor ID	741	1020	1069	1118	1167	1293	1379	1461
PbCO ₃ 0.01/0.15-1	9.18	8.79	8.76	8.65	8.68	8.60	8.58	8.60
PbCO ₃ 0.01/0.15-2	9.45	9.25	9.23	9.32	9.22	9.30	9.24	9.23
PbCO ₃ 0.05/0.15-1	9.11	9.01	9.05	9.16	9.08	9.14	9.12	9.11
PbCO ₃ 0.05/0.15-2	9.10	9.16	9.17	9.26	9.18	9.24	9.21	9.19
PbCO ₃ 0.5/0.15-1	8.82	9.68	9.55	9.59	9.49	9.54	9.50	9.14
PbCO ₃ 0.5/0.15-2	8.92	9.08	9.09	9.16	9.09	9.17	9.10	9.12
PbCO ₃ 1.0/0.15-1	8.70	8.89	8.89	8.97	8.90	8.99	8.92	8.94
PbCO ₃ 1.0/0.15-2	8.63	8.80	8.82	8.91	8.85	8.94	8.89	8.91
PbCO ₃ 1.0/0.3-1	8.62	8.96	8.97	9.05	8.98	9.06	8.99	9.01
PbCO ₃ 1.0/0.3-2	8.60	8.80	8.80	8.89	8.83	8.93	8.87	8.88

688

689 Figure III.2-1. Plot of the time-dependent measurements of pHr under TP 08-02 Revision
690 0 in Table III.2-1. Solid and open symbols indicate duplicate reactors of each
691 condition. Black squares and red error bars located on 550 days are averages and
692 twice the standard deviations of all the measurements displayed to the right at
693 their aging time (blue dots and circles, which represent data from duplicate
694 reactors).

695

696

697
698

Table III.2-2. Statistics of measurements of pHr under TP 08-02 Revision 0 in Table III.2-1.

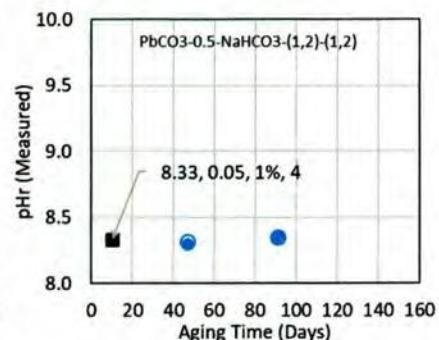
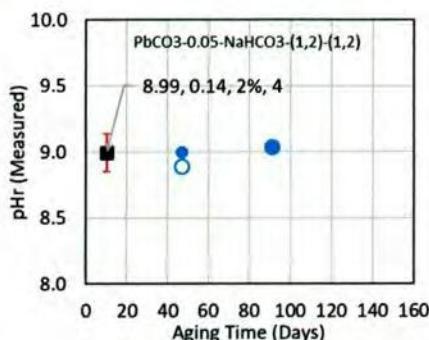
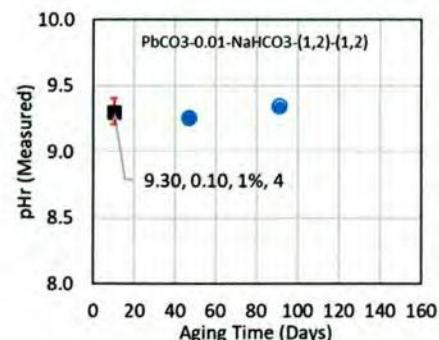
Reactor ID	Average	2SD	%2SD	Counts
PbCO3 0.01/0.15-1	9.01	0.64	7%	16
PbCO3 0.05/0.15-1	9.14	0.13	1%	16
PbCO3 0.5/0.15-1	9.25	0.53	6%	16
PbCO3 1.0/0.15-1	8.87	0.19	2%	16
PbCO3 1.0/0.3-1	8.89	0.27	3%	16

699

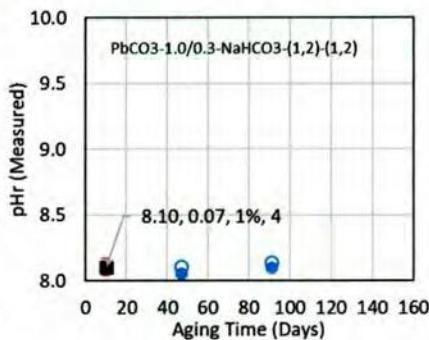
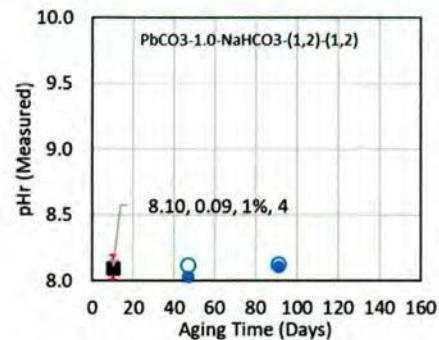
700
701

Table III.2-3. Time-dependent measurements of pHr under the protocols of TP 20-01 Revision 0. The n specifies the timed investigation.

Aging time (Days)	47	91
Reactor ID (n =)	1	2
PbCO3-0.01-NaHCO3-1-n	9.26	9.34
PbCO3-0.01-NaHCO3-2-n	9.26	9.35
PbCO3-0.05-NaHCO3-1-n	9.00	9.04
PbCO3-0.05-NaHCO3-2-n	8.89	9.04
PbCO3-0.5-NaHCO3-1-n	8.30	8.35
PbCO3-0.5-NaHCO3-2-n	8.32	8.35
PbCO3-1.0-NaHCO3-1-n	8.03	8.11
PbCO3-1.0-NaHCO3-2-n	8.12	8.13
PbCO3-1.0/0.3-NaHCO3-1-n	8.06	8.10
PbCO3-1.0/0.3-NaHCO3-2-n	8.11	8.14




702

703
704
705



Figure III.2-2. Plot of the time-dependent measurements of pHr under TP 20-01 Revision in Table III.2-3. Black squares and red error bars located on 10 days are averages and twice the standard deviations of all the measurements displayed to the right at

706

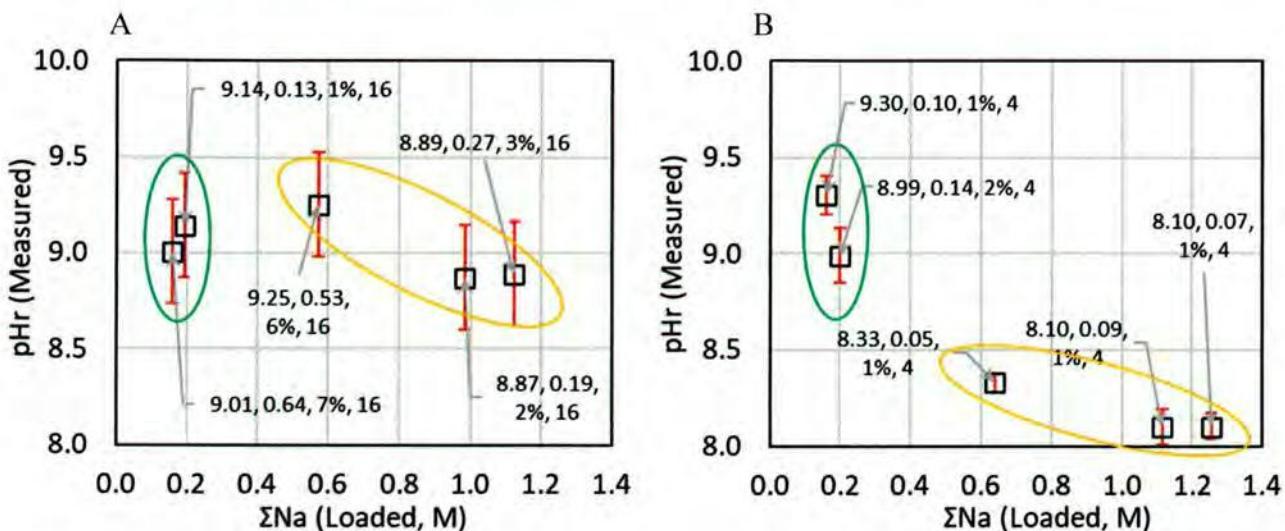
their aging time (blue dots and circles, which represent data from duplicate reactors).

708

709

710
711

Table III.2-4. Statistics of measurements of pHr under TP 20-01 Revision 0 in Table III.2-3.


Reactor ID	Average	2SD	%2SD	Counts
PbCO3-0.01-NaHCO3-(1,2)-(1,2)	9.30	0.10	1%	4
PbCO3-0.05-NaHCO3-(1,2)-(1,2)	8.99	0.14	2%	4
PbCO3-0.5-NaHCO3-(1,2)-(1,2)	8.33	0.05	1%	4
PbCO3-1.0-NaHCO3-(1,2)-(1,2)	8.10	0.09	1%	4
PbCO3-1.0/0.3-NaHCO3-(1,2)-(1,2)	8.10	0.07	1%	4

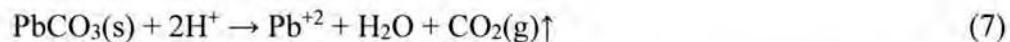
712

713
714

Figure III.2-3. Plots of the statistics for pHr in Table III.2-2 and Table III.2-4. Green ovals indicate a group of reactors showing statistically similar pHr values between

A and B, and yellow ovals indicate another group of reactors showing different pHr values between A and B.

III.2.2. Σ Pb


Table III.2-5 lists the ΣPb measured as a function of aging time from Experiment 2 conducted under TP 08-02 Revision 0. Plots of the measurements are presented in Figure III.2-4. The ΣPb values showed scatter.

Statistical data reduction as described in Section III.1.2 was performed on the ΣPb measurements due to the outliers shown in Figure III.2-4. The possible outliers are marked with green ovals (values in red italics in Table III.2-5). They are parts of valid measurements under SNL WIPP QA. Open squares and dashed red error bars in Figure III.2-4 stand for the averages and 2SDs calculated for all valid measurements, including those in the green ovals, in Table III.2-5 using the normal distribution. The statistics are listed in the upper half of Table III.2-6. Data points in green ovals were confirmed to be outliers based on the statistics represented by the open squares and dashed red error bars. They were excluded with 95% confidence (red dashed error bars) to calculate the new statistics (solid squares and solid red error bars in Figure III.2-4; the new statistics are listed in the lower half of Table III.2-6). At high loading of NaCl of 0.3 m, no outliers were noticed for the reactors PbCO_3 1.0/0.3-(1,2) when all measurements were considered, and no reduction was performed for the reactors of higher loading of 0.3 m NaCl.

735 The recalculated 2SDs encompass the remaining data (Compare dashed and solid red error bars in
 736 Figure III.2-4). Those outliers are valid records under SNL WIPP QA Program.²³

737 The error bars extending to negative concentrations even after the statistical data reduction for
 738 reactors PbCO_3 0.01/0.15-(1,2) may indicate that the diluted samples injected on the ICP-AES for
 739 ΣPb measurements had ΣPb lower than the detection limit of ICP-AES.²⁴

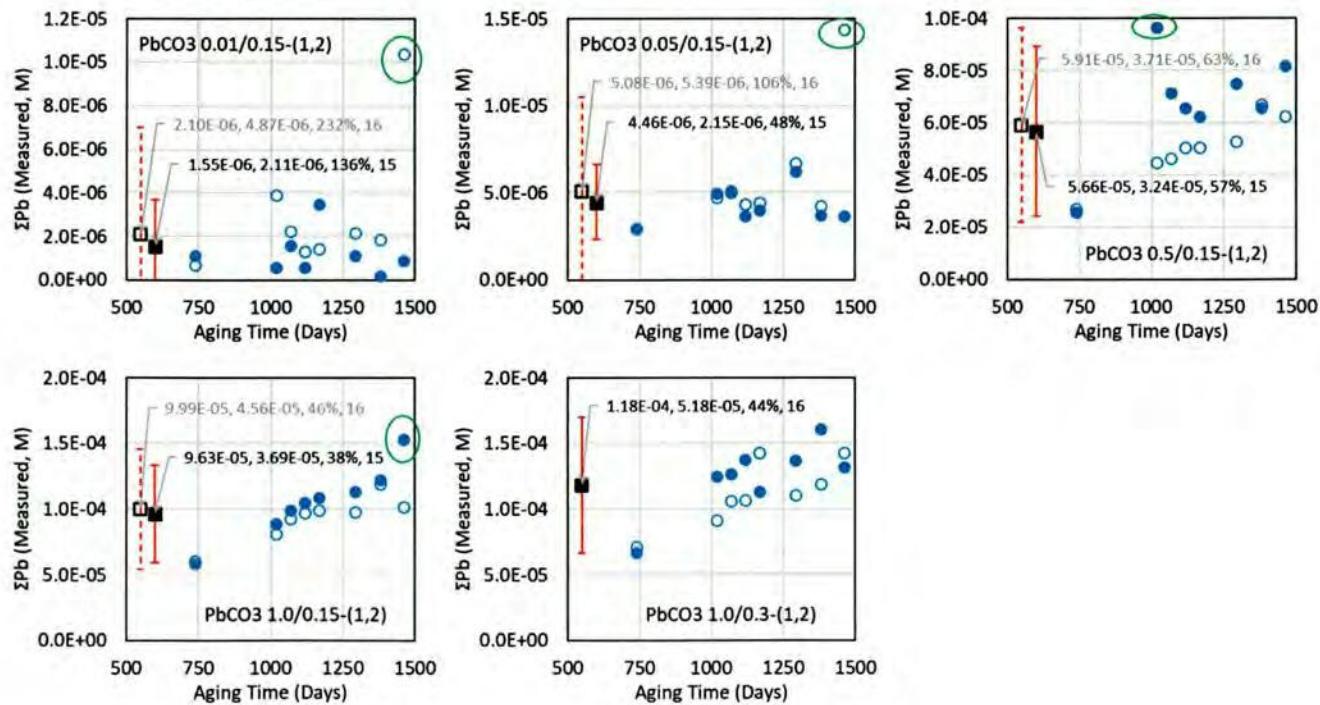
740 The last three panels in Figure III.2-4 showed a trend of ΣPb increasing over time. The last three
 741 panels in this figure describe the experiments of elevated pHr under TP 08-02 Revision 0, relative to
 742 those under TP 20-01 Revision 0 (Figure III.2-3; A and B, orange ovals), and the interpretation of the
 743 elevated pHr was the $\text{CO}_2(\text{g})$ loss. Loss of $\text{CO}_2(\text{g})$ can drive the following reaction to the right,
 744 resulting in increased dissolution of cerussite, i.e., higher ΣPb ;

746 Statistical analysis of the measurements in Figure III.2-4 are summarized in Table III.2-6 (lower half
 747 of the Table) and Figure III.2-6A.

748 Table III.2-7 shows the measured ΣPb values as a function of aging time from Experiment 2
 749 conducted under the protocols of TP 20-01 Revision 0. Plots of the measurements as a function of
 750 time are displayed in Figure III.2-5. The ΣPb values are scattered. The observed scattering of the
 751 data is confined within the maximum %2SD of 48%. Table III.2-8 and Figure III.2-6B show the
 752 summary of statistical analysis.

753 Suppression of ΣPb was observed when Experiment 2 was conducted under the protocols of TP 20-
 754 01 Revision 0 (compare the data points in orange ovals in Figure III.2-6; A and B). In Figure III.2-6,
 755 the data points in green ovals in A and B are identical at 95% confidence like the pHr (Figure III.2-3),
 756 but the three data points in orange ovals in A and B are different. In the same context of $\text{CO}_2(\text{g})$ loss
 757 in the Experiment 2 conducted under TP 08-02 Revision 0, Reaction (7) can explain the observation
 758 described in Figure III.2-6, i.e., higher partial pressure of $\text{CO}_2(\text{g})$ maintained in the Experiment 2 (or
 759 less/slower loss of $\text{CO}_2(\text{g})$) conducted under TP 20-01 Revision 0 suppressed the Reaction (7) from
 760 proceeding to the right.

²³ SNL WIPP Geochemistry is considering implementation of a real-time (or close to real-time) data monitoring system to screen such outliers.


²⁴ SNL WIPP Geochemistry is considering to set low/high detection limits for analytical instruments, including mandating the use of a calibration standard of lowest concentration of analyte in the sample injection queue as a check standards.

761
762Table III.2-5. Time-dependent measurements of ΣPb (M, mol/L) under TP 08-02
Revision 0.

ΣPb (M)	Aging time (Days)							
Reactor ID	741	1020	1069	1118	1167	1293	1379	1461
PbCO ₃ 0.01/0.15-1	1.12E-06	5.83E-07	1.59E-06	5.96E-07	3.49E-06	1.11E-06	1.97E-07	8.95E-07
PbCO ₃ 0.01/0.15-2	7.10E-07	3.92E-06	2.23E-06	1.31E-06	1.42E-06	2.16E-06	1.87E-06	<i>1.04E-05</i>
PbCO ₃ 0.05/0.15-1	2.94E-06	4.96E-06	5.14E-06	3.69E-06	4.02E-06	6.25E-06	3.73E-06	3.65E-06
PbCO ₃ 0.05/0.15-2	2.94E-06	4.73E-06	5.03E-06	4.35E-06	4.44E-06	6.73E-06	4.27E-06	<i>1.44E-05</i>
PbCO ₃ 0.5/0.15-1	2.58E-05	<i>9.64E-05</i>	7.14E-05	6.57E-05	6.24E-05	7.49E-05	6.55E-05	8.17E-05
PbCO ₃ 0.5/0.15-2	2.69E-05	4.48E-05	4.65E-05	5.04E-05	5.04E-05	5.27E-05	6.69E-05	6.25E-05
PbCO ₃ 1.0/0.15-1	5.83E-05	8.90E-05	9.94E-05	1.05E-04	1.09E-04	1.13E-04	1.22E-04	<i>1.53E-04</i>
PbCO ₃ 1.0/0.15-2	6.04E-05	8.11E-05	9.28E-05	9.72E-05	9.89E-05	9.78E-05	1.19E-04	1.02E-04
PbCO ₃ 1.0/0.3-1	6.67E-05	1.25E-04	1.27E-04	1.38E-04	1.13E-04	1.37E-04	1.61E-04	1.32E-04
PbCO ₃ 1.0/0.3-2	7.12E-05	9.14E-05	1.06E-04	1.07E-04	1.43E-04	1.11E-04	1.19E-04	1.43E-04

763 Italic in red fonts: considered outliers based on the red dashed error bars in Figure III.2-4 (marked with green ovals in Figure
764 III.2-4).

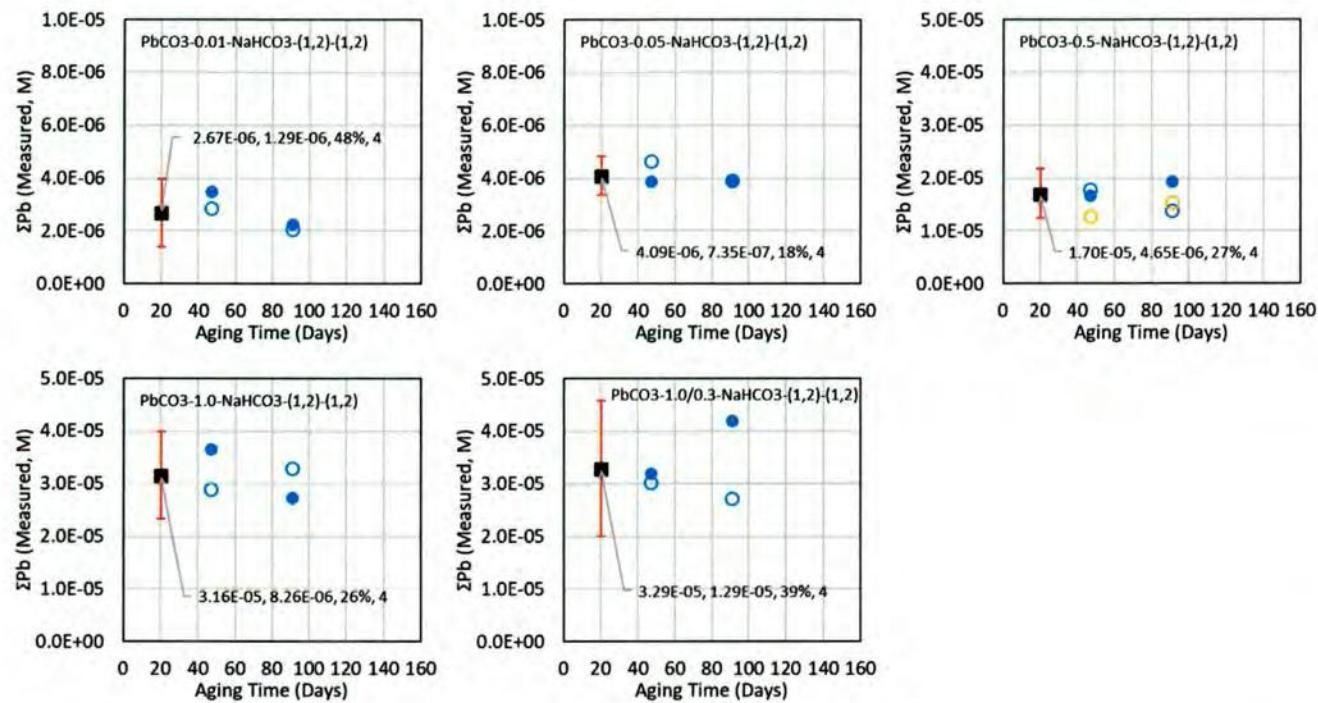
765 Figure III.2-4. Plot of the time-dependent measurements of ΣPb (M, mol/L) under TP 08-
766 02 Revision in Table III.2-5. For high loading of NaCl at 0.3 m, no outliers were
767 noticed when all measurements were considered. Low precision for PbCO₃
768 0.01/0.15-(1,2), i.e., error bar extending to the negative concentration region after
769 statistically reducing the data once, indicates the ΣPb are below the lower
770 detection limit of ICP-AES for the reactors. Green ovals indicate outliers that
771 were deemed valid data under the SNL QA program and no screening of such
772 data had been performed at the time.

773

774

775
776Table III.2-6. Statistics of measurements of ΣPb (M, mol/L) under TP 08-02 Revision 0
in Table III.2-5.

All Data				
Reactor ID	Average	2SD	%2SD	Counts
PbCO3 0.01/0.15-(1,2)	2.10E-06	4.87E-06	232%	16
PbCO3 0.05/0.15-(1,2)	5.08E-06	5.39E-06	106%	16
PbCO3 0.5/0.15-(1,2)	5.91E-05	3.71E-05	63%	16
PbCO3 1.0/0.15-(1,2)	9.99E-05	4.56E-05	46%	16
PbCO3 1.0/0.3-(1,2)	1.18E-04	5.18E-05	44%	16
Once-Reduced Data				
Reactor ID	Average	2SD	%2SD	Counts
PbCO3 0.01/0.15-(1,2)*	1.55E-06	2.11E-06	136%	15
PbCO3 0.05/0.15-(1,2)	4.46E-06	2.15E-06	48%	15
PbCO3 0.5/0.15-(1,2)	5.66E-05	3.24E-05	57%	15
PbCO3 1.0/0.15-(1,2)	9.63E-05	3.69E-05	38%	15
PbCO3 1.0/0.3-(1,2)†	1.18E-04	5.18E-05	44%	16

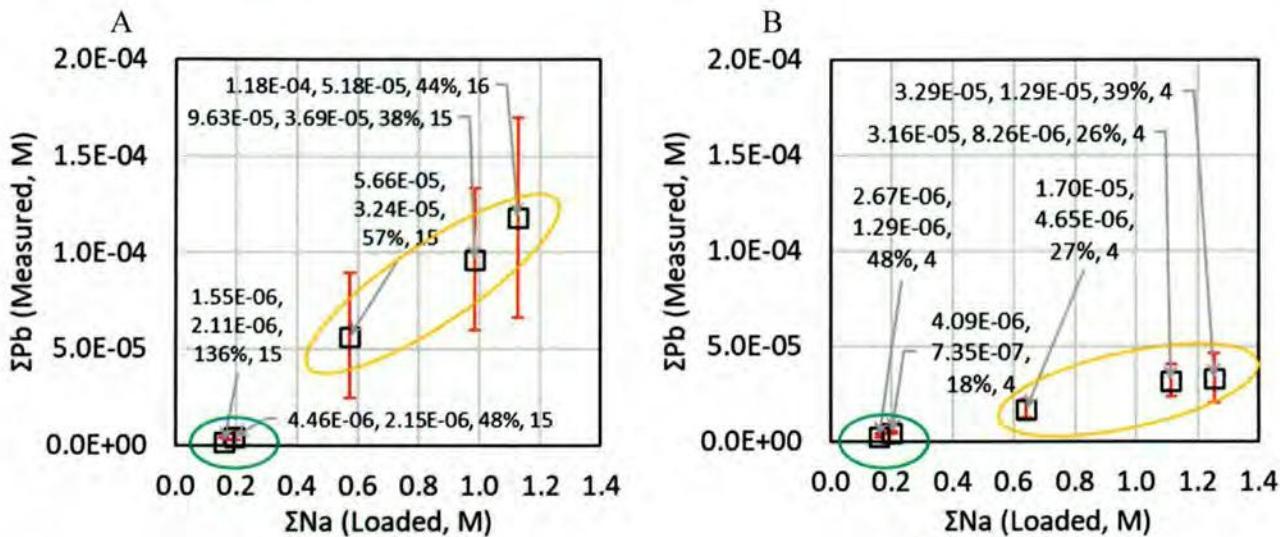

777 * Measurements seem to have been conducted close to or below the detection limit of the analytical instrument.
778 #No outliers were noticed when all measurements were considered. No statistical reduction performed, so the statistics are
779 the same as in the upper part of this table.780 Table III.2-7. Time-dependent measurements of ΣPb (M, mol/L) in Experiment 2
781 conducted under TP 20-01 Revision 0.

Aging time (Days)	47	91
Reactor ID (n =)	1	2
PbCO3-0.01-NaHCO3-1-n	3.50E-06	2.25E-06
PbCO3-0.01-NaHCO3-2-n	2.86E-06	2.09E-06
PbCO3-0.05-NaHCO3-1-n	3.90E-06	3.90E-06
PbCO3-0.05-NaHCO3-2-n	4.64E-06	3.92E-06
PbCO3-0.5-NaHCO3-1-n	1.68E-05	1.94E-05
	<i>1.26E-05</i>	<i>1.53E-05</i>
PbCO3-0.5-NaHCO3-2-n	1.78E-05	1.39E-05
PbCO3-1.0-NaHCO3-1-n	3.67E-05	2.75E-05
PbCO3-1.0-NaHCO3-2-n	2.91E-05	3.30E-05
PbCO3-1.0/0.3-NaHCO3-1-n	3.20E-05	4.21E-05
PbCO3-1.0/0.3-NaHCO3-2-n	3.03E-05	2.72E-05

782 Italics in red fonts: Flagged by lab. Not used in the statistics. They are comparable to the valid measurements. Sensitivity
783 linearity and/or low detection limits of the instrument need to be discussed in the future.784 Figure III.2-5. Plot of the time-dependent measurements of ΣPb (M, mol/L) under TP 20-
785 01 Revision in Table III.2-7. Orange circles are the data flagged by lab and not
786 included in calculating the statistics. Black squares and red error bars located on
787 20 days are averages and twice the standard deviations of all the measurements

788

displayed to the right at their aging time (blue dots and circles, which represent data from duplicate reactors).



792 Table III.2-8. Statistics of measurements of ΣPb (M, mol/L) under TP 20-01 Revision 0
793 in Table III.2-7.

Reactor ID	Average	2SD	%2SD	Counts
PbCO3-0.01-NaHCO3-(1,2)-(1,2)	2.67E-06	1.29E-06	48%	4
PbCO3-0.05-NaHCO3-(1,2)-(1,2)	4.09E-06	7.35E-07	18%	4
PbCO3-0.5-NaHCO3-(1,2)-(1,2)	1.70E-05	4.65E-06	27%	4
PbCO3-1.0-NaHCO3-(1,2)-(1,2)	3.16E-05	8.26E-06	26%	4
PbCO3-1.0/0.3-NaHCO3-(1,2)-(1,2)	3.29E-05	1.29E-05	39%	4

794
795 Figure III.2-6. Plots of the statistics of ΣPb (M, mol/L) in A. Table III.2-6 (TP 08-02
796 Revision 0); B. Table III.2-8 (TP 20-01 Revision 0). Data labels are listed in the
797 order of average, 2SD, %2SD, and counts of measurements. For the last two data
798 points, i.e., the fourth and fifth from the left, the NaHCO₃ loading is the same, but
799 the loading of NaCl was double for the last data point, i.e., the fifth from the left.
800 Green ovals indicate a group of reactors showing statistically similar ΣPb values

801 between A and B, and yellow ovals indicate another group of reactors showing
 802 different ΣPb values between A and B.

821 [NaHCO₃]_{loaded} within 1%. Although carbonate is a reactive component due to the dissolution of
 822 PbCO₃(s), it can be considered a conservative component under the condition of the Experiment 2
 823 unless it is lost by Reaction (6).

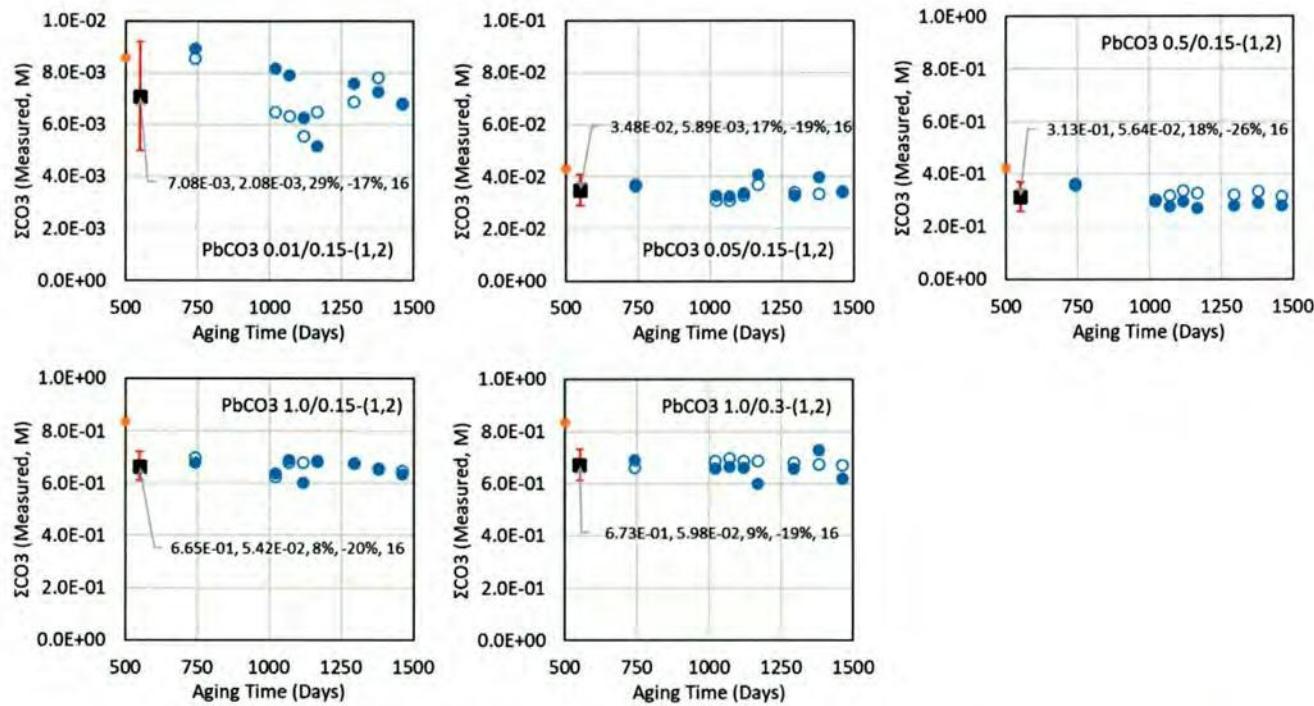
824 From Experiment 1 conducted under TP 08-02 Revision 0, the ΣCO₃ showed scatter at the lowest
 825 loading of NaHCO₃. The scattering of data is negligible at higher loadings of NaHCO₃ (Table
 826 III.2-9, Figure III.2-7, and Table III.2-10). The precision, i.e., %2SD, decreased from 29% to 9% as
 827 the loading of NaHCO₃ increased. With 29% of %2SD, the lowest loading²⁶ of NaHCO₃ seems
 828 below the lower detection limit of the instrument (coulometer).

829 Consistent underestimation of ΣCO₃ was noticed by the negative %Deviations, reaching down to
 830 -26% (Figure III.2-7, Table III.2-10, and Figure III.2-9A). From the statistical analysis presented in
 831 Figure III.2-9, it can be stated with 95% confidence that CO₂(g) was lost during the aging of
 832 Experiment 2 samples, except at the lowest loading of NaHCO₃ where the measurements seem to
 833 have been conducted below the lower detection limit of the coulometer, resulting in lower precision
 834 (i.e., 2SD = 29%, highest values in Table III.2-10). Lower recovery of ΣCO₃ can be explained by the
 835 inaccurate loading of NaHCO₃, but this explanation can be excluded by the higher accuracy (i.e.,
 836 smaller %Deviation) of ΣNa measurements (See Section III.2.4; Figure III.2-12A), i.e., NaHCO₃ is
 837 the common source of ΣNa and ΣCO₃ (Recipes in Table II.2-1 and Table II.2-2).

838 Consistent negative %Deviation indicates CO₂(g) loss, not CO₂(g) intrusion, and is consistent with
 839 the observed increase of pHr due to Reaction (6) in page 40, and the suppression of Pb due to
 840 Reaction (7) in page 45.

841 Measurements of ΣCO₃ from Experiment 2 performed under TP 20-01 Revision 0 will be reported as
 842 the measurements become available.

843 Table III.2-9. Time-dependent measurements of ΣCO₃ (M, mol/L) under TP 08-02
 844 Revision 0.


ΣCO ₃ (M)	Aging time (Days)							
Reactor ID	741	1020	1069	1118	1167	1293	1379	1461
PbCO ₃ 0.01/0.15-1	8.95E-03	8.18E-03	7.94E-03	6.30E-03	5.20E-03	7.61E-03	7.29E-03	6.81E-03
PbCO ₃ 0.01/0.15-2	8.56E-03	6.51E-03	6.35E-03	5.57E-03	6.52E-03	6.90E-03	7.82E-03	6.83E-03
PbCO ₃ 0.05/0.15-1	3.66E-02	3.30E-02	3.28E-02	3.41E-02	4.12E-02	3.30E-02	4.02E-02	3.42E-02
PbCO ₃ 0.05/0.15-2	3.73E-02	3.10E-02	3.10E-02	3.30E-02	3.72E-02	3.42E-02	3.38E-02	3.46E-02

²⁶ 8.58 mmol/L NaHCO₃ × 1 mmol C/mmol NaHCO₃ × 12 mg C/mmol C = 103 mg C/L = 103 ppm C.

PbCO ₃ 0.5/0.15-1	3.58E-01	2.98E-01	2.79E-01	2.99E-01	2.73E-01	2.84E-01	2.93E-01	2.82E-01
PbCO ₃ 0.5/0.15-2	3.64E-01	3.06E-01	3.22E-01	3.41E-01	3.29E-01	3.25E-01	3.37E-01	3.17E-01
PbCO ₃ 1.0/0.15-1	6.82E-01	6.39E-01	6.91E-01	6.03E-01	6.87E-01	6.77E-01	6.60E-01	6.38E-01
PbCO ₃ 1.0/0.15-2	7.01E-01	6.27E-01	6.80E-01	6.83E-01	6.84E-01	6.78E-01	6.57E-01	6.49E-01
PbCO ₃ 1.0/0.3-1	6.92E-01	6.59E-01	6.68E-01	6.63E-01	6.03E-01	6.59E-01	7.31E-01	6.22E-01
PbCO ₃ 1.0/0.3-2	6.65E-01	6.91E-01	6.99E-01	6.88E-01	6.89E-01	6.83E-01	6.77E-01	6.75E-01

845

846 Figure III.2-7. Plot of the time-dependent measurements of ΣCO_3 (M, mol/L) under TP
 847 08-02 Revision 0 in Table III.2-9. Orange dots are initial loading of NaHCO_3 .
 848 Black squares and red error bars located on 600 days are averages and twice the
 849 standard deviations of all the measurements displayed to the right at their aging
 850 time (blue dots and circles, which represent data from duplicate reactors).

851

852

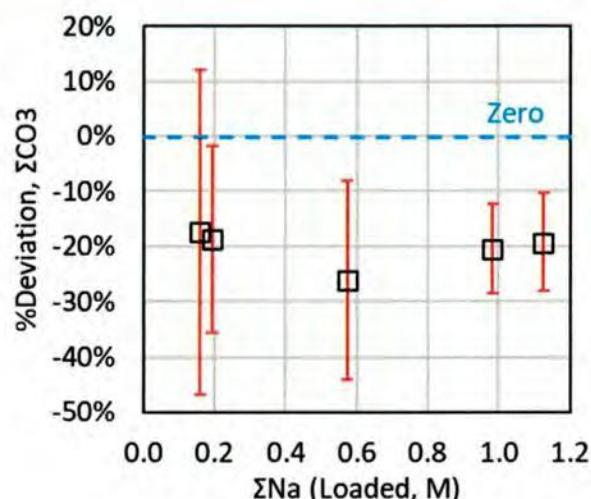
853 Table III.2-10. Statistics of measurements of ΣCO_3 (M, mol/L) under TP 08-02 Revision
 854 0 in Table III.2-9.

Reactor ID	Average	2SD	%2SD	%Deviation	Counts
PbCO ₃ 0.01/0.15-(1,2)	7.08E-03	2.08E-03	29%	-17%	16
PbCO ₃ 0.05/0.15-(1,2)	3.48E-02	5.89E-03	17%	-19%	16
PbCO ₃ 0.5/0.15-(1,2)	3.13E-01	5.64E-02	18%	-26%	16
PbCO ₃ 1.0/0.15-(1,2)	6.65E-01	5.42E-02	8%	-20%	16
PbCO ₃ 1.0/0.3-(1,2)	6.73E-01	5.98E-02	9%	-19%	16

855

856 Table III.2-11. Time-dependent measurements of ΣCO_3 under TP 20-01 Revision 0.

857 No measurements as of 6/20/2021


858 Figure III.2-8. Plot of the time-dependent measurements of ΣCO_3 under TP 20-01
859 Revision in Table III.2-11.

860 No measurements as of 6/20/2021

861 Table III.2-12. Statistics of measurements of ΣCO_3 under TP 20-01 Revision 0 in Table
862 III.2-11.

863 No measurements as of 6/20/2021

864 Figure III.2-9. Plot of the statistics of ΣCO_3 in Table III.2-10 (TP 08-02 Revision 0).

865

866 III.2.4. ΣNa

867 Sodium can be considered a non-reactive/conservative component unless removed by the
868 precipitation of abellaite. Total dissolved sodium concentration, ΣNa , is defined:

869
$$\Sigma\text{Na} = [\text{NaHCO}_3]_{\text{Loaded}} + [\text{NaCl}]_{\text{Loaded}} \quad (9)$$

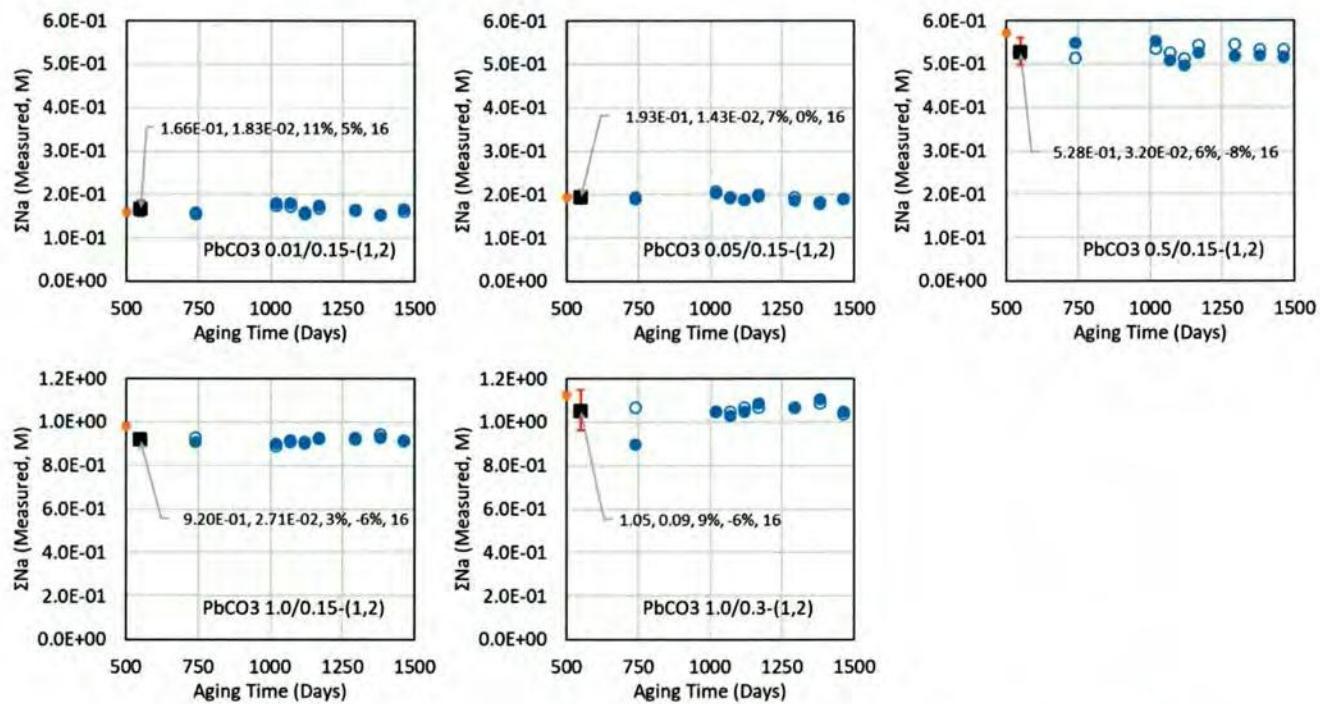
870 From Experiment 1 conducted under TP 08-02 Revision 0, the ΣNa were stable through the aging
871 time. The time-dependent measurements of ΣNa are presented in Table III.2-13 and plotted in Figure
872 III.2-10. Statistics are summarized and illustrated in Table III.2-14 and Figure III.2-12A. The
873 measurements of ΣNa were accurate and precise. The precision, i.e., $\%2\text{SD}$, ranged from 3 - 11%,
874 and the accuracy, i.e., %Deviation, ranged from -8 to 5%.

875 Measurements of ΣNa from Experiment 2 performed under the protocols of TP 20-01 Revision 0 are
 876 tabulated in Table III.2-15. They are stable and independent of the dilution techniques (Figure
 877 III.2-11).

878 In the Experiment 2 under the protocols of TP 20-01 Revision 0, ΣNa was measured in the
 879 background solutions prior to adding the solid, $\text{PbCO}_3(s)$, in addition to the measurements after
 880 commencing the dissolution. The samples injected to the instrument for measurements of ΣNa in the
 881 background solution prior to the addition of $\text{PbCO}_3(s)$ were prepared by volume-to-volume dilution.
 882 The samples for the measurements of ΣNa in the filtered supernatants after commencing the
 883 dissolution were prepared by mass-to-volume dilution. All the measurements of ΣNa are summarized
 884 in Table III.2-15 and plotted in Figure III.2-11.

885 While the mass-to-volume dilution technique frequently underestimated ΣNa in the Experiment 1
 886 conducted under TP 20-01 Revision 0 (Section III.1.4; Figure III.1-11), the technique showed better
 887 accuracy in reproducing the loaded ΣNa in the Experiment 2 conducted under TP 20-01 Revision 0
 888 (This section; Figure III.2-11). While the volume-to-volume dilution technique accurately
 889 reproduced ΣNa in the Experiment 1 conducted under TP 20-01 Revision 0 (Section III.1.4; Figure
 890 III.1-11), the technique showed lower accuracy in reproducing the loaded ΣNa in the Experiment 2
 891 conducted under TP 20-01 Revision 0 (This section; Figure III.2-11). While in theory the mass-to-
 892 volume dilution technique is more accurate for denser solutions than volume-to-volume dilution, it is
 893 not clear why the opposite is observed from the measurements of ΣNa performed for Experiments 1
 894 and 2. The two dilution techniques do not result in observable differences for the range of solution
 895 densities considered in the recipe (Table II.1-2 and Table II.2-2) under the overall laboratory
 896 operation of SNL WIPP Geochemistry Program.

897 Statistical analysis of the data is summarized in Table III.2-16 and Figure III.2-12B. Experiments
 898 conducted under both TPs show identical results.


899 **Table III.2-13. Time-dependent measurements of ΣNa (M, mol/L) under TP 08-02**
 900 **Revision 0.**

ΣNa (M)	Aging time (Days)							
Reactor ID	741	1020	1069	1118	1167	1293	1379	1461
PbCO_3 0.01/0.15-1	1.60E-01	1.82E-01	1.81E-01	1.60E-01	1.75E-01	1.65E-01	1.55E-01	1.69E-01
PbCO_3 0.01/0.15-2	1.57E-01	1.76E-01	1.73E-01	1.56E-01	1.70E-01	1.66E-01	1.54E-01	1.63E-01
PbCO_3 0.05/0.15-1	1.95E-01	2.04E-01	1.94E-01	1.90E-01	1.98E-01	1.88E-01	1.80E-01	1.92E-01
PbCO_3 0.05/0.15-2	1.91E-01	2.08E-01	1.95E-01	1.89E-01	2.00E-01	1.96E-01	1.83E-01	1.91E-01

PbCO ₃ 0.5/0.15-1	5.50E-01	5.55E-01	5.09E-01	4.98E-01	5.28E-01	5.20E-01	5.21E-01	5.18E-01
PbCO ₃ 0.5/0.15-2	5.15E-01	5.36E-01	5.27E-01	5.13E-01	5.44E-01	5.47E-01	5.34E-01	5.34E-01
PbCO ₃ 1.0/0.15-1	9.12E-01	9.05E-01	9.19E-01	9.04E-01	9.32E-01	9.29E-01	9.31E-01	9.21E-01
PbCO ₃ 1.0/0.15-2	9.32E-01	8.94E-01	9.12E-01	9.11E-01	9.28E-01	9.24E-01	9.48E-01	9.15E-01
PbCO ₃ 1.0/0.3-1	9.00E-01	1.05E+00	1.03E+00	1.05E+00	1.09E+00	1.07E+00	1.11E+00	1.05E+00
PbCO ₃ 1.0/0.3-2	1.07E+00	1.05E+00	1.05E+00	1.07E+00	1.07E+00	1.07E+00	1.09E+00	1.04E+00

901

902 Figure III.2-10. Plot of the time-dependent measurements of ΣNa (M, mol/L) under TP
 903 08-02 Revision in Table III.2-13. Orange dots on vertical axes are the initial
 904 loadings of ΣNa . Black squares and red error bars located on 600 days are
 905 averages and twice the standard deviations of all the measurements displayed to
 906 the right at their aging time (blue dots and circles, which represent data from
 907 duplicate reactors).

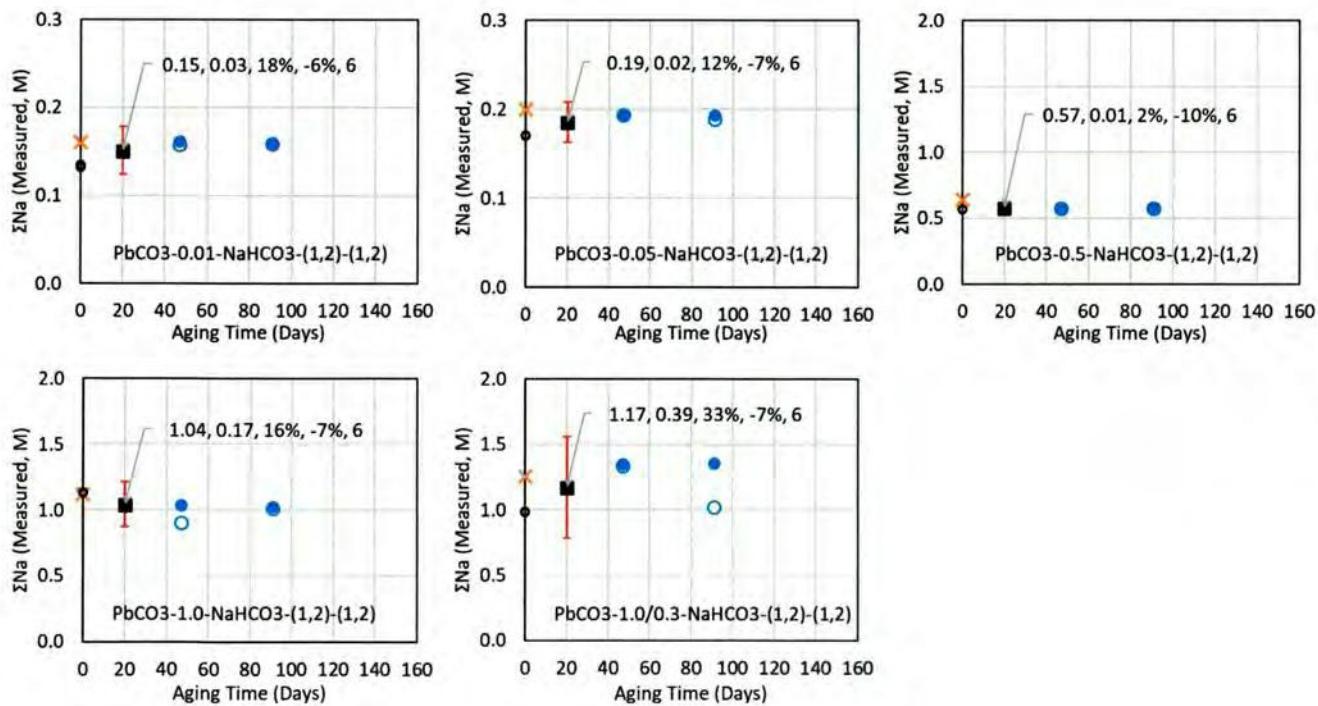
908

909

910 Table III.2-14. Statistics of measurements of ΣNa (M, mol/L) under TP 08-02 Revision 0
 911 in Table III.2-13.

Reactor ID	Average	2SD	%2SD	%Deviation	Counts
PbCO ₃ 0.01/0.15-(1,2)	1.66E-01	1.83E-02	11%	5%	16
PbCO ₃ 0.05/0.15-(1,2)	1.93E-01	1.43E-02	7%	0%	16
PbCO ₃ 0.5/0.15-(1,2)	5.28E-01	3.20E-02	6%	-8%	16
PbCO ₃ 1.0/0.15-(1,2)	9.20E-01	2.71E-02	3%	-6%	16
PbCO ₃ 1.0/0.3-(1,2)	1.05	0.09	9%	-6%	16

912

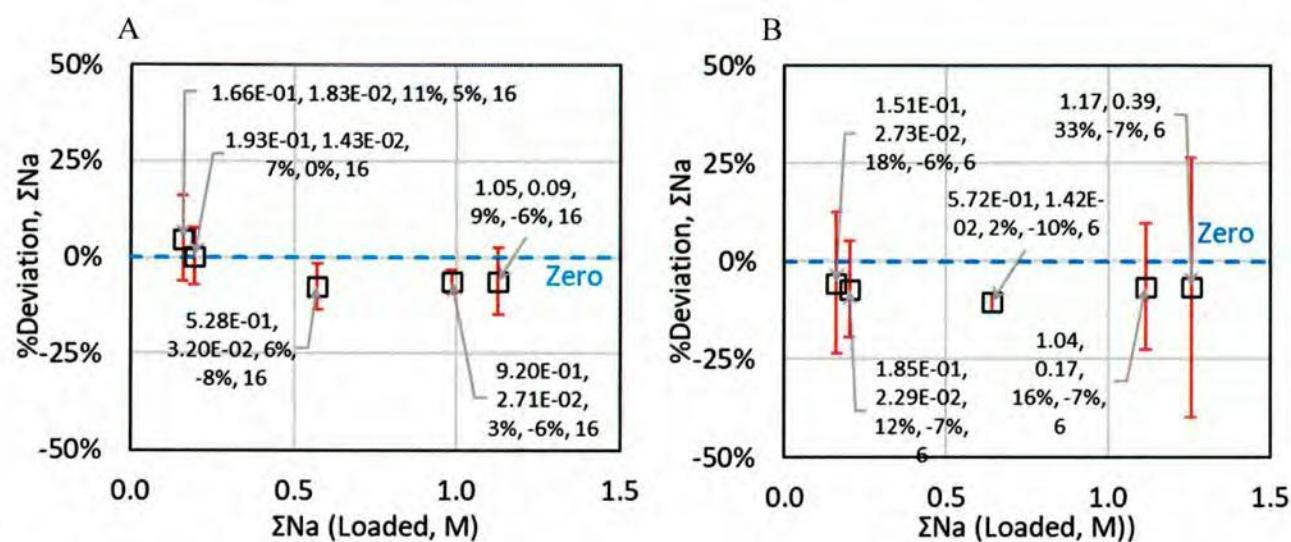

913 Table III.2-15. Time-dependent measurements of ΣNa (M, mol/L) under TP 20-01
 914 Revision 0.

Aging time (Days)	0	47	91
Reactor ID (n =)	Before adding $\text{PbCO}_3^{\#}$	1	2
$\text{PbCO}_3\text{-}0.01\text{-NaHCO}_3\text{-1-n}$	1.32E-01	1.61E-01	1.59E-01
$\text{PbCO}_3\text{-}0.01\text{-NaHCO}_3\text{-2-n}$	1.34E-01	1.58E-01	1.59E-01
$\text{PbCO}_3\text{-}0.05\text{-NaHCO}_3\text{-1-n}$	1.70E-01	1.92E-01	1.94E-01
$\text{PbCO}_3\text{-}0.05\text{-NaHCO}_3\text{-2-n}$	1.71E-01	1.94E-01	1.89E-01
$\text{PbCO}_3\text{-}0.5\text{-NaHCO}_3\text{-1-n}$	5.65E-01	5.81E-01	5.78E-01
$\text{PbCO}_3\text{-}0.5\text{-NaHCO}_3\text{-2-n}$	5.62E-01	5.71E-01	5.73E-01
$\text{PbCO}_3\text{-}1.0\text{-NaHCO}_3\text{-1-n}$	1.13E+00	1.04E+00	1.03E+00
$\text{PbCO}_3\text{-}1.0\text{-NaHCO}_3\text{-2-n}$	1.13E+00	9.07E-01	1.01E+00
$\text{PbCO}_3\text{-}1.0/0.3\text{-NaHCO}_3\text{-1-n}$	9.82E-01	1.35E+00	1.36E+00
$\text{PbCO}_3\text{-}1.0/0.3\text{-NaHCO}_3\text{-2-n}$	9.80E-01	1.33E+00	1.02E+00

915 #Duplicate measurements of the six solutions described in Table II.2-2 prior to adding to the solid-containing vials. volume-
 916 to-volume dilution.

917

918 Figure III.2-11. Plot of the time-dependent measurements of ΣNa (M, mol/L) under TP
 919 20-01 Revision in Table III.2-15. Orange \times s on the vertical axes are the initial
 920 loading of ΣNa by the recipe. Black squares and red error bars located on 20 days
 921 are averages and twice the standard deviations of all the measurements displayed
 922 to the right at their aging time (blue dots and circles, which represent data from
 923 duplicate reactors).


926
927Table III.2-16. Statistics of measurements of ΣNa (M, mol/L) under TP 20-01 Revision 0
in Table III.2-15.

Reactor ID	Average	2SD	%2SD	%Deviation	Counts
PbCO3-0.01-NaHCO3-(1,2)-(1,2)	1.51E-01	2.73E-02	18%	-6%	6
PbCO3-0.05-NaHCO3-(1,2)-(1,2)	1.85E-01	2.29E-02	12%	-7%	6
PbCO3-0.5-NaHCO3-(1,2)-(1,2)	5.72E-01	1.42E-02	2%	-10%	6
PbCO3-1.0-NaHCO3-(1,2)-(1,2)	1.04E+00	1.68E-01	16%	-7%	6
PbCO3-1.0/0.3-NaHCO3-(1,2)-(1,2)	1.17E+00	3.87E-01	33%	-7%	6

928

Figure III.2-12. Plot of the statistics of ΣNa in A: Table III.2-14 (TP 08-02 Revision 0)
and B: Table III.2-16 (TP 20-01 Revision 0).

931

932

933

934

III.2.5. ΣCl

935

Not available.

936

Table III.2-17. Time-dependent measurements of ΣCl under TP 08-02 Revision 0.

937

 ΣCl not reported in Kirkes et al. (2014)

938

Figure III.2-13. Plot of the time-dependent measurements of ΣCl under TP 08-02 Revision in Table III.2-17.

940

 ΣCl not reported in Kirkes et al. (2014)

941 Table III.2-18. Statistics of measurements of ΣCl under TP 08-02 Revision 0 in Table
942 III.2-17.

943 ΣCl not reported in Kirkes et al. (2014)

944 Table III.2-19. Time-dependent measurements of ΣCl under TP 20-01 Revision 0.

945 No measurements as of 6/20/2021

946 Figure III.2-14. Plot of the time-dependent measurements of ΣCl under TP 20-01
947 Revision in Table III.2-19.

948 No measurements as of 6/20/2021

949 Table III.2-20. Statistics of measurements of ΣCl under TP 20-01 Revision 0 in Table
950 III.2-19.

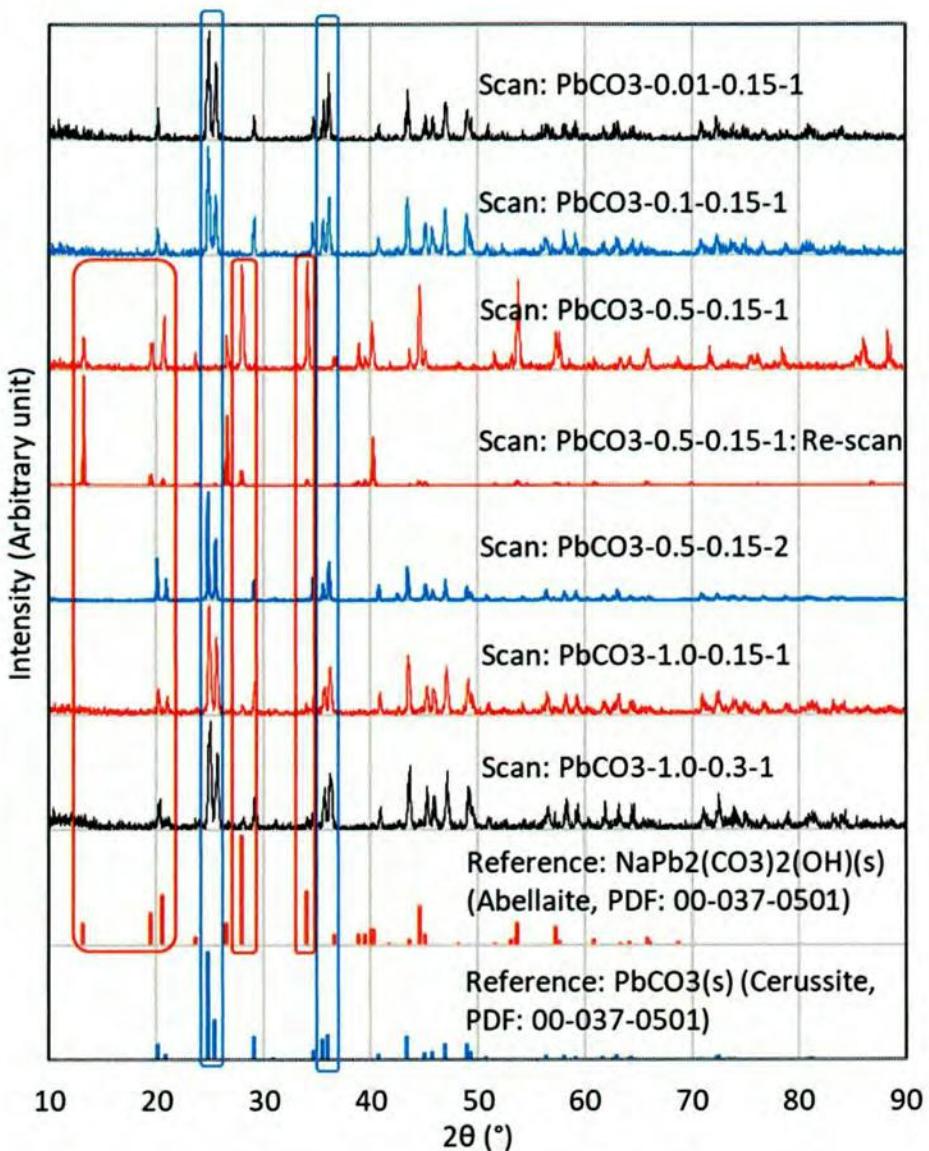
951 No measurements as of 6/20/2021

952 Figure III.2-15. Plot of the statistics of ΣCl in Table III.2-18 and Table III.2-20.

953 No measurements as of 6/20/2021

954 III.2.6. Solid Characterization

955 One of the duplicates for the loadings of NaHCO_3 and NaCl at 0.5 and 0.15 with reactor ID of
956 $\text{PbCO}_3\text{-}0.5\text{-}0.15\text{-}1$ showed abellaite ($\text{NaPb}_2(\text{CO}_3)_2(\text{OH})(\text{s})$) formation (Figure III.2-16). Solids
957 collected from $\text{PbCO}_3\text{-}1.0\text{-}0.15\text{-}1$ and $\text{PbCO}_3\text{-}1.0\text{-}0.3\text{-}1$ also displayed sign for abellaite formation.


958 No sign of abellaite formation was observed from the XRD scans of the solid samples generated
959 under TP 20-01 Revision 0 (Figure III.2-17).

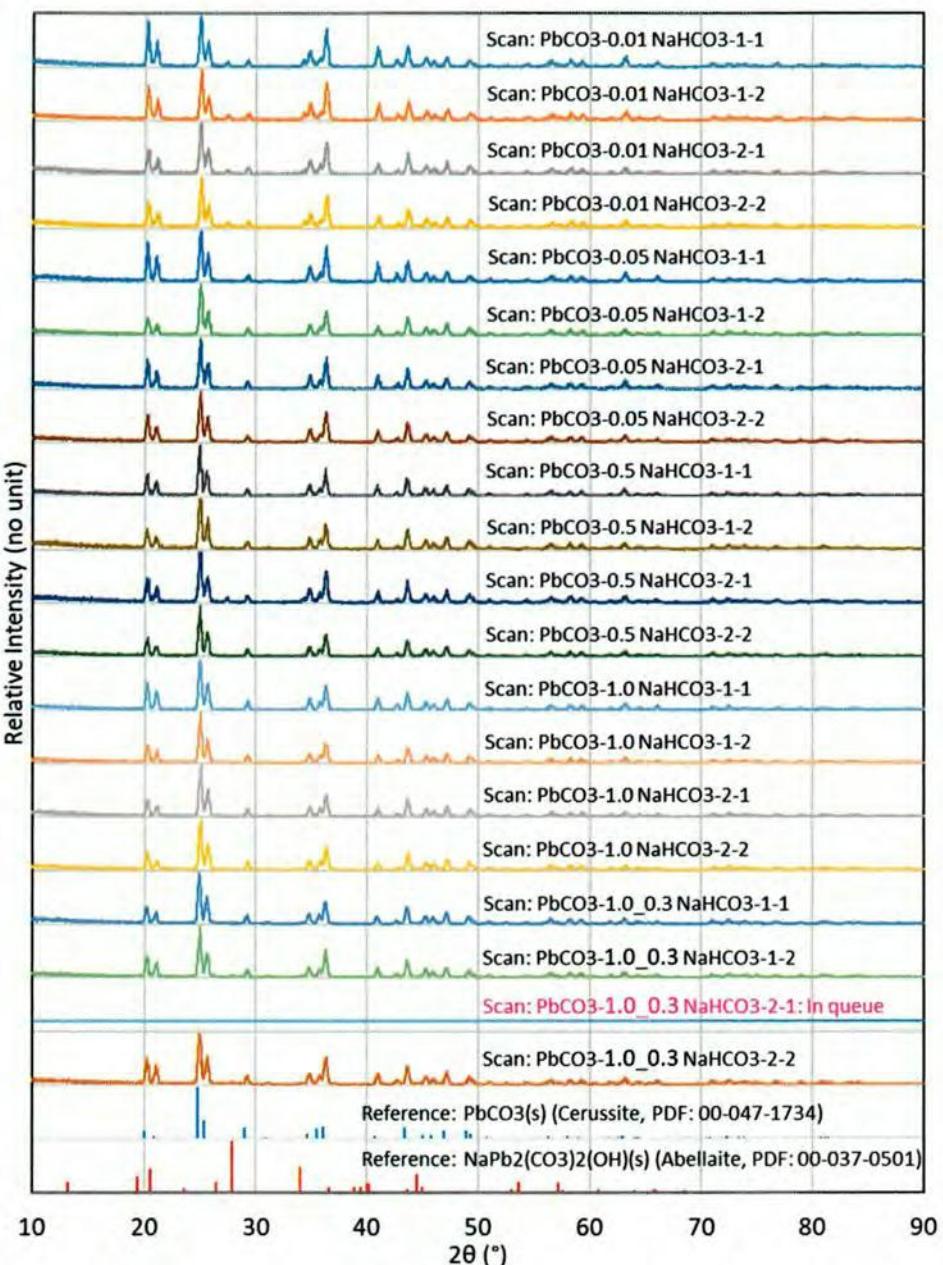
960 Figure III.2-16. XRD scans of solids collected from Experiment 2 conducted under TP
961 08-02 Revision 0. Two blue elongated rectangles locate the positions of major

962

reference peaks of cerussite, and three red elongated rectangles locate those of abellaite.

963

964


Figure III.2-17. XRD scans of solids collected from Experiment 2 conducted under TP 20-01 Revision 0. The last digit of sample ID, i.e., -1 and -2 stands for solid

965

966

967
968

sample collected after 47 and 91 days of equilibration, respectively. Solid obtained from PbCO₃-1.0_0.3 NaHCO₃-2-1 is in the queue.

969

970

III.2.7. Summary

Experiment 2, where excess PbCO₃(s) (cerussite) was added to background solutions of incremental concentrations of NaHCO₃ spiked with a constant NaCl concentration, was performed using protocols in TP 08-02 Revision 0. This experiment was assumed to be subject to CO₂(g) loss (not gain) and inadvertent contamination of the reactors by unknown sources due to repeated entries during sampling and aging times in the order of multiple years. The same experiment was performed under the protocols of TP 20-01 Revision 0 using gloveboxes for minimal CO₂ intrusion. These

977 protocols involved the preparation of multiple replicates at the termination at each timed investigation
978 to exclude the possibilities of $\text{CO}_2(\text{g})$ intrusion and inadvertent contamination of the reactors. The
979 last sampling under TP 20-01 Revision 0 was conducted on 91 days of aging, which is much earlier
980 than the first sampling on 741 days of aging under TP 08-02 Revision 0.

981 The recorded pH_r values from Experiment 2 showed two groups (green and orange ovals in Figure
982 III.2-3). The pH_r in the green ovals were obtained from reactors of low NaHCO_3 loadings (see
983 recipes in Table II.2-1 and Table II.2-2), and the values from the old and new experiments are
984 statistically identical. That is, two different protocols of the TPs did not influence the pH_r because
985 the partial pressures of $\text{CO}_2(\text{g})$ are close enough to the atmospheric partial pressure of $\text{CO}_2(\text{g})$, and as
986 a result, the $\text{CO}_2(\text{g})$ loss was minimal.²⁷ The pH_r in the orange ovals were obtained from reactors
987 having higher NaHCO_3 loadings (see recipes in Table II.2-1 and Table II.2-2), and the application of
988 different protocols (i.e., use of a glovebox for minimal $\text{CO}_2(\text{g})$ intrusion) resulted in statistically
989 different values of pH_r. Less $\text{CO}_2(\text{g})$ loss under the protocols of TP 20-01 Revision 0 effectively kept
990 the pH_r lower than the experiments conducted under the protocols of TP 08-02 Revision 0 via
991 Reaction (6).

992 The difference of the ΣPb behavior described in Figure III.2-6 can be explained by the extent of loss
993 of $\text{CO}_2(\text{g})$ via Reaction (7). More loss of $\text{CO}_2(\text{g})$ under the protocols of TP 08-02 Revision 0 resulted
994 in driving Reaction (7) to the right, increasing the ΣPb , while less loss of $\text{CO}_2(\text{g})$ under the protocols
995 of TP 20-01 Revision 0 resulted in the suppression of ΣPb .

996 Statistical comparison of ΣCO_3 between the two protocols is not currently available (Figure III.2-9).
997 Statistically, it can be stated with 95% confidence that Experiment 2 under TP 08-02 Revision 0 lost
998 ΣCO_3 in four conditions out of five via Reaction (6), which could provide the excess OH^- needed to
999 form abellaite at the expense of cerussite via Reaction (1). Inaccurate loading of NaHCO_3 can be one
1000 explanation for the lower recovery of ΣCO_3 , but this can be eliminated given the higher accuracy
1001 measurements of ΣNa (Figure III.2-12A) and mass balance calculations.

1002 The difference of H^+ concentration for the last three experimental conditions (marked with orange
1003 ovals in Figure III.2-3) can be approximated by a factor of 10, while the difference of ΣPb for the

²⁷ The calculated initial $\text{PCO}_2(\text{g})$ are $10^{-3.1}$ and $10^{-1.7}$ atm under TP 08-02 Revision 0, and $10^{-2.4}$ and $10^{-1.7}$ atm under TP 20-01 Revision 0. Note the slight difference in the NaHCO_3 loadings in the reactors of lowest NaHCO_3 loading (Table II.2-1 and Table II.2-2).

1004 same set of reactors can be approximated by a factor of 2 (marked with orange ovals in Figure
1005 III.2-6), which means that the stoichiometry of Reaction (7) cannot explain the change of pHr.

1006 Considering $\Sigma\text{CO}_3 > \Sigma\text{Pb}$ by at least one order of magnitude (Figure III.2-7 and Figure III.2-4), the
1007 main driver to determine the pHr would be Reaction (6).

1008 The ΣNa are statistically identical (Figure III.2-12), so the possibility of inadvertent addition of Na-
1009 containing salts, e.g., NaOH, that can drive Reaction (1) to the right can be eliminated.

1010 One of the replicates where abellaite was observed (Reactor ID: PbCO₃ 0.5/0.15-1; Figure III.2-16)
1011 showed a wider spread of pHr (blue dots in the third panel of upper row of Figure III.2-1). The
1012 sudden drop of pHr at around 1400 days could be an indication of abellaite formation by OH⁻
1013 removal from solution via Reaction (1). This observation implies that the pHr boundary between
1014 cerussite and abellaite may be located at pHr of 9.0 ~ 9.5, where cerussite and abellaite could coexist.
1015 The reactors PbCO₃ 0.01/0.15-(1,2) showed similar spread of pHr between the replicates (first panel
1016 in Figure III.2-1), but lower loading of ΣNa than PbCO₃ 0.5/0.15-(1,2) would explain no observation
1017 of abellaite. No mineralogical transformation was observed under TP 20-01 Revision 0 (Figure
1018 III.2-17), which is supported by less CO₂(g) loss and thus lower pHr (orange oval in A and B of
1019 Figure III.2-3).

1020 IV. DISCUSSION

1021 IV.1. Experiment 1

1022 Results of pHr, ΣPb , ΣSO_4 , and ΣNa under protocols of both TPs are statistically identical (Figure
1023 III.1-3 for pHr; Figure III.1-6 for ΣPb ; Figure III.1-9 for ΣSO_4 ; Figure III.1-12 for ΣNa). Considering
1024 higher accuracy observed in the ΣNa measurements, the measurements of ΣCl under TP 20-01
1025 Revision 0 seem impacted by lower accuracy of the instrument (compare Figure III.1-12B and Figure
1026 III.1-15B).

1027 The possibility of CO₂(g) intrusion under TP 08-02 Revision 0 cannot be excluded, but even if it is the
1028 case, the repetition of Experiment 1 under the protocols of TP 20-01 Revision 0 with CO₂(g) intrusion
1029 excluded proved that the results are statistically identical, and the CO₂(g) intrusion would not influence
1030 the thermodynamic interpretation of Experiment 1 conducted under TP 08-02 Revision 0.

1031 Inadvertent contamination of the reactors because of repeated entries for sampling might have
1032 happened while Experiment 1 was performed under TP 08-02 Revision 0, but even if it is the case, the

1033 repetition of Experiment 1 under TP 20-01 Revision 0 where two replicates were used up in a time-
1034 dependent investigation proved that any such contamination is within our experimental and analytical
1035 uncertainty.

1036 **IV.2. Experiment 2**

1037 In Experiment 2, $\text{CO}_2(\text{g})$ loss seemed to occur rather than $\text{CO}_2(\text{g})$ gain by intrusion, which is supported
1038 by the loading of NaHCO_3 . The behavior observed from the measurements of pHr (Figure III.2-3),
1039 ΣPb (Figure III.2-6), and ΣCO_3 (Figure III.2-9) is consistent with the mass action law described by
1040 Reactions (6) and (7). The source of excess OH^- to drive Reaction (1) to the right also can be
1041 attributed to Reaction (6) (c.f., Krauskopf and Bird, 1995).

1042 Inadvertent contamination of the reactors because of repeated entries for sampling might have
1043 happened while Experiment 1 was performed under TP 08-02 Revision 0, but even if it is the case, the
1044 repetition of Experiment 1 under TP 20-01 Revision 0 where two replicates were used up in the timed
1045 investigation proved that such contamination can be considered a negligible source of uncertainty.

1046 **IV.3. Aging Time and Status of System Equilibrium**

1047 For Experiment 1, the first sampling was conducted after 360 days of aging, and the last sampling after
1048 1368 days of aging under TP 08-02 Revision 0. Under TP 20-01 Revision 0, the first sampling was
1049 conducted after 43 days of aging, and the second sampling after 111 days of aging.

1050 For Experiment 2, the first sampling was conducted after 741 days of aging, and the last sampling after
1051 1461 days of aging under TP 08-02 Revision 0. Under TP 20-01 Revision 0, the first sampling was
1052 conducted after 47 days of aging, and the second sampling after 91 days of aging.

1053 Interpretation of the experimental data in this report was performed using the averages and twice the
1054 standard deviations of the time-dependent measurements. Averages of the concentrations of
1055 conservative/non-reactive components showed reliable accuracy (%Deviation from the loadings) and
1056 precision (narrow %2SD). Statistically, no sign of consistent time-dependent behavior of
1057 measurements was observed. Therefore, both Experiments 1 and 2 reached equilibria under the
1058 protocols of both TPs.

1059 **IV.4. Bottle Material**

1060 Plastic bottles (HDPE) were used when Experiments 1 and 2 were performed under TP 08-02 Revision
1061 0. Borosilicate glass bottles were used when Experiments 1 and 2 were performed under TP 20-01

1062 Revision 0. The uncertainty that can come from the differences in the bottle materials did not show up
1063 in the measurements.

1064 V. CONCLUSIONS

1065 From our analyses we can conclude that the results of Experiment 1 performed under the protocols of
1066 TP 08-02 Revision 0 were not affected by sample contamination or CO₂(g) intrusion. Both sample
1067 contamination and CO₂(g) intrusion can be considered negligible sources of uncertainty as part of our
1068 laboratory operations. Thus, the results would be useful to construct or validate a lead-sulfate
1069 thermodynamic model after implementing a reliable lead-chloride model (e.g., Jang, 2021b).

1070 The results of Experiment 2 performed under the protocols of TP 08-02 Revision 0 were not affected by
1071 sample contamination. No increase of Σ Na was observed that could have driven the Reaction (1) in
1072 page 4 to the right. Sample contamination, if it occurred, can be considered a negligible source of
1073 uncertainty. Results of Experiment 2 performed under the protocols of TP 08-02 Revision 0 indicated
1074 CO₂(g) losses, not gains of CO₂(g) by intrusion. Evidence for CO₂(g) loss is consistent with Reactions
1075 (1), (6), and (7). They would be useful to construct or validate a lead-carbonate model after
1076 implementing a reliable lead-chloride model.

1077 VI. ACKNOWLEDGMENT

1078 Technical Review was performed by Carlos Jove-Colon. QA review by Shelly Nielsen. Management
1079 Review by Paul Shoemaker. Reviews were conducted under SNL WIPP QA Program. Comments and
1080 resolutions are documented. Authors are grateful for the constructive comments from the Reviewers.

1081 VII. REFERENCES

1082 Ismail, A. E., M. B. Nemer, G. T. Roselle, and Y. Xiong, 2008. Iron, Lead, Sulfide, and EDTA
1083 Solubilities. Test Plan TP 08-02, Revision 0. Sandia National Laboratories, Carlsbad, New Mexico,
1084 U.S.A. ERMS 548466.

1085 Jang, J., 2020. Factors for Conversion of Molarity to molality and molality to Molarity. Memo to SNL
1086 WIPP Records Center and SNL WIPP Geochemistry. October 16, 2020. Sandia National
1087 Laboratories, Carlsbad, New Mexico, U.S.A. ERMS 574276.

1088 Jang, J., 2021a. Memo of Correction for the Third Milestone Report on Test Plan TP 08-02, "Iron, Lead,
1089 Sulfide, and EDTA Solubilities", Revision 0 (ERMS 561911), Revision 1 (ERMS 562645), and
1090 Revision 2 (ERMS 562947). November 1, 2021, Sandia National Laboratories, Carlsbad, New
1091 Mexico, U.S.A. ERMS 576204.

1092 Jang, J., 2021b. Revisit to the Pitzer Geochemical Thermodynamic Model for the PbCl₂(s) - HCl - H₂O
 1093 System. Memo to SNL WIPP Records Center and SNL WIPP Geochemistry, May 25, 2021. Sandia
 1094 National Laboratories, Carlsbad, New Mexico, U.S.A. ERMS 575309.

1095 Jang, J., P. Hora, L. Kirkes, C. Miller, and L. Zhang, 2021. Analysis Plan for the Analysis Report
 1096 documenting the Assessment of the Solubility of Lead, EDTA, and other Organic Ligands in Non-
 1097 Sulfide Systems performed under TP 08-02 Revision 0 and under TP 20-01 Revision 0. Analysis
 1098 Plan AP-192 Revision 0. Sandia National Laboratories, Carlsbad, New Mexico, U.S.A. ERMS
 1099 575694.

1100 Kirkes, L., T. Olivas, J. Jang, S. Kim, and Y. Xiong, 2014. Third Milestone Reports on Test Plan TP 08-
 1101 02, "Iron, Lead, Sulfide, and EDTA Solubilities", Revision 2, Sandia National Laboratories,
 1102 Carlsbad, New Mexico, U.S.A., ERMS 562947.

1103 Kirkes, L., and Y. Xiong, 2019. Solid Characterization Milestone Report on Test Plan TP 08-02, "Iron,
 1104 Lead, Sulfide, and EDTA Solubilities", Revision 1. Sandia National Laboratories, Carlsbad, New
 1105 Mexico, U.S.A., ERMS 572290.

1106 Kirkes, L., and L. Zhang, 2020. Solubility and Complexation of Lead in Non-Sulfidic Brines of WIPP-
 1107 Relevance. Test Plan TP 20-01, Revision 0. Sandia National Laboratories, Carlsbad, New Mexico,
 1108 U.S.A. ERMS 573598.

1109 Krauskopf, K. B., and D. K. Bird, 1995. Chapter 3. Solution - Mineral Equilibria Part 1: Carbonates, IN:
 1110 K. B. Krauskopf and D. K. Bird, 1995. Introduction to Geochemistry. New York, McGraw-Hill.

1111 Nielsen, S. R., 2020. Analyses. Nuclear Waste Management Procedure NP 9-1 Revision 11. September
 1112 15, 2020. Sandia National Laboratories, Carlsbad, New Mexico, U.S.A. ERMS 574015.

1113 Stumm, W., and J. J. Morgan, 1996. *Aquatic Chemistry*. John Wiley & Sons, New York.

1114 Wolery, T., and R. L. Jarek, 2003. Software User's Manual, EQ3/6, Version 8.0, 01/01/2003. Sandia
 1115 National Laboratories, Carlsbad, New Mexico, U.S.A. ERMS 548926.

1116 (No broken link found by Jay Jang on 11/17/2021. Total line number = 1116 including this line)

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.