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Neuromorphic computing

• Computing devices inspired by the human brain    

• Artificial neurons communicate with each other by sending spikes 
along synapses    

• Examples: TrueNorth (IBM), Loihi (Intel), SpiNNaker (U. Manchester), 
Neurogrid (Stanford), BrainScales (U. Heidelberg)
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Neuromorphic computing

• Originally intended for AI/machine learning        

• Neurons generalize threshold gates and Boolean gates, so neural 
networks can simulate conventional algorithms with polynomial 
overhead        

• Unclear if there's an advantage over conventional computing
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Our results

• Simple distributed algorithms can be implemented neuromorphically
with small loss of efficiency    

• Give a model for analyzing the resulting neuromorphic algorithms 
and comparing to conventional algorithms    

• Neuromorphic algorithms are sometimes faster than conventional 
algorithms in this model
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Our results

Assume non-negative integer edge lengths

• 𝐿 is distance from 𝑣𝑠 to 𝑣𝑡, 𝑈 is length of longest edge    

• Lower bounds take data-movement cost into account    

• 𝑘-hop lower bound is for the best-known algorithm, not for the problem   

• Compare with serial algorithms because neurons are more like gates than CPUs 
w.r.t. scalability
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Problem Neuromorphic Conventional

Shortest 𝑣𝑠 − 𝑣𝑡 path 𝑂(𝑛𝐿 + 𝑚) Ω(𝑚3/2)

Shortest 𝑘-hop 𝑣𝑠 − 𝑣𝑡
pathc

𝑂( 𝑛𝐿 + 𝑚 log 𝑘)
𝑂( 𝑛𝑘 + 𝑚 log(𝑛𝑈))

Ω(𝑘𝑚3/2)



Our results

Ignoring data-movement cost:

• Neuromorphic algorithms also speed up    

• 𝐿 is distance from 𝑣𝑠 to 𝑣𝑡, 𝑈 is length of longest edge    

June 14, 2021 6

Problem Neuromorphic Conventional

Shortest 𝑣𝑠 − 𝑣𝑡 path 𝑂(𝐿 + 𝑚) 𝑂(𝑚 + 𝑛 log𝑛)

Shortest 𝑘-hop 𝑣𝑠 − 𝑣𝑡
path

𝑂( 𝐿 + 𝑚 log𝑘)
𝑂(𝑚 log(𝑛𝑈))

𝑂(𝑘𝑚)



Our results

Theorem: There is a neuromorphic (1 + 𝑜(1)) −approximation 
algorithm for 𝑘-hop SSSP that runs in𝑂((𝑘𝑛 log 𝑛 + 𝑚) log(𝑘𝑈 log 𝑛))
time (or in 𝑂( 𝑘 log 𝑛 + 𝑚 log(𝑘𝑈 log 𝑛)) time when data-movement is 
ignored)

• Based on a known CONGEST algorithm [Nanongkai ‘14]

• Uses fewer neurons than exact algorithm
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Leaky-integrate and fire neurons

• Each neuron 𝑗 starts with a voltage of 𝑣𝑗,0

• Voltage updates based on decay and synaptic inputs        

ො𝑣𝑗(𝑡 + 1) = [𝑣𝑗(𝑡) − (𝑣𝑗(𝑡) − 𝑣𝑗,0)𝜏𝑗] + 𝑣𝑗,𝑠𝑦𝑛(𝑡)

• If voltage exceeds a threshold then neuron spikes/fires and voltage resets       

𝑓𝑗 𝑡 + 1 = ൝
1 ∶ ො𝑣𝑗 𝑡 + 1 ≥ 𝑣𝑗,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 ∶ ො𝑣𝑗 𝑡 + 1 < 𝑣𝑗,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑣𝑗 𝑡 + 1 = ൝
𝑣𝑗,𝑟𝑒𝑠𝑒𝑡: ො𝑣𝑗 𝑡 + 1 ≥ 𝑣𝑗,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
ො𝑣𝑗(𝑡 + 1): ො𝑣𝑗 𝑡 + 1 < 𝑣𝑗,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• Each synapse between neurons 𝑖 and 𝑗 has weight 𝑤𝑖𝑗 and delay 𝑑𝑖𝑗

𝑣𝑗,𝑠𝑦𝑛(𝑡) = σ𝑖=1
𝑛 (𝑓𝑖(𝑡 + 1 − 𝑑𝑖𝑗)𝑤𝑖𝑗
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Spiking neural network model

• Initial voltages 𝑣𝑗,0, decay rates 𝜏𝑗 , threshold voltages 𝑣𝑗,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 

weights 𝑤𝑖𝑗 , delays 𝑑𝑖𝑗 ≥ 1 are all programmable        

• To start computation, a set of start neurons spike

• Computation ends after fixed amount of time or a terminal neuron 
spikes        

• Output is state of output neurons        

• Network of neurons/synapses is fixed, but assume for now that it is 
programmable
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Neuromorphic SSSP algorithm

Setup:    

• Given 𝐺, 𝑣𝑠, construct neuron/synapse network to mimic 𝐺

• Set all decays 𝜏𝑗 to 0 (doesn't matter) 

• Set all initial voltages 𝑣𝑗,0 to 0        

• Set all threshold voltages 𝑣𝑗,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to 1        

• Set all weights 𝑤𝑖𝑗 to 1        

• Set delay 𝑑𝑖𝑗 to be length 𝑙 𝑖𝑗 in 𝐺

Execution

• At the start, 𝑣𝑠 sends a spike to each neighbor        

• Each neuron retransmits each spike it receives to each of its neighbors        

• Terminate when 𝑣𝑡 has received a spike
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Correctness and running time of SSSP algorithm

• Neuron 𝑣 first receives a spike at time 𝑡 iff 𝑣 is at distance 𝑡
from 𝑣𝑠

• The first time at which 𝑣𝑡 receives a spike is the answer        

• 𝑂(𝑛 +𝑚) time to setup, 𝑂(𝐿) time to execute
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Embedding problem

• In reality, the neuron/synapse graph is fixed        

• Assume the neuron/synapse graph is a crossbar        

• Need to “embed” input graph into crossbar
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The embedding

• Intuition: the 𝑖-th vertex maps to the induced subgraph on 𝑣1𝑖
− , … , 𝑣𝑛𝑖

− , 𝑣𝑖1
+ , … , 𝑣𝑖𝑛

+

• Edge 𝑖𝑗 in 𝐺 corresponds to arc 𝑣𝑖𝑗
+𝑣𝑖𝑗

− in the crossbar        

• Give each edge 𝑣𝑖𝑗
+𝑣𝑖𝑗

− delay 𝑙(𝑖𝑗) − 2|𝑖 − 𝑗| − 1, all other arcs unit delay    

• Lemma: The length of the path from 𝑣𝑖𝑖
− to 𝑣𝑗𝑗

− is 𝑙(𝑖𝑗)
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Dilation

• Recall we set each edge 𝑣𝑖𝑗
+𝑣𝑖𝑗

− to have delay 𝑙(𝑖𝑗) − 2|𝑖 − 𝑗| − 1

• This means 𝑙 𝑖𝑗 > 2 𝑖 − 𝑗 + 1 for all edges 𝑖𝑗

• So need to scale all edge lengths until shortest edge has length 2𝑛

• Blows up execution time by factor 𝑂(𝑛). Running time for SSSP goes 
from 𝑂(𝐿 + 𝑚 + 𝑛) to 𝑂(𝑛𝐿 + 𝑚)
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Messages

• Instead of sending a single spike, send a multi-bit message        

• For each neuron 𝑣, add log 𝜆 copies 𝑣1, … , 𝑣 log 𝜆

• When 𝑢 sends spike to 𝑣, send up to additional log 𝜆
spikes in parallel from 𝑢1, … , 𝑢 log 𝜆 to 𝑣1, … , 𝑣 log 𝜆 to 

communicate a value between 0 and 𝜆 in binary
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𝑘-hop SSSP algorithm

High-level description    

• Ignore embedding problem for now, setup phase the same 

• Instead of sending a spike from vertex 𝑢 to 𝑣, send log 𝑘 spikes in parallel from 
𝑢1, … , 𝑢 log 𝑘 to 𝑣1, … , 𝑣 log 𝑘 encoding a time-to-live (TTL) between 1 and 𝑘 in binary       

• 𝑣𝑠sends spikes with TTL's of 𝑘.        

• A vertex receiving spikes takes the highest TTL 𝑘′ and sends 𝑘′ − 1 to all its neighbors, if 
𝑘′ > 1

• Answer is time when 𝑣𝑡 first receives a message    

Correctness    

• If a vertex 𝑣 receives a spike packet with TTL of 𝑘′ at time 𝑡, then there is a path of 
length 𝑡 with ≤ 𝑘 − 𝑘′ + 1 arcs from 𝑣𝑠 to 𝑣
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𝑘-hop SSSP algorithm

To finish, we need to:   

• Describe for each vertex, threshold circuit to subtract 1         

• Just add 2𝑘 − 1. Circuit has 𝑂(log 𝑘) depth and 𝑂(log 𝑘) neurons   

• Describe for each vertex 𝑣, threshold circuit to take the max of many 
numbers. Circuit has 𝑂(log 𝑘) depth and 𝑂(indeg 𝑣 log 𝑘) neurons. 
Details omitted. 

• Take into account embedding cost
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Running time of $k$-hop SSSP algorithm

Ignoring embedding cost    

• 𝑂 log 𝑘 -depth circuit for taking max        

• 𝑂 log 𝑘 -depth circuit for decrementer

• Thus 𝑂 𝐿 log 𝑘 for spiking portion        

• Circuits computing max have 𝑂(indeg 𝑣 log 𝑘) neurons for vertex 𝑣, so total 
𝑂(𝑚 log 𝑘) neurons, so loading time is 𝑂(𝑚 log 𝑘)

• Total 𝑂((𝑚 + 𝐿) log 𝑘) running time   

With embedding cost    

• Spiking portion now takes 𝑂 𝑛𝐿 log 𝑘 time        

• Total 𝑂((𝑚 + 𝑛𝐿) log 𝑘) running time
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DISTANCE model

• Memory is made up of disk and registers        

• Data must be moved to a register for any operation, including 
reading       

• Memory comprises lattice points in the plane        

• Each lattice point can hold one data value, some lattice points are 
registers        

• Distances are Manhattan distances        

• Movement cost is the total distance that data moves
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Lower bound

Lemma: Suppose there are 𝑂(1) registers and the input has size 𝑚. Any 

algorithm that reads the entire input must incur Ω(𝑚
3

2) movement cost.  

Proof: Suppose one register and input data arranged in a 𝑚 by 𝑚 square. 
“Best-case scenario” is put the register in the middle. The average data point 
is distance Θ( 𝑚) from the register and thus incurs Θ( 𝑚) movement cost 
to be read.    
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𝑘-hop lower bound

A lower bound on the following algorithm:

• Let 𝑑𝑖𝑠𝑡𝑘 𝑣 be the (≤ 𝑘)-hop distance from 𝑣𝑠 to 𝑣.

• 𝑑𝑖𝑠𝑡0 𝑣𝑠 = 0, 𝑑𝑖𝑠𝑡0 𝑣 = ∞ for all 𝑣 ≠ 𝑣𝑠

• In 𝑖-th round, relax all edges 𝑢𝑣 to find 𝑑𝑖𝑠𝑡𝑖 𝑣

𝑑𝑖𝑠𝑡𝑖 𝑣 = min{𝑑𝑖𝑠𝑡𝑖−1 𝑣 , 𝑑𝑖𝑠𝑡𝑖−1 𝑢 + 𝑙 𝑢𝑣 }
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𝑘-hop lower bound

Lemma: If 𝑂(1) registers, then algorithm incurs Ω(𝑘𝑚
3

2) movement cost   

Proof: Each round involves relaxing all edges. Thus each round has 

Ω(𝑚
3

2) movement cost.   
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Summary

With data-movement cost

Without data-movement cost
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Problem Neuromorphic Conventional

Shortest 𝑣𝑠 − 𝑣𝑡 path 𝑂(𝑛𝐿 + 𝑚) Ω(𝑚3/2)

Shortest 𝑘-hop 𝑣𝑠 − 𝑣𝑡
pathc

𝑂( 𝑛𝐿 + 𝑚 log 𝑘)
𝑂( 𝑛𝑘 + 𝑚 log(𝑛𝑈))

Ω(𝑘𝑚3/2)

Problem Neuromorphic Conventional

Shortest 𝑣𝑠 − 𝑣𝑡 path 𝑂(𝐿 + 𝑚) 𝑂(𝑚 + 𝑛 log𝑛)

Shortest 𝑘-hop 𝑣𝑠 − 𝑣𝑡
path

𝑂( 𝐿 + 𝑚 log𝑘)
𝑂(𝑚 log(𝑛𝑈))

𝑂(𝑘𝑚)


