

Provable Advantages for Graph Algorithms in Spiking Neural Networks

Sandia
National
Laboratories

James B. Aimone, Yang Ho, Ojas Parekh, Cynthia Phillips, Ali Pinar, William Severa, Yipu Wang

Neuromorphic computing

- Computing devices inspired by the human brain
- Artificial neurons communicate with each other by sending spikes along synapses
- Examples: TrueNorth (IBM), Loihi (Intel), SpiNNaker (U. Manchester), Neurogrid (Stanford), BrainScales (U. Heidelberg)

Neuromorphic computing

- Originally intended for AI/machine learning
- Neurons generalize threshold gates and Boolean gates, so neural networks can simulate conventional algorithms with polynomial overhead
- Unclear if there's an advantage over conventional computing

Our results

- Simple distributed algorithms can be implemented neuromorphically with small loss of efficiency
- Give a model for analyzing the resulting neuromorphic algorithms and comparing to conventional algorithms
- Neuromorphic algorithms are sometimes faster than conventional algorithms in this model

Our results

Assume non-negative integer edge lengths

Problem	Neuromorphic	Conventional
Shortest $v_s - v_t$ path	$O(nL + m)$	$\Omega(m^{3/2})$
Shortest k -hop $v_s - v_t$ paths	$O((nL + m) \log k)$ $O((nk + m) \log(nU))$	$\Omega(km^{3/2})$

- L is distance from v_s to v_t , U is length of longest edge
- Lower bounds take *data-movement cost* into account
- k -hop lower bound is for the best-known algorithm, not for the problem
- Compare with serial algorithms because neurons are more like gates than CPUs w.r.t. scalability

Our results

Ignoring data-movement cost:

Problem	Neuromorphic	Conventional
Shortest $v_s - v_t$ path	$O(L + m)$	$O(m + n \log n)$
Shortest k -hop $v_s - v_t$ path	$O((L + m) \log k)$ $O(m \log(nU))$	$O(km)$

- Neuromorphic algorithms also speed up
- L is distance from v_s to v_t , U is length of longest edge

Our results

Theorem: There is a neuromorphic $(1 + o(1))$ –approximation algorithm for k -hop SSSP that runs in $O((kn \log n + m) \log(kU \log n))$ time (or in $O((k \log n + m) \log(kU \log n))$ time when data-movement is ignored)

- Based on a known CONGEST algorithm [Nanongkai '14]
- Uses fewer neurons than exact algorithm

Leaky-integrate and fire neurons

- Each neuron j starts with a voltage of $v_{j,0}$
- Voltage updates based on decay and synaptic inputs

$$\hat{v}_j(t + 1) = [v_j(t) - (v_j(t) - v_{j,0})\tau_j] + v_{j,syn}(t)$$

- If voltage exceeds a threshold then neuron spikes/fires and voltage resets

$$f_j(t + 1) = \begin{cases} 1 : \hat{v}_j(t + 1) \geq v_{j,threshold} \\ 0 : \hat{v}_j(t + 1) < v_{j,threshold} \end{cases}$$

$$v_j(t + 1) = \begin{cases} v_{j,reset} : \hat{v}_j(t + 1) \geq v_{j,threshold} \\ \hat{v}_j(t + 1) : \hat{v}_j(t + 1) < v_{j,threshold} \end{cases}$$

- Each synapse between neurons i and j has weight w_{ij} and delay d_{ij}

$$v_{j,syn}(t) = \sum_{i=1}^n (f_i(t + 1 - d_{ij}) w_{ij}$$

Spiking neural network model

- Initial voltages $v_{j,0}$, decay rates τ_j , threshold voltages $v_{j,threshold}$, weights w_{ij} , delays $d_{ij} \geq 1$ are all programmable
- To start computation, a set of start neurons *spike*
- Computation ends after fixed amount of time or a terminal neuron spikes
- Output is state of output neurons
- Network of neurons/synapses is fixed, but assume for now that it is programmable

Neuromorphic SSSP algorithm

Setup:

- Given G, v_s , construct neuron/synapse network to mimic G
- Set all decays τ_j to 0 (doesn't matter)
- Set all initial voltages $v_{j,0}$ to 0
- Set all threshold voltages $v_{j,threshold}$ to 1
- Set all weights w_{ij} to 1
- Set delay d_{ij} to be length $l(ij)$ in G

Execution

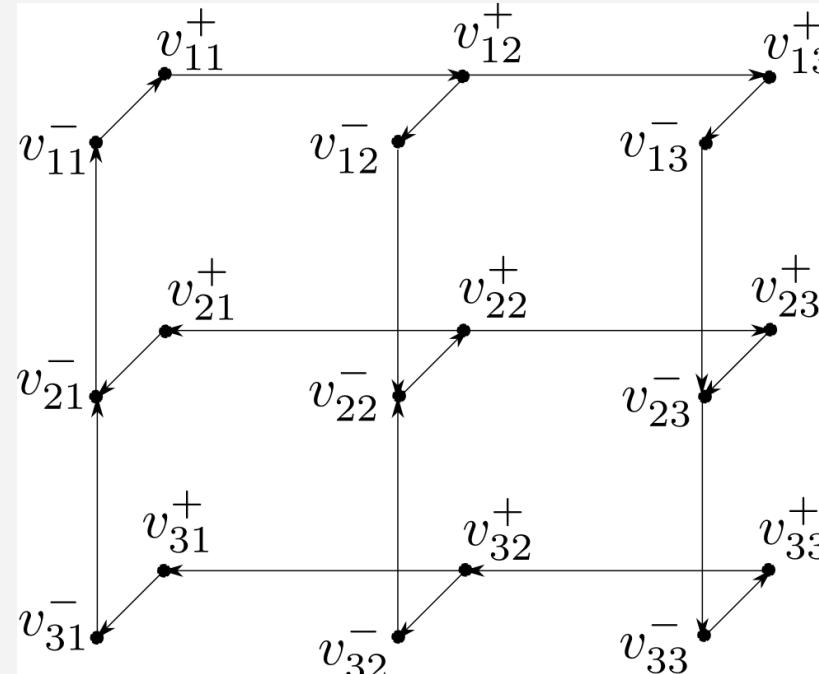
- At the start, v_s sends a spike to each neighbor
- Each neuron retransmits each spike it receives to each of its neighbors
- Terminate when v_t has received a spike

Correctness and running time of SSSP algorithm

- Neuron v first receives a spike at time t iff v is at distance t from v_s
- The first time at which v_t receives a spike is the answer
- $O(n + m)$ time to setup, $O(L)$ time to execute

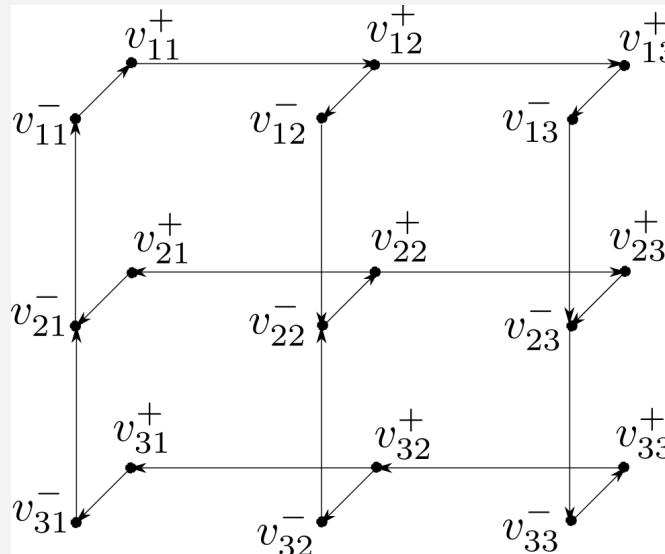
Embedding problem

- In reality, the neuron/synapse graph is fixed
- Assume the neuron/synapse graph is a crossbar
- Need to “embed” input graph into crossbar



The embedding

- Intuition: the i -th vertex maps to the induced subgraph on $v_{1i}^-, \dots, v_{ni}^-, v_{i1}^+, \dots, v_{in}^+$
- Edge ij in G corresponds to arc $v_{ij}^+ v_{ij}^-$ in the crossbar
- Give each edge $v_{ij}^+ v_{ij}^-$ delay $l(ij) = 2|i - j| - 1$, all other arcs unit delay
- Lemma: The length of the path from v_{ii}^- to v_{jj}^- is $l(ij)$



Dilation

- Recall we set each edge $v_{ij}^+ v_{ij}^-$ to have delay $l(ij) = 2|i - j| - 1$
- This means $l(ij) > 2|i - j| + 1$ for all edges ij
- So need to scale all edge lengths until shortest edge has length $2n$
- Blows up execution time by factor $O(n)$. Running time for SSSP goes from $O(L + m + n)$ to $O(nL + m)$

Messages

- Instead of sending a single spike, send a multi-bit message
- For each neuron v , add $\lceil \log \lambda \rceil$ copies $v_1, \dots, v_{\lceil \log \lambda \rceil}$
- When u sends spike to v , send up to additional $\lceil \log \lambda \rceil$ spikes in parallel from $u_1, \dots, u_{\lceil \log \lambda \rceil}$ to $v_1, \dots, v_{\lceil \log \lambda \rceil}$ to communicate a value between 0 and λ in binary

k -hop SSSP algorithm

High-level description

- Ignore embedding problem for now, setup phase the same
- Instead of sending a spike from vertex u to v , send $\lceil \log k \rceil$ spikes in parallel from $u_1, \dots, u_{\lceil \log k \rceil}$ to $v_1, \dots, v_{\lceil \log k \rceil}$ encoding a time-to-live (TTL) between 1 and k in binary
- v_s sends spikes with TTL's of k .
- A vertex receiving spikes takes the highest TTL k' and sends $k' - 1$ to all its neighbors, if $k' > 1$
- Answer is time when v_t first receives a message

Correctness

- If a vertex v receives a spike packet with TTL of k' at time t , then there is a path of length t with $\leq k - k' + 1$ arcs from v_s to v

k -hop SSSP algorithm

To finish, we need to:

- Describe for each vertex, threshold circuit to subtract 1
 - Just add $2^k - 1$. Circuit has $O(\log k)$ depth and $O(\log k)$ neurons
- Describe for each vertex v , threshold circuit to take the max of many numbers. Circuit has $O(\log k)$ depth and $O(\text{indeg}(v) \log k)$ neurons. Details omitted.
- Take into account embedding cost

Running time of k -hop SSSP algorithm

Ignoring embedding cost

- $O(\log k)$ -depth circuit for taking max
- $O(\log k)$ -depth circuit for decrementer
- Thus $O(L \log k)$ for spiking portion
- Circuits computing max have $O(\text{indeg}(v) \log k)$ neurons for vertex v , so total $O(m \log k)$ neurons, so loading time is $O(m \log k)$
- Total $O((m + L) \log k)$ running time

With embedding cost

- Spiking portion now takes $O(nL \log k)$ time
- Total $O((m + nL) \log k)$ running time

DISTANCE model

- Memory is made up of disk and registers
- Data must be moved to a register for any operation, including reading
- Memory comprises lattice points in the plane
- Each lattice point can hold one data value, some lattice points are registers
- Distances are Manhattan distances
- Movement cost is the total distance that data moves

Lower bound

Lemma: Suppose there are $O(1)$ registers and the input has size m . Any algorithm that reads the entire input must incur $\Omega(m^{\frac{3}{2}})$ movement cost.

Proof: Suppose one register and input data arranged in a \sqrt{m} by \sqrt{m} square. “Best-case scenario” is put the register in the middle. The average data point is distance $\Theta(\sqrt{m})$ from the register and thus incurs $\Theta(\sqrt{m})$ movement cost to be read.

k-hop lower bound

A lower bound on the following algorithm:

- Let $dist_k(v)$ be the $(\leq k)$ -hop distance from v_s to v .
- $dist_0(v_s) = 0$, $dist_0(v) = \infty$ for all $v \neq v_s$
- In i -th round, relax all edges uv to find $dist_i(v)$

$$dist_i(v) = \min\{dist_{i-1}(v), dist_{i-1}(u) + l(uv)\}$$

k-hop lower bound

Lemma: If $O(1)$ registers, then algorithm incurs $\Omega(km^{\frac{3}{2}})$ movement cost

Proof: Each round involves relaxing all edges. Thus each round has $\Omega(m^{\frac{3}{2}})$ movement cost.

Summary

With data-movement cost

Problem	Neuromorphic	Conventional
Shortest $v_s - v_t$ path	$O(nL + m)$	$\Omega(m^{3/2})$
Shortest k -hop $v_s - v_t$ path	$O((nL + m) \log k)$ $O((nk + m) \log(nU))$	$\Omega(km^{3/2})$

Without data-movement cost

Problem	Neuromorphic	Conventional
Shortest $v_s - v_t$ path	$O(L + m)$	$O(m + n \log n)$
Shortest k -hop $v_s - v_t$ path	$O((L + m) \log k)$ $O(m \log(nU))$	$O(km)$