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The Era of Domain-Specific Accelerators

rrrrr

PE Array
L. {168 PEs)

Google TPU [1] Eyeriss [2] Cerebras WSE-2 [3] NVIDIA Ampere GPU [4]

= Moore’s law and Dennard’s scaling do not work anymore.

= They include large parallel compute units to meet the extreme
compute demands.

[1] In-Datacenter Performance Analysis of a Tensor Processing Unit, Norman P. Jouppi et al., ISCA 2017

[2] Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks, Yu-Hsin Chen et al., JSSC 2017
[3] Cerebras white paper, Cerebras Systems: Achieving Industry Best Al Performance Through A Systems Approach, 2021

[4] NVIDIA A100 Tensor Core GPU Architecture white paper V1.0




The Era of Domain-Specific Accelerators

ﬁ

Innovation Fragmentation
Novel memory hierarchy Custom compiler toolchain
Efficient interconnection network Duplicate engineering overhead
Custom processing elements Error-prone frameworks

* Need abstractions to unify various accelerator flows.



How Do Spatial Accelerators Look Like?

DRAM

.
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L2 Buffer

Interconnection Network

PE PE PE PE

PE PE PE PE

= Accelerator designs
* Programmable scratchpads
* A huge number of processing elements (PEs)
 Distribution/reduction network



Motivation

* How can we solve the given problem using a target accelerator
efficiently?
* Mapping (tiling, ordering, parallelizing) matters!
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Motivation

= How can we solve the given problem using a target accelerator
efficiently?

* Modularity
« Accelerators
 Cost models
 Mappers
* High level languages
 Frameworks

* Unified abstractions to cover various designs

We propose Union, a Unified HW-SW Co-Design Ecosystem in MLIR

for Evaluating Tensor Operations on Spatial Accelerators.




Union Overview
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Limitations of Current Abstractions
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forind = [1, 3] i Active PE
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Limitations of Current Abstractions

A C4: L2 to L1
for tmd = [1, 3]
for tnd = [1, 3]

for tkd = [1, 3]

= Cluster-target notion has been used St jrsms =112

spatial_for sn4 = [1, 2]

in MAESTRO data-centric notation o

{a) A memory-centric loop-based mapping @

while Marvel and Timeloop are using —_

k=2

k=2

memory-centric notion. e

= k=1
m=2 k=2
k=1
n=2
k=2

(b) An interpretation I of the mapping &
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(d) An interpretation I* of the mapping @
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Union Abstractions

Problem:
Operator: GEMM

Shape:
Name: Example
Dimensions: [M, N, K]
Data-space:
- name: Input
Projection:

- [M], [K]]

- name: Weight
Projection:

- [K], [N]]

- name: Output
Projection:
- [[M], [N]]

Read-write: true

Instance:
M: 16
N: 64
K: 32

(a) Union problem

Name: Ca

Virtual: False
Dimension: X
Local:

Memory: DRAM

Sub-tree:
Name: Cs
Virtual: False
Dimension: Y
Local:
Memory: L2 Buffer

Sub-tree:
Name: Cz[1...2]
Virtual: True
Dimension: X

Sub-tree:
Name: C1[1...4]
Virtual: False
Local:
Memory: L1 Buffer
Compute: MAC Unit

(b) Union architecture

Ca
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| L2 Buffer

| Interconnection Network
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(c) Target accelerator architecture

// Ca: DRAM to L2
target_cluster: C4
temporal_order: MNK

temporal_tile_sizes: 16, 32, 16

spatial_tile_sizes: 16, 32, 16

// Ca: L2 to V2
target_cluster: Cs
temporal_order: MNK
temporal_tile_sizes: 8, 16, 8
spatial_tile_sizes: 8, 8, 8

// C2: V2 to L1
target_cluster: C2
temporal_order: MNK
temporal_tile_sizes: 8, 8, 8
spatial_tile_sizes: 8, 8, 2

/Gt L1 to MAC
target_cluster: C1
temporal_order: MNK
temporal_tile_sizes: 1, 1, 1
spatial_tile_sizes: 1,1, 1

(d) Union mapping

// Ca: DRAM to L2
fortm3 =0
fortn3 = 0...1
fortk3 =0...1
spatial_forsm3 =10
spatial_forsn3 =0
spatial_forsk3 =0
[/ Ca: L2 to V2
fortm2 =0...1
fortn2 = 0...1
fortk2 = 0...1
spatial_forsm2 =0
spatial_forsn2 =0...1
spatial_forsk2 =0
/f Cz: V2 to L1

fortm1 =0
fortn1 =0
fortk1 =0

spatial_forsm1 =0
spatial_forsn1 =0
spatial forski=0...3

/1 C1: L1 to MAC

fortm0 =0...7

fortn0 =0...7

fortk0 =0...1

spatial_forsm0=0
spatial_forsn0 =0
spatial_forsk0 =0

(e) Loop nest representation
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Mapping Example

Time step =1
Input Activation (NXYC): 2x6x3x3
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Mapping Example
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Mapping Example

// C5: DRAM to |2 // C5: DRAM to L2
target_cluster: C5 fortnd =1... 2/1)

temporal_order: N KCY}_BS.———""—'P forted =1 ... (3/1)

temporal_tile_sizes: 1,4,1,3,6,3,3 atial for sk3 = 1
spatial_tile_sizes: 1,4,1,3,6,3,3 SpetELers

// C4:L2to V2 [/ Cd: L2 to V2
target_cluster: C4 for tk'g =1

temporal_order: NKCYXRS
temporal_tile_sizes: 1,4,(1,3,6, 3,3
spatial_tile_sizes: 1,2,1,3,6,3,3

\ // C3: V2 to L1
// C3: V2 to V1 fortx1=1... (6/3)

target_cluster: C3
temporal_order: NKCYXRS
temporal_tile_sizes: 1, 2,1,3,|3,
spatial_tile_sizes: 1,2,1 3

» spatial_for sk2 =1

3

spatial_for sr1 =1
ik

_ // C2: V1 to L1
// C2: V1 to L1 for tk0 = 1

target_cluster: C2

spatial_forsx0=1 ...
temporal_order: NKCYXRS _—— (3/1)

spatial_for ss0 =1
temporal_tile_sizes: 1,2,1,1, 3,1, P a
spatial_tile_sizes: 1,2,1,1 1

// C1: L1 to MAC
// C1: L1 to MAC fortk0=1... 2/1)

target_cluster: C1 spatial_for sx0 = 1
temporal_order: NKCYXRS spatial_for ss0 = 1
temporal_tile_sizes: 1, 1, -

,1,1,1
spatial_tile_sizes: 1,1,1,1,1,1

spatial_forsyl =1 ...
.. (371)

.. (4/2)

(3/1)

(3/1)

(a) Union mapping for a K_YR_XS mapping (b) Loop nest representation
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Case Studies Using Union

TABLE 1M1

TENSOR CONTRACTION PROBLEMS AND THE CORRESPONDING GEMM DIMENSION SIZES FOR TTGT

| Name | Equation |  Tensor Dimension Sizes |  GEMM Dimension Sizes
. . a=h=c=d=¢c=064 M=262144 N=64, K =64
intensli2 Cla, b, ¢, d] = Ald. b, e, a] * Ble, c] a=b=c=d=¢=16 M = 4006, N = 16, K = 16
N =h=c¢c=d= M =406, N = od, K = 4096
cesd? Cla, b, c] = Ala, d, e, c] * Ble. b, d] d—boc=d=ec M = 256, N = 16, K = 256
. R ] a=b=c=d=e=f 2| M=32768. N = 32768, K = 32
cesd-t4 | Cla, b, ¢, d. e, f] = Ald, £, g, b] * B[z, e. a, ] a=hzc=d=e=f 6 M = 4096, N = 4096, K = 16
TABLE IV
DNN LAYER DIMENSIONS USED IN EVALUATION
Layer Dimensions
TABLE V
ResNet30-1 N=32 K=C=64 X=Y=56 R=S=]
ACCELERATOR CONFIGURATIONS
ResNet50-2 N=32 K=C=64 X=Y=356 R=S=3 A A
RfsttSﬂ-j N=32 I<:-=512 C=|0’24 }{=Y=I4 R=S=I # ﬂr L-l Buf_fEl' Lz Bllf_f'El' NDC
DLRM-1 N=512 NIN=1024 NON=1024 Type . . :
PEs Size Size Bandwidth
DLRM-2 N=512 NIN=1024 NON=(4 -
Edge 256 0.5 KB 100 KB 32 GB/s
DLRM-3 N=512 NIN=2048 NON=2048 Cloud T 2048 05 KB 500 KB 336 GB/
BERTI N=256 NIN=768 NON=768 one |- : = s
BERT-2 N=256 NIN=3072 NON=T68
BERT-3 N=256 NIN=T768 NON=3072

15



Case Studies Using Union

12 18
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An experiment with different algorithms for the same problem
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I 16116

DLRM-3
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DNN layers with a cloud accelerator

An experiment with different aspect ratio
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Case Studies Using Union
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An experiment with different fill bandwidth for multi-chiplet accelerators



Conclusion

* \We propose Union, a unified framework for evaluating tensor operators on
spatial accelerators with unified abstractions.

* Our MLIR based framework allows to map both HPC and ML tensor
operators using multiple mappers to multiple cost models for spatial
accelerators.

* The three case studies presented demonstrate the flexibility of the
framework by evaluating very different operators, mappings, and hardware
features with a single framework.

Question? Please send me an email: Thank you for listening!
geonhwa.jeong@gatech.edu Code available at https://github.com/union-codesign/union
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