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The overall uncertainty in digital captured data points is often misunderstood in our organization
and is typically accepted as only the manufacturer uncertainty specification of the time base
clock typically on the order of 10-100 parts per million. The time base clock of digital sampling
technologies is critically important to maintain timing control of the internal electronics and to
achieve the specified sampling rate of the instrument. The time base clock must remain within
the manufacturer specification tolerance throughout the calibration interval to assure accurate
performance. However, the time base uncertainty does not adequately account for the additional
measurement errors accompanying the capture and evaluation of the time values for any cardinal
points of interest when periodically sampling analog waveforms generated by other instruments
or Units Under Test (UUTs). The proposed methodology described here details a general
approach used to estimate the magnitude of the digital instrument sampling error when capturing
analog waveforms based upon the instrument sampling rate, the frequency of a nominally
equivalent sinusoidal waveform, as well as, whether the time value of any cardinal points is
selected by a ‘Next Point After’ or Interpolation method for our purposes. Finally, the overall
estimated timing uncertainty is quantified by arithmetically combining the error contributions for
the sampling rate, the cardinal point selection method, and the instrument time base
specification. The results of this method aid in selecting the appropriate digital sampling
technology based upon waveform rise time requirements and provide general engineering
guidance. Since the estimated error is a portion of the sampling timestep interval, the percentage
error could be significant based upon the measured rise time. Sandia National Laboratories is a
multi-mission laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energy National Nuclear Security Administration under contract DE-
NA0003525.

1. Introduction

A review in FY2021 of our current measurement systems MAPs showed that the timing
uncertainty value for any digital sampling instrument was listed as only the manufacturer
uncertainty specification of the time base clock. Typically, for the digital sampling instruments
implemented in our measurement systems, the time base uncertainty specification ranged from
+30 ppm (£0.003%) to £100 ppm (£0.01%). The time base clock is critically important to
maintain timing control of the internal electronics and the specified sampling rate(s) of the
instrument. The time base clock must remain within the manufacturer specification tolerance
throughout the calibration interval to assure accurate performance.

However, the time base uncertainty does not adequately account for the additional measurement
errors accompanying the capture and evaluation of the time values for any cardinal points of
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interest when periodically sampling analog waveforms generated by other instruments or Units
Under Test (UUTs).

This manuscript documents a methodology that details a general approach used to estimate the
magnitude of the digital instrument sampling error when capturing analog waveforms based
upon the instrument sampling rate, the frequency of a normally equivalent ideal sinusoidal
waveform, as well as, whether the time value of any cardinal points is established by a ‘Next
Point After’ or Interpolation method.

Finally, the overall estimated timing uncertainty is quantified by arithmetically combining the
error contributions for the sampling rate, the cardinal point selection method, and the instrument
time base specification.

2. Standard Method for Determining the Estimated Timing Uncertainty for Waveform
Rise Time Measurements

Waveform rise time, t,., is defined as the observed time for a measured signal to transition from
10% to 90% relative to the peak of the waveform.!: In this definition, the 10% and 90%
locations are cardinal points for the time-voltage pairs on the initial transition portion of the
measured waveform as demonstrated in the following figure:
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FIG 1. Amplitude vs Time graph to represent signal t,.

The estimated uncertainty of the t,- has two main error contributors; the sampling rate of the
digitizing instrument and the overall voltage measurement error for the specific measurement
channel that combines the instrument voltage accuracy with the errors of any additional
components.



The first step in achieving a low degree of sample rate uncertainty is to determine the number of
samples available within the waveform rise time interval. Using the instrument sampling rate, f
, the total number of samples, Say, within the interval is:

Say = t,[sec] * f. (D

Say should be equal to or greater than 25 so to obtain enough data resolution for the rise time
interval calculation using either the ‘Next-Point-After’ or Interpolation method. If Sayis less
than 25, then a higher sampling rate instrument should be selected.>

Next, assign a sampling rate error for any individual data point, fserr single poine> Within the
defined interval. This is the estimated timing error associated with each single point along the
interval.

The sampling step error is defined as:
0.5
fserr single point[sec] = fs" ( 2)

This assumes a ‘Next-Point-After’ Method.*
For any waveform attribute metric taking the difference between two data points, f e ¢, the

timing error results in one sampling step shown as:

1
fserr tr[SBC] = ]TS (3)
This is the overall timing error associated with the total interval, such as a rise time.
For the Measurement Assurance Plan (MAP), the sampling rate contribution to the overall
uncertainty is defined in units of time and is stated whether the evaluation was done for a single
point or a time interval. However, if so desired to convert the error into a percentage, use the

following expression(s):
Measured(single point value)sec

fserr Sin‘gle pOiTlt [%] = fserr single point [SQC] * 100 (4)
ty[sec]
fserr tr [%] = fse-rr single point[seC] * 100 (5)

The contribution to the uncertainty in t,- due to voltage is derived from the manufacturer’s
specification for the instrument. This uncertainty is commonly expressed as “vertical
uncertainty” and is a function of “% of reading”. Additionally, this uncertainty is calculated to
include additional conservativism that will make up a considerable portion of the uncertainty
budget and is thus a sufficient representation of the error due to voltage.
However, if the PRT (Product Realization Team) defines a critical necessity to do so, additional
uncertainty to the voltage contribution can be estimated according to the following expression:
Verr[sec]=2U * t,[sec], (6)

where U is the overall voltage error for the measurement channel, converted from its percentage
error value (k=2) to decimal form, t,[sec] is the measured waveform rise time in seconds and,
Verr[Sec] is the estimated ¢, error, in seconds, based upon the channel voltage error that is found
in the MAP.

The resulting V,..[sec] value will have a coverage factor of k=2 (~95% confidence level)
because it utilizes the specific channel voltage percentage error k=2 value.



3. Supplemental Theory

The rise time, t,, the fall time, t¢, and the Full Width Half Max time, FWHM, cardinal points of
a measured waveform can be approximated by a portion, typically the first quarter or second
quarter cycle, of an ideal sine wave of some appropriately matched frequency of the following

general form:
y(t) = Asin(wt), (3A)

where y(t) is the periodic signal magnitude as a function of time, A is a constant that establishes
the peak values (both positive and negative values), w is the angular frequency, in units of
radians and also expressed as 27 f, f is the appropriate signal-matched-sine-wave frequency in
units of hertz (Hz: cycles per sec), and t is the time in units of seconds.

For any location of interest on the first full cycle of an ideal sine wave, such as: individual
cardinal points, or sets of cardinal points, a trigonometric unit circle is used to determine the ¢(s)
value for any point when the frequency value is known. For a trigonometric unit circle the value
of A is equal to one for the peak values.

Figure 1A illustrates the algebraic results, as a function of frequency, when applying the
trigonometric unit circle general equations to determine the t(s) values for the 90% and 10%
locations. For these specific locations, the constant A in Eqn. (1) is replaced by the variable
A_cp which is equal to: 0.90 for the 90% location and 0.10 for the 10% location. For the
FWHM locations the value of A_cp equals 0.50 on both the positive and negative portions of the
first half-cycle.

(Note: Ideal t,, t, and FWHM time positions are independent of digitizer sample rate. They are
only dependent upon frequency of ideal sine wave).

Trigonometric unit circle general equations:

x2+y%=1, (2A)
y=Acp, (3A)
(amplitude of cardinal point of interest normalized for unit circle)

1
x=(1-Acp?), (48)
6 = arctan (%Cp), (5A)
w=35—0, ( 6A)
@
S = 2nf, (7A)

t=w/(}) (84)
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FIG 1A. Trigonometric Unit Circle locations for the 90% and 10% positions as a function of
frequency, f, in the first quarter cycle of an ideal sinusodial waveform. The A_cp value for the
90% cardinal position is 0.90 on the positive y-axis and the A_cp value for the 10% cardinal
position is 0.10 on the positive y-axis. The values for t(s), as a function of frequency for the 90%
and 10% locations are the theoretical time values where the cardinal points occur on an ideal

sine waveform.

The values for t(s) as a function of frequency expressed in Figure 1A are the ideal times at which
the cardinal points in a given interval should occur in an idealized sine waveform.
Listed in Table IA. And Table IIA. are the theoretical time equations, as a function of frequency,

for the 10%, 50%, 90%, and peak cardinal points for an ideal sine wave.

Cardinal Point / Time value equation as a
Location function of frequency, f in
Hz
t 10% 0.01594 /£
t 50% 0.83333/f
t 90% 0.17822 /f
t peak 0.25000/f

Table IA. Theoretical time equations, as a function of frequency, for the 10%, 50%, 90%, and
peak cardinal points for an ideal sine wave.



Rise Time of Frequency, f (Hz) | Number of points
Ideal Sine in first quarter
Wave cycle at 250MSa/s
50 ns 3.25M 19
75 ns 2.165M 29
150 ns 1.082M 58
250 ns 649k 96
500 ns 324.5k 193
1000 ns 162.25k 385
2000 ns 81k 772
4000 ns 40.575k 1540

Table II14. Theoretical time values, with the associated frequencies and number of points in the
first quarter cycle using a 250MSa/s example digitizer.

4. Methods of defining Cardinal Point(s) Time Occurrence

There are two specified methods of determining the time for cardinal points of interest within the
test equipment measured waveform. These two methods are called the ‘Next-Point-After’
method, and the Interpolation method.

The ‘Next-Point-After’ method determines the time value for any cardinal point of interest in a
digitially captured analog waveform data set at the data point immediately after the occurence of
the desired amplitude level if that level is not available in the data set.

As an example, Table IIIA. lists a digitally captured ideal sine waveform (first quarter cycle)
data set normalized by the a peak value of one. If the ideal unit circle approximation determined
the time at 90% RT to be 55 ns at A_cp = 0.9, the user with the data set in Table IIIA. would
select the time at which the closest, larger value of A _c¢p=0.9 occures. In this example,

A cp=0.910. The time associated with A _cp= 0.934 is equal to 56 ns.

Example: 250M Sa/s; RT = 50 ns
Ideal Sine Wave
f=3.25MHz;t 10% =4.9ns;t 90% =55 ns
t. (actual) = 49.94 ns

t(ns) A(t)
0 0
4 0.082
8 0.163
12 0.243
16 0.321
20 0.397
24 0.471
28 0.541
32 0.608
36 0.671
40 0.729




44 0.782
48 0.831
52 0.873
56 0.910
60 0.941
64 0.965
68 0.983
72 0.995
76 1.000

Table I1IA. Example laboratory data set to demonstrate the ‘Next-Point-After’ method of
defining the time at which the 90% t,- and 10% t,. occur.

The timestep error in this example equals 0.1 steps, which is rounded to 0.5 steps.

The interpolation method uses the linear interpolation equation to define the time at which
cardinal point(s) occur.

Using the same example as in Table IITA., if the ideal unit circle approximation determined the
time at 90% RT to be 55 ns. The user with the data set in Table IVA. would interpolate between
the two closest, larger and smaller values that surround A _cp = 0.9.

Example: 250M Sa/s; RT = 50 ns
Ideal Sine Wave
f=3.25MHz;t 10% =49 ns;t 90% = 55 ns
t; (actual) = 49.94 ns

t(ns) A(t)
0 0
4 0.082
8 0.163
12 0.243
16 0.321
20 0.397
24 0.471
28 0.541
32 0.608
36 0.671
40 0.729
44 0.782
48 0.831
52 0.873
56 0.910
6.00E-08 0.941
6.40E-08 0.965
6.80E-08 0.983
7.20E-08 0.995




| 7.60E-08 | 1.000 |
Table IVA. Example laboratory data set to demonstrate the Interpolation method of defining the
time at which the 90% RT occurs.

Via the interpolation equation, the time at which 90% RT occurs in this example is:

[Aoo * (t2 —t1) — (A1 * t3) + (A2 * t1)]

tog = A, — A, =549 ns, ( 9A)

where Agg = 0.9, (t1(ns),A1) = (52, 0.873), and (t; (ns),4;) = (56,0.910).
The timestep error in this example equals 0.01 steps, which is rounded to 0.125.
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[3] Interpolation methods for the calculated uncertainty in RT will yield a lower uncertainty

given by the following:
0.125
fserr single point[sec]zsz fs 2
fserr tr[sec] = .f_s’

and thus, reduces the f ., [%] by a factor of 4. It is recommended to use the interpolation
method if there are less than 100 data points in the interval of interest i.e., if Say is less than 100.



