
Method for Determining the Estimated Timing Uncertainty for Digital 
Sampling Instruments

Speaker/Co-Author: Sara DiGregorio
Company: Sandia National Laboratories 

1515 Eubank Blvd, Albuquerque, New Mexico, 87123 USA
Phone: 505-845-9973 Email: sdigreg@sandia.gov

Co-Author: Alan R. Mahoney

The overall uncertainty in digital captured data points is often misunderstood in our organization 
and is typically accepted as only the manufacturer uncertainty specification of the time base 
clock typically on the order of 10-100 parts per million.  The time base clock of digital sampling 
technologies is critically important to maintain timing control of the internal electronics and to 
achieve the specified sampling rate of the instrument.  The time base clock must remain within 
the manufacturer specification tolerance throughout the calibration interval to assure accurate 
performance.  However, the time base uncertainty does not adequately account for the additional 
measurement errors accompanying the capture and evaluation of the time values for any cardinal 
points of interest when periodically sampling analog waveforms generated by other instruments 
or Units Under Test (UUTs).  The proposed methodology described here details a general 
approach used to estimate the magnitude of the digital instrument sampling error when capturing 
analog waveforms based upon the instrument sampling rate, the frequency of a nominally 
equivalent sinusoidal waveform, as well as, whether the time value of any cardinal points is 
selected by a ‘Next Point After’ or Interpolation method for our purposes.  Finally, the overall 
estimated timing uncertainty is quantified by arithmetically combining the error contributions for 
the sampling rate, the cardinal point selection method, and the instrument time base 
specification.  The results of this method aid in selecting the appropriate digital sampling 
technology based upon waveform rise time requirements and provide general engineering 
guidance. Since the estimated error is a portion of the sampling timestep interval, the percentage 
error could be significant based upon the measured rise time.  Sandia National Laboratories is a 
multi-mission laboratory managed and operated by National Technology & Engineering 
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the 
U.S. Department of Energy National Nuclear Security Administration under contract DE-
NA0003525.

1. Introduction

A review in FY2021 of our current measurement systems MAPs showed that the timing 
uncertainty value for any digital sampling instrument was listed as only the manufacturer 
uncertainty specification of the time base clock.  Typically, for the digital sampling instruments 
implemented in our measurement systems, the time base uncertainty specification ranged from 
±30 ppm (±0.003%) to ±100 ppm (±0.01%).  The time base clock is critically important to 
maintain timing control of the internal electronics and the specified sampling rate(s) of the 
instrument.  The time base clock must remain within the manufacturer specification tolerance 
throughout the calibration interval to assure accurate performance.
However, the time base uncertainty does not adequately account for the additional measurement 
errors accompanying the capture and evaluation of the time values for any cardinal points of 
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interest when periodically sampling analog waveforms generated by other instruments or Units 
Under Test (UUTs).

This manuscript documents a methodology that details a general approach used to estimate the 
magnitude of the digital instrument sampling error when capturing analog waveforms based 
upon the instrument sampling rate, the frequency of a normally equivalent ideal sinusoidal 
waveform, as well as, whether the time value of any cardinal points is established by a ‘Next 
Point After’ or Interpolation method.

Finally, the overall estimated timing uncertainty is quantified by arithmetically combining the 
error contributions for the sampling rate, the cardinal point selection method, and the instrument 
time base specification.

2. Standard Method for Determining the Estimated Timing Uncertainty for Waveform 
Rise Time Measurements

Waveform rise time, 𝑡𝑟, is defined as the observed time for a measured signal to transition from 
10% to 90% relative to the peak of the waveform.1.  In this definition, the 10% and 90% 
locations are cardinal points for the time-voltage pairs on the initial transition portion of the 
measured waveform as demonstrated in the following figure:

FIG 1. Amplitude vs Time graph to represent signal tr.
The estimated uncertainty of the 𝑡𝑟 has two main error contributors; the sampling rate of the 
digitizing instrument and the overall voltage measurement error for the specific measurement 
channel that combines the instrument voltage accuracy with the errors of any additional 
components.



The first step in achieving a low degree of sample rate uncertainty is to determine the number of 
samples available within the waveform rise time interval.  Using the instrument sampling rate, 𝑓𝑠
, the total number of samples, 𝑆𝑎#, within the interval is:

𝑆𝑎# = 𝑡𝑟[𝑠𝑒𝑐] ∗ 𝑓𝑠. ( 1) 

𝑆𝑎# should be equal to or greater than 25 so to obtain enough data resolution for the rise time 
interval calculation using either the ‘Next-Point-After’ or Interpolation method.  If 𝑆𝑎#is less 
than 25, then a higher sampling rate instrument should be selected.2.

Next, assign a sampling rate error for any individual data point, 𝑓𝑠𝑒𝑟𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑖𝑛𝑡, within the 
defined interval.  This is the estimated timing error associated with each single point along the 
interval. 
The sampling step error is defined as:

 𝑓𝑠𝑒𝑟𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑖𝑛𝑡[𝑠𝑒𝑐] =
0.5
𝑓𝑠

. ( 2)

This assumes a ‘Next-Point-After’ Method.3.  
For any waveform attribute metric taking the difference between two data points, 𝑓𝑠𝑒𝑟𝑟 𝑡𝑟, the 
timing error results in one sampling step shown as:

𝑓𝑠𝑒𝑟𝑟 𝑡𝑟[𝑠𝑒𝑐] =
1
𝑓𝑠

                     (3)
This is the overall timing error associated with the total interval, such as a rise time. 
For the Measurement Assurance Plan (MAP), the sampling rate contribution to the overall 
uncertainty is defined in units of time and is stated whether the evaluation was done for a single 
point or a time interval.  However, if so desired to convert the error into a percentage, use the 
following expression(s):

 𝑓𝑠𝑒𝑟𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑖𝑛𝑡[%] =
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 𝑣𝑎𝑙𝑢𝑒)𝑠𝑒𝑐

𝑓𝑠𝑒𝑟𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑖𝑛𝑡[𝑠𝑒𝑐] ∗ 100 (4)

𝑓𝑠𝑒𝑟𝑟 𝑡𝑟[%] =
𝑡𝑟[𝑠𝑒𝑐]

𝑓𝑠𝑒𝑟𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑖𝑛𝑡[𝑠𝑒𝑐] ∗ 100 (5)

The contribution to the uncertainty in 𝑡𝑟 due to voltage is derived from the manufacturer’s 
specification for the instrument.  This uncertainty is commonly expressed as “vertical 
uncertainty” and is a function of “% of reading”.  Additionally, this uncertainty is calculated to 
include additional conservativism that will make up a considerable portion of the uncertainty 
budget and is thus a sufficient representation of the error due to voltage.   
However, if the PRT (Product Realization Team) defines a critical necessity to do so, additional 
uncertainty to the voltage contribution can be estimated according to the following expression:

𝑉𝑒𝑟𝑟[𝑠𝑒𝑐]≅2𝑈 ∗ 𝑡𝑟[𝑠𝑒𝑐], (6)

where 𝑈 is the overall voltage error for the measurement channel, converted from its percentage 
error value (k=2) to decimal form, 𝑡𝑟[𝑠𝑒𝑐] is the measured waveform rise time in seconds and, 
𝑉𝑒𝑟𝑟[𝑠𝑒𝑐] is the estimated 𝑡𝑟 error, in seconds, based upon the channel voltage error that is found 
in the MAP.
The resulting 𝑉𝑒𝑟𝑟[𝑠𝑒𝑐] value will have a coverage factor of k=2 (~95% confidence level) 
because it utilizes the specific channel voltage percentage error k=2 value. 

 



3. Supplemental Theory

The rise time, 𝑡𝑟, the fall time, 𝑡𝑓, and the Full Width Half Max time, FWHM, cardinal points of 
a measured waveform can be approximated by a portion, typically the first quarter or second 
quarter cycle, of an ideal sine wave of some appropriately matched frequency of the following 
general form:

𝑦(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡), ( 3A) 

where 𝑦(𝑡) is the periodic signal magnitude as a function of time, A is a constant that establishes 
the peak values (both positive and negative values), 𝜔 is the angular frequency, in units of 
radians and also expressed as 2𝜋𝑓, 𝑓 is the appropriate signal-matched-sine-wave frequency in 
units of hertz (Hz: cycles per sec), and 𝑡 is the time in units of seconds. 
For any location of interest on the first full cycle of an ideal sine wave, such as: individual 
cardinal points, or sets of cardinal points, a trigonometric unit circle is used to determine the 𝑡(s) 
value for any point when the frequency value is known.  For a trigonometric unit circle the value 
of A is equal to one for the peak values.

Figure 1A illustrates the algebraic results, as a function of frequency, when applying the 
trigonometric unit circle general equations to determine the 𝑡(s) values for the 90% and 10% 
locations.  For these specific locations, the constant A in Eqn. (1) is replaced by the variable 
A_cp which is equal to: 0.90 for the 90% location and 0.10 for the 10% location.  For the 
FWHM locations the value of A_cp equals 0.50 on both the positive and negative portions of the 
first half-cycle.
(Note: Ideal tr, tf, and FWHM time positions are independent of digitizer sample rate. They are 
only dependent upon frequency of ideal sine wave).

Trigonometric unit circle general equations:
𝑥2 + 𝑦2 = 1, (2A)

𝑦 = 𝐴_cp , (3A)

(amplitude of cardinal point of interest normalized for unit circle)

𝑥 = 1 ― 𝐴_cp2
1
2,  ( 4A)

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑥

𝐴_cp),  ( 5A)

𝜔 =
𝜋
2 ―𝜃,  ( 6A)

𝜔
𝑠 = 2𝜋𝑓, ( 7A)

𝑡 = 𝜔/(
𝜔
𝑠 )  ( 8A)



FIG 1A. Trigonometric Unit Circle locations for the 90% and 10% positions as a function of 
frequency, f, in the first quarter cycle of an ideal sinusodial waveform. The A_cp value for the 
90% cardinal position is 0.90 on the positive y-axis and the A_cp value for the 10% cardinal 
position is 0.10 on the positive y-axis.  The values for 𝑡(s), as a function of frequency for the 90% 
and 10% locations are the theoretical time values where the cardinal points occur on an ideal 
sine waveform. 

The values for 𝑡(s) as a function of frequency expressed in Figure 1A are the ideal times at which 
the cardinal points in a given interval should occur in an idealized sine waveform.  
Listed in Table IA. And Table IIA. are the theoretical time equations, as a function of frequency, 
for the 10%, 50%, 90%, and peak cardinal points for an ideal sine wave.

Cardinal Point / 
Location 

Time value equation as a 
function of frequency, f in 

Hz
t_10% 0.01594 / f
t_50% 0.83333 / f
t_90% 0.17822 / f
t_peak 0.25000 / f

Table IA. Theoretical time equations, as a function of frequency, for the 10%, 50%, 90%, and 
peak cardinal points for an ideal sine wave.



Rise Time of 
Ideal Sine 

Wave

Frequency, f (Hz) Number of points 
in first quarter 

cycle at 250MSa/s
50 ns 3.25M 19
75 ns 2.165M 29
150 ns 1.082M 58
250 ns 649k 96
500 ns 324.5k 193
1000 ns 162.25k 385
2000 ns 81k 772
4000 ns 40.575k 1540

Table IIA. Theoretical time values, with the associated frequencies and number of points in the 
first quarter cycle using a 250MSa/s example digitizer. 

4. Methods of defining Cardinal Point(s) Time Occurrence

There are two specified methods of determining the time for cardinal points of interest within the 
test equipment measured waveform.  These two methods are called the ‘Next-Point-After’ 
method, and the Interpolation method.

The ‘Next-Point-After’ method determines the time value for any cardinal point of interest in a 
digitially captured analog waveform data set at the data point immediately after the occurence of 
the desired amplitude level if that level is not available in the data set.

As an example, Table IIIA. lists a digitally captured ideal sine waveform (first quarter cycle) 
data set normalized by the a peak value of one.  If the ideal unit circle approximation determined 
the time at 90% 𝑅𝑇 to be 55 ns at A_cp = 0.9, the user with the data set in Table IIIA. would 
select the time at which the closest, larger value of A_cp=0.9 occures.  In this example, 
A_cp=0.910.  The time associated with A_cp= 0.934 is equal to 56 ns.

Example: 250M Sa/s; RT ≈ 50 ns
Ideal Sine Wave

 f = 3.25 MHz; t_10% = 4.9 ns; t_90% = 55 ns
tr (actual) = 49.94 ns

t(ns) A(t)
0 0
4 0.082
8 0.163
12 0.243
16 0.321
20 0.397
24 0.471
28 0.541
32 0.608
36 0.671
40 0.729



44 0.782
48 0.831
52 0.873
56 0.910
60 0.941
64 0.965
68 0.983
72 0.995
76 1.000

Table IIIA. Example laboratory data set to demonstrate the ‘Next-Point-After’ method of 
defining the time at which the 90% 𝑡𝑟 and 10% 𝑡𝑟 occur.

The timestep error in this example equals 0.1 steps, which is rounded to 0.5 steps.

The interpolation method uses the linear interpolation equation to define the time at which 
cardinal point(s) occur.  
Using the same example as in Table IIIA., if the ideal unit circle approximation determined the 
time at 90% 𝑅𝑇 to be 55 ns.  The user with the data set in Table IVA. would interpolate between 
the two closest, larger and smaller values that surround A_cp = 0.9.

Example: 250M Sa/s; RT ≈ 50 ns
Ideal Sine Wave

 f = 3.25 MHz; t_10% = 4.9 ns; t_90% = 55 ns
tr (actual) = 49.94 ns

t(ns) A(t)
0 0
4 0.082
8 0.163
12 0.243
16 0.321
20 0.397
24 0.471
28 0.541
32 0.608
36 0.671
40 0.729
44 0.782
48 0.831
52 0.873
56 0.910

6.00E-08 0.941
6.40E-08 0.965
6.80E-08 0.983
7.20E-08 0.995



7.60E-08 1.000
Table IVA. Example laboratory data set to demonstrate the Interpolation method of defining the 
time at which the 90% RT occurs.
 
Via the interpolation equation, the time at which 90% 𝑅𝑇 occurs in this example is:

𝑡0.9 =
[𝐴0.9 ∗ (𝑡2 ― 𝑡1) ― (𝐴1 ∗ 𝑡2) + (𝐴2 ∗ 𝑡1)]

𝐴2 ― 𝐴1
= 54.9 𝑛𝑠, ( 9A)

where 𝐴0.9 = 0.9, (𝑡1(𝑛𝑠),𝐴1) = (52, 0.873), and (𝑡2 (𝑛𝑠),𝐴2) = (56, 0.910).

The timestep error in this example equals 0.01 steps, which is rounded to 0.125.
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[3] Interpolation methods for the calculated uncertainty in RT will yield a lower uncertainty 
given by the following:

 𝑓𝑠𝑒𝑟𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑖𝑛𝑡[𝑠𝑒𝑐] =
0.125

𝑓𝑠
,

𝑓𝑠𝑒𝑟𝑟 𝑡𝑟[𝑠𝑒𝑐] =
.25
𝑓𝑠

,

and thus, reduces the 𝑓𝑠𝑒𝑟𝑟 𝑡𝑟[%] by a factor of 4.  It is recommended to use the interpolation 
method if there are less than 100 data points in the interval of interest i.e., if 𝑆𝑎# is less than 100.  


