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Nonlinear aeroelastic oscillator - overfitting issue

Aeroelastic limit-cycle oscillation (LCO) (Sandhu et. al, CMAME, 2014;
Sandhu et. al, JCP, 2016)
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Sandhu et. al, CMAME, 2014; Sandhu et. al, JCP, 2016 (with copyright permission)

Identify the best model for CM :

M1 : CM = e1θ + e2θ̇ + e3θ
3 + e4θ

2θ̇ + σξ(τ)

M2 :
ĊM

B
+ CM = e1θ + e2θ̇ + e3θ

3 + e4θ
2θ̇ +

c6

B
θ̈ + σξ(τ)

M3 :
C̈M

B1B2
+

(B1 + B2)ĊM

B1B2
+ CM = e1θ + e2θ̇ + e3θ

3 + e4θ
2θ̇ +

(2c6c7 + 0.5)θ̈

B1B2
+

c6
...
θ

B1B2
+ σξ(τ)
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Problem definition: Mass-spring-damper system

Inverse problem: Estimate a probability density function (pdf) of damping
and stiffness parameters while identifying the sparsity in damping
parameters. (Sandhu et al., JCP, 2021)

(a) Three-dof mass-spring-damper
model.
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(b) Measured versus true response.

Sandhu et. al, JCP, 2021 (with copyright permission)
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Nonlinear sparse Bayesian learning

Sandhu et. al, JCP, 2021 (with copyright permission)
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Bayesian inverse modelling

Overview of the Bayesian framework

Bayesian model comparison: Ranking of plausible models is based on
model evidence,

p(D) =

∫
p(D|φ)p(φ)dφ , ln p(D)︸ ︷︷ ︸

Log-evidence

= E[ln p(D|φ)]︸ ︷︷ ︸
Data-fit

−E

[
ln

p(φ|D)

p(φ)

]
︸ ︷︷ ︸

Model complexity
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Nonlinear sparse Bayesian learning (NSBL): Methodology

Stochastic state-space model structure:

Model equation : uk+1 = gk(uk , fk , qk ;φ)

Measurement equation : dk = hk(uk , εk ;φ)

Parameter prior pdf: hybrid assignment (α: Hyper-parameters)

φ = {φα,φ-α} ; p(φ|α) = p(φ-α)p(φα|α) = p(φ-α)︸ ︷︷ ︸
Known prior

∏
N
(
φi |0, α−1

i

)
︸ ︷︷ ︸

ARD prior

Entity p(D|φ) p(φ-α) remains unchanged during sparse learning!

p(φ|D,α) =
p(D|φ)p(φ|α)

p(D|α)
∝ p(D|φ) p(φ-α)︸ ︷︷ ︸

Independent of α

N (φα|0,A
−1)

Gaussian mixture model (GMM) approximation:

p(D|φ)p(φ-α) ≈
K∑

k=1

a(k)N (φ|µ(k),Σ(k)),
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NSBL: Semi-analytical Bayesian framework

Entity Solution

Parameter decomposition φ = {φα,φ-α}

Likelihood + known prior p(D|φ)p(φ-α) ≈
K∑

k=1

a(k)N (φ|µ(k)
,Σ

(k))

ARD prior p(φα|α) = N (φα|0, A−1)

Hyper-parameter prior p(α) =

Nα∏
i=1

G(αi |ri , si )

Model evidence p̂(D|α) =
K∑

k=1

a(k)N (µ(k)
α |0, B(k)

α ) ; B(k)
α = Σ

(k) + A−1

Parameter posterior PDF p̂(φ|D,α) =
K∑

k=1

w(k)N (φ|m(k)
, P(k)) ; w(k) =

a(k)N (µ
(k)
α |0, B

(k)
α )

p̂(D| log α)

Objective function L(log α) = log p̂(D| log α) +

Nα∑
i=1

(
ri logαi − siαi

)
Gradient of L(log α) gi (log α) =

K∑
k=1

w(k)v
(k)
i

+ ri − siαi = v̄i + ri − siαi

v
(k)
i

= (γ
(k)
i
− αi (m

(k)
i

)2)/2 ; γ
(k)
i

= 1 − αi P
(k)
ii

Hessian of L(log α) Hij (log α) =
K∑

k=1

w(k)


αiαj

 (P
(k)
ij

)2

2
+ m

(k)
i

m
(k)
j

P
(k)
ij


+ v

(k)
i

v
(k)
j
− v̄i v̄j


+δij

[
v̄i −

1

2
− siαi

]

Sandhu et. al, JCP, 2021 (with copyright permission)
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NSBL: Numerical Implementation

Stage 1: GMM construction by sampling p(D|φ)p(φ-α) and then utilizing
Kernel density estimation (KDE): Computationally expedient, # of kernels
= # of samples (Our choice)
Expectation maximization (EM): More involved, smaller # of kernels (Not
pursued here)

Stage 2: Newton’s method to maximize model evidence (non-convex
optimization):

logαj+1 = logαj + βjpj , where Hjpj = −gj

Modified Newton method
Trust-region Newton method (Our choice)

Stage 3: Sparsity identification by exploiting relevance indicator, defined as

γ
(k)
i = 1− αi

(P
(k)
ii )−1

= 1− αi

αi + {(Σ(k)
α )−1}(i,i)

∈ [0, 1], (1)
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NSBL: Benefits

Benefits of NSBL over standard Bayesian model updating
Evidence-based pruning of redundant parameters while incorporating prior
parametric knowledge

Parameter posterior pdf and model evidence available semi-analytically

Gradient and Hessian of evidence with respect to hyper-parameters available
analytically

Can handle non-Gaussian and multimodal pdfs
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Example: Polynomial Regression with Multimodal Prior

Generated observations using yi = 1 + x2
i + εi , where εi is a Gaussian white

noise process with distribution N (εi |0, 0.04). (Sandhu et al., JCP, 2021)
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Sandhu et. al, JCP, 2021 (with copyright permission)

The observational data consists of 100 noisy samples with equally spaced
coordinate x within the domain x ∈ [0.75, 1.25]
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Example: Polynomial Regression with Multimodal Prior

Inverse problem setup: (Sandhu et al., JCP, 2021, with copyright
permission)

Proposed model y = a0 + a1x + a2x
2 + ε ; ε ∼ N (0, 0.04)

φ decomposition φα = {a1, a2} , φ-α = {a0}

ARD prior, p(φα|α) N (a1|0, α−1
1 ) N (a2|0, α−1

2 )

Known prior, p(φ-α)
[
N (a0|-1, 0.22) +N (a0|0, 0.22) +N (a0|1, 0.22)

]
/3

Non-Gaussian prior knowledge: (Sandhu et al., JCP, 2021, with copyright
permission)
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Example: Polynomial Regression with Multimodal Prior

Stage 1 (GMM construction): 2500 samples distributed according to
p(D|φ)p(φ-α) or p(D|a0, a1, a2)p(a0) using TMCMC, followed by a GMM
construction using KDE (Sandhu et al., JCP, 2021, with copyright
permission)
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SBL and BCS are not applicable for multimodal/Non-Gaussian posterior pdfs!
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Example: Polynomial Regression with Multimodal Prior

Stage 2: Sparsification (Sandhu et al., JCP, 2021, with copyright permission)

Initialized at logα = {−3,−3}, NSBL suggests a1 is irrelevant and a2 is
relevant.
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Iteration initialized at logα = {6, 8}, NSBL suggests a1 is relevant and a2

is irrelevant.

−4 0 4 8 12
logα1

−4

0

4

8

12

lo
gα

2

0 2 4 6 8 10
Newton iteration

0

1

2

3

4

5

6

Log-evidence

0 2 4 6 8 10
Newton iteration

0.0

0.2

0.4

0.6

0.8

1.0

Re
le

va
nc

e 
in

di
ca

to
r

a1
a2

Multistart is necessary!
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Example: Polynomial Regression with Multimodal Prior

Posterior parameter pdf post sparse learning: (Sandhu et al., JCP, 2021,
with copyright permission)
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pd
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f

before
after
True
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pd
f

Predictions before and after sparse learning: (Sandhu et al., JCP, 2021,
with copyright permission)
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Example: Mass-spring-damper system

Displacement vector u = {u1, u2, u3}; equation-of-motion Mü + Cu̇ + Ku
= 0 (Sandhu et al., JCP, 2021, with copyright permission)

(c) Three-dof mass-spring-damper
model.
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(d) Measured versus true response.

Parameter true values:
Mass: m1 = m2 = m3 = 1.0,
Stiffness: k1 = k2 = k3 = 1000.0,
Damping: c1 = 10, c2 = 0, c3 = 0.
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Example: Mass-spring-damper system

Inverse problem setup: (Sandhu et al., JCP, 2021, with copyright
permission)

Proposed model Mü + Cu̇ + Ku = 0

φ decomposition φα = {c1, c2, c3} , φ-α = {k1, k2, k3}

Known prior, p(φ-α) U(k1|0, 5000) U(k2|0, 5000) U(k3|0, 5000)

ARD prior, p(φα|α) N (c1|0, α−1
1 ) N (c2|0, α−1

2 ) N (c3|0, α−1
3 )

Hyperprior, p(α)
3∏

i=1

G(αi |r , s) ; log r = log s = -10
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Example: Mass-spring-damper system

Bayesian inference with flat priors for questionable parameters: (Sandhu et
al., JCP, 2021, with copyright permission)
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Predicted versus true time-history of velocity u̇2: (Sandhu et al., JCP,
2021, with copyright permission)
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Example: Mass-spring-damper system

Stage 2: Sparsification (Sandhu et al., JCP, 2021, with copyright
permission)
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(e) α initiated at {−5,−5,−5}
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(f) α initiated at {0, 0, 0}
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(g) α initiated at {5, 5, 5}
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Example: Mass-spring-damper system

Bayesian inference post sparse learning, using optimal ARD priors from
NSBL: (Sandhu et al., JCP, 2021, with copyright permission)
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Prediction before and after sparse learning of model parameters:
(Sandhu et al., JCP, 2021, with copyright permission)
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Likelihood and Parameter Posterior

xk+1 = gk (xk , φ, fk , qk) (2)

dj = hj(xd(j), εj) (3)

p(φ|D) ∝ p(φ)
J∏

j=1

∫
p(dj |xd(j), φ) p(xd(j)|xd(j)−1, φ)︸ ︷︷ ︸

Non-Gaussian filtering

dxd(j)

︸ ︷︷ ︸
p(D|φ)

p(φ|D) ∝ p(φ)p(D|φ)

Bisaillon et al., Nonlinear Dynamics, 2015
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Likelihood Computation using EKF

p(xd(j)|xd(j)−1, φ) ∼ N (xd(j)|xf
d(j),P

f
d(j))

p(D|φ) =
J∏

j=1

N (dj |hj(xf
d(j), 0),Σ′)

Σ′ = CjP
f
d(j)C

T
j + DjΓjD

T
j

Cj =
∂hj(xd(j), εj)

∂xd(j)

∣∣∣∣
xd(j)=xf

d(j)
,εj=0

(4)

Dj =
∂hj(xd(j), εj)

∂εj

∣∣∣∣
xd(j)=xf

d(j)
,εj=0

(5)

Bisaillon et al., Nonlinear Dynamics, 2015
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Likelihood Computation using EnKF

p(xd(j)|xd(j)−1, φ) ≈ 1

N

N∑
s=1

δ(xd(j) − xf
d(j),s).

p(D|φ) =
J∏

j=1

∞∫
−∞

p(xd(j)|xd(j)−1, φ)p(dj |xd(j), φ)dxd(j)

≈
J∏

j=1

∞∫
−∞

1

N

N∑
s=1

δ(xd(j) − xf
d(j),s)p(dj |xd(j), φ)dxd(j)

≈
J∏

j=1

[
1

N

N∑
s=1

p(dj |xf
d(j),s , φ)

]
Bisaillon et al., Nonlinear Dynamics, 2015
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Likelihood Computation using PF

p(xd(j)|xd(j)−1, φ) ≈
N∑

s=1

wd(j),sδ(xd(j) − xf
d(j),s)

p(D|φ) =
J∏

j=1

∞∫
−∞

p(xd(j)|xd(j)−1, φ)p(dj |xd(j), φ)dxd(j)

≈
J∏

j=1

∞∫
−∞

N∑
s=1

wd(j),sδ(xd(j) − xf
d(j),s)p(dj |xd(j), φ)dxd(j)

≈
J∏

j=1

N∑
s=1

wd(j),sp(dj |xf
d(j),s , φ) (6)

wd(j),i ∝ wd(j)−1,i

p(dj |xd(j),i )p(xd(j),i |xd(j)−1,i )

q(xd(j),i |xd(j)−1,i , dj)

Bisaillon et al., Nonlinear Dynamics, 2015
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Single degree-of-freedom aeroelastic system

Data generating model:

I θ̈ + Dθ̇ + Kθ + Knlθ
3 = Dnl sgn(θ̇) +

1

2
ρU2c2sCM (θ, θ̇, θ̈)

ĊM

B
+ CM = e1θ + e2θ̇ + e3θ

3 + e4θ
2
θ̇ +

c6

B
θ̈ + σξ(τ)

0 100 200 300 400 500 600 700 800 900 1000
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Sandhu et. al, CMAME 2017 (with copyright permission)
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Case 1: One-dimensional sparse learning problem

I Aerodynamic parameter e3 is treated as questionable

ĊM

B
+ CM = e1θ + e2θ̇ + e3θ

3 + e4θ
2
θ̇ +

c6

B
θ̈ + σξ(τ)

i ARD prior, p(φα|α)
p(φα|α) = N (e3|0, α−1)

ii Known prior, p(φ−α)

p(φ−α) = L(B|0.2, 50)U(e1|−2, 0)U(e2|−2, 0)U(e4|−600, 0)L(σ|0.002, 50)

R. Sandhu. Model Comparison and Sparse Learning of Nonlinear Physics-Based Models Using Bayesian Inference. PhD Thesis, Carleton

University, 2020.
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Single degree-of-freedom aeroelastic system

I Constructing GMM of partial posterior p(D|φ)p(φ−α) using KDE
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III Parameter e3 is correctly identified as relevant

R. Sandhu. Model Comparison and Sparse Learning of Nonlinear Physics-Based Models Using Bayesian Inference. PhD Thesis, Carleton

University, 2020.
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Case 2: Two-dimensional sparse learning problem

I Aerodynamic parameters e5 and e6 are treated as questionable

ĊM

B
+ CM = e1θ + e2θ̇ + e3θ

3 + e4θ
2
θ̇ + e5θ

5 + e6θ
4
θ̇ +

c6

B
θ̈ + σξ(τ)
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i One optimum correctly identifies parameters e5 and e6 as irrelevant
ii The other finds e5 to be irrelevant, but e6 to be relevant

1R. Sandhu. Model Comparison and Sparse Learning of Nonlinear Physics-Based Models Using Bayesian Inference. PhD Thesis,
Carleton University, 2020.
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Conclusion and Future Research

NSBL is effective for ODE models.

NSBL for coupled nonlinear ODE and PDE models
(bending-bending-torsion-pitch motions) using wind-tunnel data.

Concurrent selection of physics-based model and model errors.

Address overfitting using NSBL for Bayesian neural networks.

Apply to fields outside of aeroelasticity (e.g. epidemiology).
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Conclusion

Capabilities Methodology Scalability

Method Nonlinear
models?

Prior
knowl-
edge?

Sparse
learning?

Prior pdf
type

Evidence
estimation

Evidence
optimiza-

tion

# of likelihood
evaluations

SBL/BCS × × X Gaussian
ARD

(Conjugate
prior)

Analytical Gradient
set to
zero

N/A

Bayesian
model

comparison

X X × Known pdf Numerical
(MCMC-

based)

N/A NModels × NMCMC

ARD
(Sampling-

based)

X X X Known +
Gaussian or

Laplace ARD

Numerical
(MCMC-

based)

Gradient-
free

NIter × NMCMC

ARD (NSBL) X X X Known +
Gaussian

ARD

Semianalytical
(GMM-
based)

Gradient
and

Hessian
based

NMCMC

NMCMC: # of MCMC samples needed for computing evidence (for an average model).

NModels: # of candidate models.

NIter: # of iterations required for optimizing evidence.

Sandhu et al., JCP, 2021, with copyright permission
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Derivation: Parameter Posterior (closely follows the book by Evensen)

p(x1, . . . , xk , φ|d1, . . . , dJ ) = p(x1, . . . , xk |d1, . . . , dJ , φ)︸ ︷︷ ︸
Conditional state pdf

p(φ|d1, . . . , dJ )︸ ︷︷ ︸
Parameter posterior pdf

p(x1, . . . , xk |d1, . . . , dJ , φ)p(φ|d1, . . . , dJ ) ∝

p(φ)

d(1)−1∏
j′=1

p(xj′ |xj′−1, φ)

 p(xd(1)|xd(1)−1, φ)p(d1|xd(1), φ)

.

.

. d(J)−1∏
j′=d(J−1)+1

p(xj′ |xj′−1, φ)

 p(xd(J)|xd(J)−1, φ)p(dJ |xd(J), φ)

.

.

. k∏
j′=d(J)+1

p(xj′ |xj′−1, φ)



Bisaillon et al., Nonlinear Dynamics, 2015
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State and Parameter Estimation

uk+1 = gk (uk , φ, fk , q
u
k) , (7)

dj = hj
(
ud(j), φ, εj

)
. (8)

uk+1 = gk (uk , φk , fk , q
u
k) , (9)

φk+1 = φk + qφk , (10)

dj = hj
(
uk(j), φk(j), εj

)
(11)

xk =

{
uk

φk

}
; qk =

{
qu
k

qφk

}
(12)

Khalil et. al, JSV 2015
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