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Nonlinear aeroelastic oscillator - overfitting issue

o Aeroelastic limit-cycle oscillation (LCO) (Sandhu et. al, CMAME, 2014;
Sandhu et. al, JCP, 2016)
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Sandhu et. al, CMAME, 2014; Sandhu et. al, JCP, 2016 (with copyright permission)

o Identify the best model for Cy:

My Cu = e10 + &0 + e36° + 2020 + o&(T)
¢ . . ..
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Problem definition: Mass-spring-damper system

o Inverse problem: Estimate a probability density function (pdf) of damping
and stiffness parameters while identifying the sparsity in damping
parameters. (Sandhu et al., JCP, 2021)
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(a) Three-dof mass-spring-damper (b) Measured versus true response.
model.

Sandhu et. al, JCP, 2021 (with copyright permission)
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Nonlinear sparse Bayesian learning

/ Nonlinear Sparse Bayesian Learning \

Physics-based model
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Sandhu et. al, JCP, 2021 (with copyright permission)
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Bayesian inverse modelling

o Overview of the Bayesian framework

Bayesian inverse modelling

Prior knowledge

Probabilistic predictions
Optimal experimental design
Design optimization
Global sensitivity analysis

1. Candidate stochastic models
2. Prior parameter pdfs
3. Bayesian model comparison

4.
Field observations 5. Bayesian model averaging

o Bayesian model comparison: Ranking of plausible models is based on
model evidence,

o(D) = [ p(DIN(@)dd . np(D) = Ellnp(D10)] - E [in PO
—_—— p(d)

Model complexity

Log-evidence Data-fit
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Nonlinear sparse Bayesian learning (NSBL): Methodology
o Stochastic state-space model structure:

Model equation :  uky1 = g (uk, fr, q,; d)
Measurement equation :  dix = hy(uy, ex; ¢)
o Parameter prior pdf: hybrid assignment (a: Hyper-parameters)
O = {bord.u}  POI) = p(da)p(duler) = p(d..) TN (il0,0;)
Known prior ARD prior

o Entity p(D|$) p(¢.,) remains unchanged during sparse learning!

P(DI)p(¢ler)

x p(D|d) p(d.,) N(d,]0,A™)
N’

Independent of o

o Gaussian mixture model (GMM) approximation:

K
p(DIP)p(d.,) ~ Y a“WN(9|u®, =),

k=1
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NSBL: Semi-analytical Bayesian framework

Entity Solution

Parameter decomposition b ={dg, d.al}

K
Likelihood -+ known prior | p(D|d)p(d.o) & 3 a¥I (9 ]pk), =)
k=1

ARD prior (Do la) = N(dbgol0,A71)
o
Hyper-parameter prior ple) = H G(ejlrissi)
i=1
K
Model evidence (D) = Z a(k)N(;Lg() |0, B(Cf)) ; B(o‘:) ==k 4t
k=1
K () Ar(®) 0, BK)
Parameter posterior PDF | (& |D, o) = 3wl Ar(em(F), pK)) (K — 2N wa'l0. Ba’)
k=1 B(D] log )
N
Objective function L(log o) = log p(D| log ) + Z (rilog aj — sjaxj)
i=1
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Sandhu et. al, JCP, 2021 (with copyright permission)
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NSBL: Numerical Implementation

o Stage 1: GMM construction by sampling p(D|d)p(¢_,) and then utilizing
o Kernel density estimation (KDE): Computationally expedient, # of kernels
= # of samples (Our choice)
o Expectation maximization (EM): More involved, smaller # of kernels (Not
pursued here)
o Stage 2: Newton's method to maximize model evidence (non-convex
optimization):

log aj1 = log aj + B;p; , where Hjp, = —g;

o Modified Newton method
o Trust-region Newton method (Our choice)

o Stage 3: Sparsity identification by exploiting relevance indicator, defined as

(k) _ Qi _ Q;
v = 1— A =1- P S [071]7 (1)
(P ai +{(Z¥) 1Y)
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NSBL: Benefits

o Benefits of NSBL over standard Bayesian model updating
o Evidence-based pruning of redundant parameters while incorporating prior
parametric knowledge

o Parameter posterior pdf and model evidence available semi-analytically

o Gradient and Hessian of evidence with respect to hyper-parameters available
analytically

o Can handle non-Gaussian and multimodal pdfs
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Example: Polynomial Regression with Multimodal Prior

o Generated observations using y; = 1+ x? + ¢;, where ¢, is a Gaussian white
noise process with distribution N(€;]0,0.04). (Sandhu et al., JCP, 2021)
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Sandhu et. al, JCP, 2021 (with copyright permission)

o The observational data consists of 100 noisy samples with equally spaced
coordinate x within the domain x € [0.75,1.25]
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Example: Polynomial Regression with Multimodal Prior

o Inverse problem setup: (Sandhu et al., JCP, 2021, with copyright
permission)

Proposed model y=ao+ aix + axPte; en N(0,0.04)
¢ decomposition ¢, ={a1, 2}, ¢, ={a}

ARD prior, p(¢|a) N(a1]0, a7 1) N (2200, ey 1)

Known prior, p(¢_,)

[M(a0]-1,0.2%) + N (200, 0.2%) + N (a0|1,0.2%)] /3

o Non-Gaussian prior knowledge: (Sandhu et al., JCP, 2021, with copyright
permission)
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Example: Polynomial Regression with Multimodal Prior

o Stage 1 (GMM construction): 2500 samples distributed according to
p(D|d)p(db_,) or p(Dlao, a1, a2)p(ac) using TMCMC, followed by a GMM

construction using KDE (Sandhu et al., JCP, 2021, with copyright
permission)
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SBL and BCS are not applicable for multimodal/Non-Gaussian posterior pdfs!
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Example: Polynomial Regression with Multimodal Prior

Stage 2: Sparsification (Sandhu et al.,, JCP, 2021, with copyright permission)

o Initialized at log o = {—3, —3}, NSBL suggests a; is irrelevant and a, is
relevant.
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o lteration initialized at log o« = {6,8}, NSBL suggests a; is relevant and a,
is irrelevant.
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Multistart is necessary!
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Example: Polynomial Regression with Multimodal Prior

o Posterior parameter pdf post sparse learning: (Sandhu et al., JCP, 2021,
with copyright permission)

— before
— after

with copyright permission)
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o Predictions before and after sparse learning: (Sandhu et al., JCP, 2021,
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Example: Mass-spring-damper system

o Displacement vector u = {u1, u2, uz}; equation-of-motion Mii + Cu + Ku
= 0 (Sandhu et al., JCP, 2021, with copyright permission)
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o

(C) Three-dof mass-spring-damper (d) Measured versus true response.
model.

o Parameter true values:

o Mass: my = mp = m3 = 1.0,
o Stiffness: ky = ko = k3 = 1000.0,
o Damping: ¢ =10, o =0, c3 = 0.
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Example: Mass-spring-damper system

o Inverse problem setup: (Sandhu et al., JCP, 2021, with copyright

permission)

Proposed model

¢ decomposition

Mi+ Ca+ Ku=20

d)a = {C1,C2,C3} f d)—a = {k1,k27k3}

Known prior, p(¢_,)

ARD prior, p(¢,|ax)

Hyperprior, p(a)

U(k1|0, 5000) 14( k|0, 5000) 2/( k3|0, 5000)
N(C1|O?O‘1_l) N(C2|Oa 052_1) N(C3|07 O‘3}_1)

3
Hg(a,-|r,s) ; logr =logs =-10

i=1
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Example: Mass-spring-damper system

o Bayesian inference with flat priors for questionable parameters: (Sandhu et
al., JCP, 2021, with copyright permission)
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o Predicted versus true time-history of velocity tp: (Sandhu et al., JCP,
2021, with copyright permission)
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o Stage 2: Sparsification (Sandhu et al., JCP, 2021, with copyright

permission)
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Example: Mass-spring-damper system

o Bayesian inference post sparse learning, using optimal ARD priors from
NSBL: (Sandhu et al., JCP, 2021, with copyright permission)
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o Prediction before and after sparse learning of model parameters:
(Sandhu et al., JCP, 2021, with copyright permission)
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Xk+1 = 8k (xka ¢a fk7 qk) (2)

d; = hj(xq(), &) (3)

J
p(6D) x p(6) ]| / P(d;[xq(), @) P(Xa()[Xa()—1, ) dxa))
=1 —_—

Non-Gaussian filtering

p(D¢)

p(¢D) < p(¢)p(Dlo)

Bisaillon et al., Nonlinear Dynamics, 2015



f f
P(Xd()|Xd()—1: 8) ~ N (xa()[*Xa(), Pagi))

J
p(Dl¢) = [ [NV (djlh;(xi), 0), =)

Jj=1

¥’ =GP}, C/ +D,;rD/

C — ahj(xd(j),fj) (4)
J - .
axd(l) de):xZU)75j:0
ah'(xd(j);ej)
D, = 2\2dups)
J 851 (5)

Xd(j) =xg(j) ,6;=0

Bisaillon et al., Nonlinear Dynamics, 2015



N
1
p(Xd()|Xagy-1, @) = N Z S(Xd() — Xa(j).s)-

s=1

8

J
p(Dle) =] / P(Xd()[%a()—1, #)P(dj[xa(j): @) dXa(s)
j=1

J % N
1
~ / 8(xa() — Xbi3),s)P(dj[xa(), d) dxag)
J=1_" s=1
J 1 N
f
T [ St o)
j=1 s=1

Bisaillon et al., Nonlinear Dynamics, 2015



Likelihood Computation using PF

N
P(Xd(|Xa() -1, 0) = D Wa(y) s0(Xa() — Xa).s)

s=1

J o0
p(016) =[] / p(%a) ¥y, )p(s %), B) %

J=1_"
< N

~[] / > wa),s0(xag) — Xag).s)P(dj[xaq), ) dxa(y)

oo s=1

J N

~ H Z Wag),sP(dj[Xa() 5 &) (6)

Jj=1 s=1

Jj=1

P(dj|Xd(i),i)P(Xd(j),i|Xd0)—1,i)
q(Xa(j),i1%dg)—1,i> dj)

Bisaillon et al., Nonlinear Dynamics, 2015

Wa(j),i O Wd(j)—1,i
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Single degree-of-freedom aeroelastic system

Data generating model:
16 + D6 4+ KO + Kny60® = Dysgn(0) + EpU2czscM(9, 6,6)

¢ . .
Y 4 Cu = e10 + 20 + e360° + €,6%0 + §60+ag(7)
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Sandhu et. al, CMAME 2017 (with copyright permission)
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Case 1: One-dimensional sparse learning problem

@ Aerodynamic parameter e3 is treated as questionable
¢ . . .
S Cu =l + e+ et + a0+ 1360 + og(7)
@ ARD prior, p(¢ala)
P(¢ala) = N(es[0, o)
@ Known prior, p(¢—q)
P(¢—a) = L(B[0.2,50)U(e1|—2, 0)U(e2|—2, 0)U (es| —600, 0) L(c|0.002, 50)

R. Sandhu. Model Comparison and Sparse Learning of Nonlinear Physics-Based Models Using Bayesian Inference. PhD Thesis, Carleton

University, 2020.
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Single degree-of-freedom aeroelastic system

@ Constructing GMM of partial posterior p(D|¢)p(¢—q) using KDE

oot
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@ Maximizing log evidence with respect to hyperparameter «
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@ Parameter e3 is correctly identified as relevant

R. Sandhu. Model Comparison and Sparse Learning of Nonlinear Physics-Based Models Using Bayesian Inference. PhD Thesis, Carleton

University, 2020.
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Case 2: Two-dimensional sparse learning problem

@ Aerodynamic parameters es and eg are treated as questionable

Cm . . e
3 2 5 4
F+CM2619+620+639 +€40 0+€50 +669 6+E9+U£(T)
. 10
&
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. 3 \
o S 0.6
g 2 \
° <04
z
20 § 02
- Q.
“ 0.0 ==
0 2 4 6 8 10
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o8
o
S
T o6
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<04
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@
502
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Newton iteration count

@ One optimum correctly identifies parameters e5 and e as irrelevant
@ The other finds e5 to be irrelevant, but ¢; to be relevant

1R, Sandhu. Model Comparison and Sparse Learning of Nonlinear Physics-Based Models Using Bayesian Inference. PhD Thesis,
Carleton University, 2020.
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Conclusion and Future Research

o NSBL is effective for ODE models.

o NSBL for coupled nonlinear ODE and PDE models
(bending-bending-torsion-pitch motions) using wind-tunnel data.

o Concurrent selection of physics-based model and model errors.
o Address overfitting using NSBL for Bayesian neural networks.

o Apply to fields outside of aeroelasticity (e.g. epidemiology).

e Gerun s el I T R ——



Conclusion
Capabilities Methodology Scalability
Method  |Nonlinear Prior Sparse Prior pdf Evidence  Evidence | # of likelihood
models? knowl- learning? type estimation  optimiza- evaluations
edge? tion
SBL/BCS X X v Gaussian  Analytical  Gradient N/A
ARD set to
(Conjugate zero
prior)
Bayesian \/ \/ X Known pdf Numerical N/A  |Nmodels X Nmcmc
model (MCMC-
comparison based)
ARD \/ \/ \/ Known + Numerical Gradient-| Njer X Nycmc
(Sampling- Gaussian or  (MCMC- free
based) Laplace ARD based)
ARD (NSBL)| v/ v V' | Known +  Semianalytical Gradient Nucmc
Gaussian (GMM- and
ARD based) Hessian
based

Nmcmc: # of MCMC samples needed for computing evidence (for an average model).

Nwmodels: # of candidate models.

Niter: # of iterations required for optimizing evidence.

Rimple= Sandhu et al.

Sandhu et al., JCP, 2021, with copyright permission
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sdy) = p(x1, - xgldy, .o, dy, d) p(Bldp, .. dy)

P(X1s - s Xps Pldp, .o

Conditional state pdf Parameter posterior pdf
plxy, .oy xgldy, ., dy, @)p(@ldy, ..., dy) oc
d(1)—1
p(d) ‘,1_[1 P(Xj/ Ixj/_ly 8)| Plxg(1) Ixg(1)—1> PIP(A1Ixg(1)» &)
=

d(J))—1
11 POjr 11 _15 )| POrg(g) IXa(sy—1: IP(As1xg(g), @)
j/=d(J—1)+1

/=d(J)+1

k
l:/- IT pxjr %7y ¢'):|

Bisaillon et al., Nonlinear Dynamics, 2015



Ukt1 = Bk (uka ¢a fk7 QZ) B (7)
dj = hj (ud(j)a ¢a Gj) . (8)
Upt1 = Gk (uk7¢k7fkaqz)7 (9)
b1 = b +ap, (10)
d; = b; (ukgi) D) €) (11)

- fa) -3

Khalil et. al, JSV 2015
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