

Sandia
National
Laboratories

Determining Hazard Severity via Probabilistic Risk Assessment in the Commercial Trucking Industry to Inform Design and Qualification

August 2021

David "Joey" Flores

Why is this work relevant?

Support my customer

- The Office of Secure Transportation
- The mission: The safe and secure transport of high-security assets
- Excellent driving record: Well over a hundred million miles travelled on the road without an accident of significance
- But if it did, what would likely happen? How would the system perform?

Utilizing a Statistical Approach

The “Needs”

1. Need statistical thresholds for credible frequency of event occurrence and for system response to bound a “good enough” space within system performance needs
 - DOE Standards provide both for my work
2. Need a severity metric for each hazard within that space
 - Crash: Peak Contact Velocity (PCV)
 - Fire: Size, location, and duration
3. Need data for evaluating event frequency
 - UMTRI Database
4. Need a formula to use that data
5. Need a method for evaluating the performance
 - Modsim and performance-based engineering

$$PCV = \frac{V_r}{1 + \frac{M}{m}}$$

PCV = $\frac{V_r}{1 + \frac{M}{m}}$

The UMTRI Database

Sample of UMTRI database format shown to the right

- All fatal tractor-trailer accidents from 1992-1999 (~22,800 accidents)
- Output for Single Vehicle (SV) and for Multivehicle (MV)
- Weight, Orientation, Fire Occurrence, Relative Velocity at Impact, etc...

CompositeNo_4	Yr	CollisionID	Pcv	qryOST_PCV	SNL_ID_TIFA	MOST_HAF	MHE_Desc	CaseWeight
93-6-3224-1	93	39	-2	0	Bottom	1	Overturn	1.688888889
94-12-1351-1	94	75	-2	0	Bottom	1	Overturn	4.59375
96-6-944-1	96	176	-2	0	Bottom	8	Pedestrian	10.34782609
96-6-1668-1	96	177	-2	0	Bottom	8	Pedestrian	10.34782609
96-12-1923-1	96	184	-2	0	Bottom	8	Pedestrian	10.34782609
96-6-2102-1	96	299	-2	0	Bottom	5	Fell from vehicle	2.666666667
97-39-425-1	97	256	-2	0	Bottom	1	Overturn	2.234567901
97-42-830-1	97	298	-9	0	Bottom	2	Fire/explosion	1.894736842
97-6-727-1	97	310	-2	0	Bottom	5	Fell from vehicle	3.5
98-6-2731-1	98	75	-1	0	Bottom	2	Fire/explosion	1.5
98-8-208-1	98	86	-2	0	Bottom	8	Pedestrian	9.52
98-29-30-1	98	167	-2	0	Bottom	8	Pedestrian	9.52
99-1-118-1	99	4	-1	0	Bottom	43	Other fixed object	1.913793103
99-1-867-1	99	21	-1	0	Bottom	2	Fire/explosion	2
99-6-1927-1	99	395	-1	0	Bottom	9	Pedalcycle	10.33333333

Developing Formulas to Determine Frequency of Occurrence

Frequency vs. Probability

- Frequency expresses the amount of occurrences of an event over some time interval
 - e.g., “I put gas in the car once a week.”
- Probability expresses the possibility of an event occurring
 - Must be a value between 0 (impossible) and 1 (certain), unit-less.
 - Probability can be used to augment frequency
 - e.g., “Since I am telecommuting half of the time, I have reduced my frequency of trips to the gas station by 50% (once every 2 weeks).”

$$F(\text{event}) = \frac{\# \text{ event}}{\text{interval}}$$

$$P(\text{event}) = \frac{\# \text{ event}}{\# \text{ possible outcomes}}$$

When using raw numbers in a database, frequency of an event can be determined two ways:

1. Counting the number of times an event happened over a time period, divided by the time period
2. Use the data to construct a distribution, then use the distribution to create a probabilistic factor that can be multiplied against the base accident frequency

$$F(\text{rollover}) = \frac{\# \text{ rollovers}}{\# \text{ years in database}}$$

$$F(\text{rollover}) = P(\text{rollover}) * F(\text{accident})$$

$$\begin{aligned}
 &= \frac{\# \text{ rollovers}}{\# \text{ accidents in database}} * \frac{\# \text{ accidents in database}}{\# \text{ years in database}} \\
 &= \frac{\# \text{ rollovers}}{\# \text{ years in database}}
 \end{aligned}$$

The Crash Equation

The frequency (number of times per year) that OST would see an accident that exceeds some threshold PCV for an Evaluation Basis Accident (EBA)

$$\frac{F(OST PCV > EBA PCV)}{yr} = \frac{\frac{OST \text{ } Mile}{yr}}{\frac{Commercial \text{ } Mile}{yr}} * TCF * \left(\frac{OSTMF * (\#SV \text{ } cases > PCV) * SF + (\#MV \text{ } cases > PCV) * SF}{\# \text{ } years \text{ } of \text{ } data} \right)$$

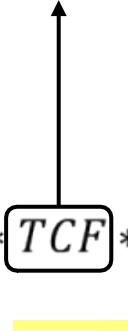
The Crash Equation

$$\frac{F(OST PCV > EBA PCV)}{yr} = \frac{\frac{OST \text{ } Mile}{yr}}{\frac{Commercial \text{ } Mile}{yr}} * TCF * \left(\frac{OSTMF * (\#SV \text{ } cases > PCV) * SF + (\#MV \text{ } cases > PCV) * SF}{\# \text{ } years \text{ } of \text{ } data} \right)$$

When OSTMF = 1, this term calculates the frequency (number of times per year) that 1990's commercial industry would see an accident that exceeds some threshold (EBA) PCV

The Crash Equation

$$\frac{F(OST PCV > EBA PCV)}{yr} = \frac{\frac{OST Mile}{yr}}{\frac{Commercial Mile}{yr}} * TCF * \left(\frac{OSTMF * (\#SV cases > PCV) * SF + (\#MV cases > PCV) * SF}{\# years of data} \right)$$

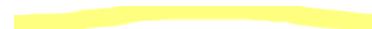

OST Mitigation Factor gives credit to OST ConOps and procedures that assist in preventing accidents

- Human Factors study gives counts of accidents by cause
 - Take a ratio of unmitigated accidents over total single vehicle accidents to obtain ratio
- When the factor = 0, represents total mitigation of single vehicle (SV) accidents
 - Taken as “best case bound”
- When the factor = 1, represents “OST is no better/worse than the commercial trucking industry in the 1990’s”

The Crash Equation

Time Corrective Factor: Conservatively reflects the decrease in accident frequency from the 1990's to now

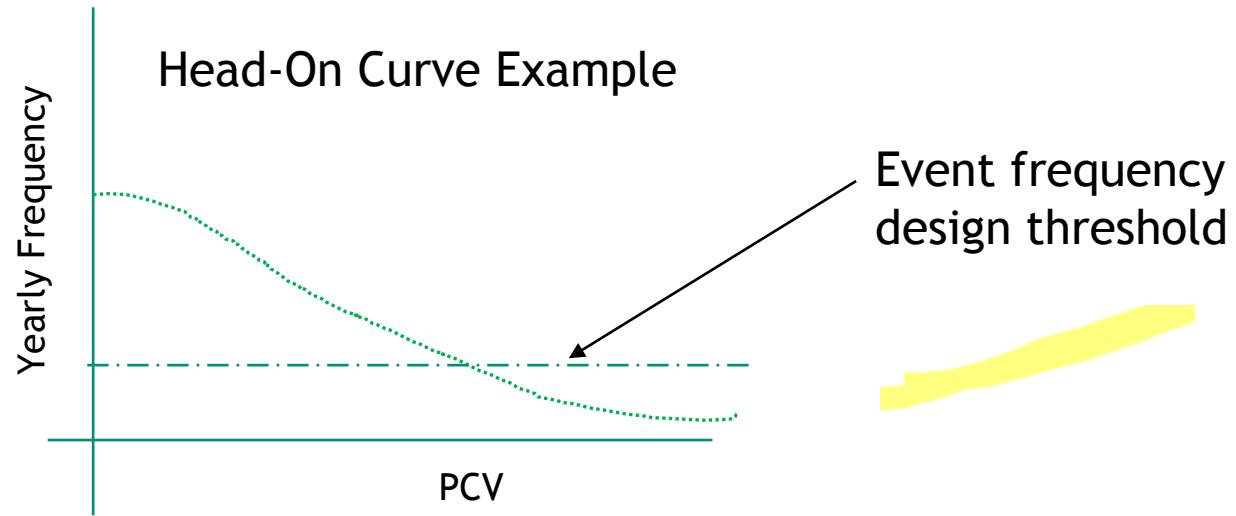
$$\frac{F(OST PCV > EBA PCV)}{yr} = \frac{\frac{OST \text{ } Mile}{yr}}{\frac{Commercial \text{ } Mile}{yr}} * \boxed{TCF} * \left(\frac{OSTMF * (\#SV cases > PCV) * SF + (\#MV cases > PCV) * SF}{\# \text{ } years \text{ } of \text{ } data} \right)$$


The Crash Equation

$$\frac{F(OST PCV > EBA PCV)}{yr} = \left(\frac{\frac{OST \text{ } Mile}{yr}}{\frac{Commercial \text{ } Mile}{yr}} \right) * TCF * \left(\frac{OSTMF * (\#SV cases > PCV) * SF + (\#MV cases > PCV) * SF}{\# \text{ years of data}} \right)$$

↓

OST Mileage Factor



The Crash Equation

$$\frac{F(OST PCV > EBA PCV)}{yr} = \frac{\frac{OST \text{ Mile}}{yr}}{\frac{Commercial \text{ Mile}}{yr}} * TCF * \left(\frac{OSTMF * (\#SV cases > PCV) * SF + (\#MV cases > PCV) * SF}{\# \text{ years of data}} \right)$$

The Fire Equation

Database contains distributions for the main fire characteristics

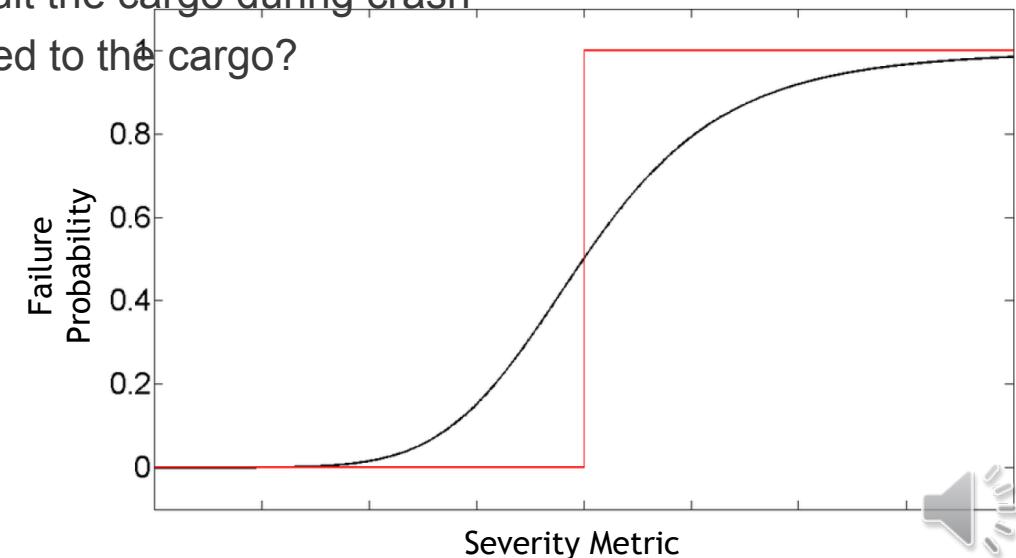
- Size (d)
- Duration (t)
- Temperature
- Distance from the vehicle of interest (s)

$$\frac{F(OST \text{ fire} > EBA)}{yr} = \frac{\frac{OST \text{ Mile}}{yr}}{\frac{Commercial \text{ Mile}}{yr}} * P(s = 0 \text{ ft}) * P(d > d_{EBA}) * P(t > t_{EBA}) * \frac{(\# \text{ fire cases}) * SW}{\# \text{ years of data}}$$

Recall, the database also tells us what the other vehicle involved was...

$$\frac{F(OST \text{ fire} > EBA)}{yr} = \frac{\frac{OST \text{ Mile}}{yr}}{\frac{Commercial \text{ Mile}}{yr}} * \frac{1}{N_{yr}} \sum_{v \in V} \left(P(s = 0|v) * P(d > d_{EBA}|v) * P(t > t_{EBA}|v \text{ AND } d) \sum_{i=1}^{N_v} n_{v,i} w_{v,i} \right)$$

Application to ModSim



Once a severity has been established, a means of evaluating it must be implemented.

- Modern-day modelling capabilities are useful for this
 - Bound infinite space of a chaotic accident environments to provide better information on trailer behaviors in an accident.
 - Allows for a true “system of systems” integration approach with the trailer, restraints, and cargo models
 - Full-up system model can be used to evaluate high-level hazards to the cargo
 - e.g., Electrical hazards nearby?
 - e.g., What are the states of the container and the trailer?
 - Can also evaluate discrete quantities of interest that directly insult the cargo during crash
 - e.g., What was the acceleration of the cargo or energy imparted to the cargo?
 - Some testing to anchor the model

Software: SIERRA

- SM: Mechanical
- Fuego and Aria: Thermal
- SD: Normal Environments

