

HelioCon: US Heliostat Consortium to advance low-cost, high-performance heliostat technologies with optimized operation and maintenance (OM).

Guangdong Zhu, NREL
Margaret Gordon, Sandia National Labs

Plenary: Solar Field Optimization
SolarPACES 2021

Introducing – Sandia HelioCon Lead

- Dr. Margaret Gordon

- Manager of the NSTTF at Sandia
- PhD Inorganic chemist from Northwestern University, work in hydrogen separation zeolitic membranes, photocatalytic materials, methane hydrates, sorbents, negative thermal expansion materials, composites for photovoltaics
- Former deputy director of DuraMAT – the PV materials consortium.

Outline, cont.

- Consortium Topic Areas, Cont.
 - Advanced Manufacturing
 - Components and Controls
 - Field Deployment
- What will we accomplish in 5 years from this centralized R&D approach?
- When will the RFP be released and what will it focus on?
- How can you get involved?

HelioCon – Advanced Manufacturing

Lead: Randy Brost (SNL), Co-Lead: Parthiv Kurup (NREL)

- Manufacturing efficiency is one key to achieving high economic performance.
- Manufacturing and field deployment are tightly integrated.
- Product design is the best opportunity to influence manufacturing cost.
- Design \Rightarrow process, so multiple designs \Rightarrow multiple processes.
- Metrology and process control are key to high-quality, high-productivity manufacturing.
- The diversity of heliostat designs make this a hard problem:

Rigid Mirror

1 Jemalong

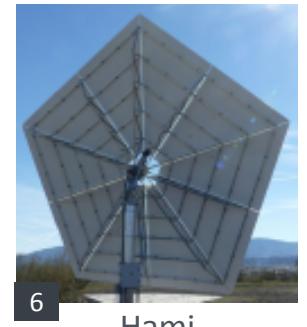
Discrete Pads

2 Coalinga

Strut Lattice

3 Luneng Haixi

Stamped Back


4 Crescent Dunes

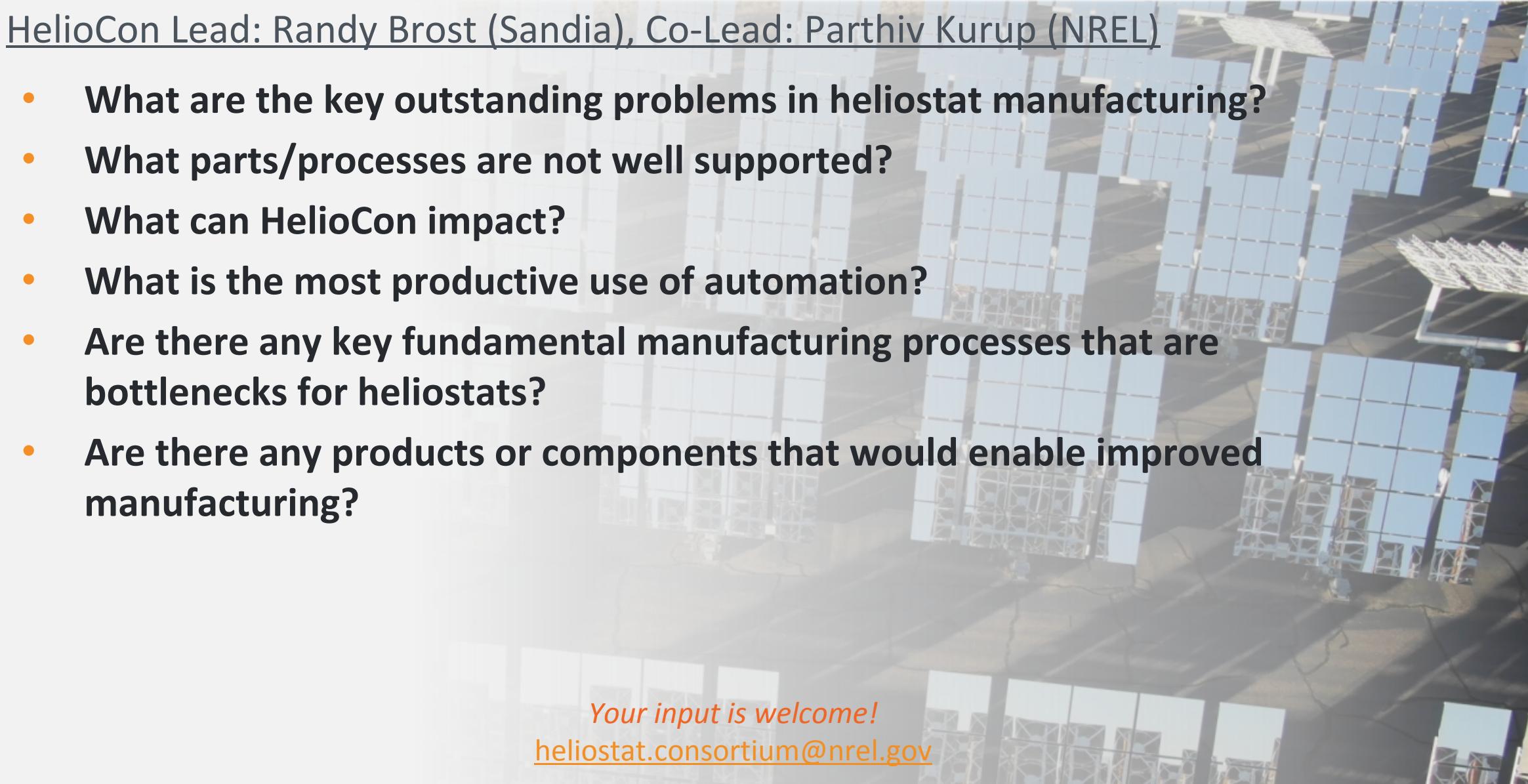
Glass Sandwich

5 Heliogen

Radial

6 Hami

Roadmap Year 1 goal: Conduct heliostat manufacturing gap analysis

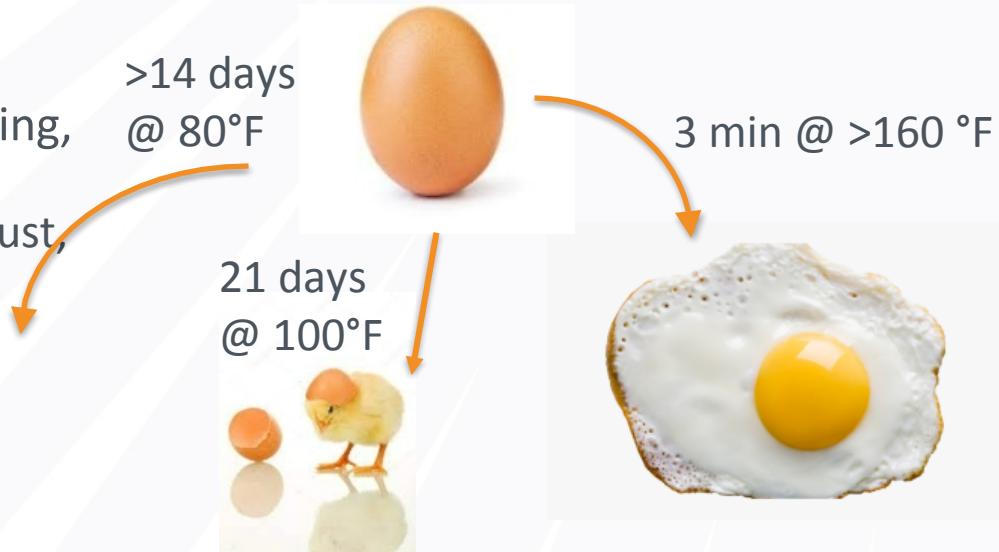

Image Credits

1. ABC News. Jemalong Solar thermal Station CSP Project, Jemalong, New South Wales, Australia. 2019.
<https://www.abc.net.au/news/2019-06-06/solar-power-energy-renewable-coal-vast/11177714?nw=0>. Accessed Aug. 2020.
2. Bright Source Energy. Coalinga Enhanced Oil Recovery, Coalinga, CA.
<http://www.brightsourceenergy.com/image-gallery#.VvBBbNlrK71>. Accessed Aug. 2020.
3. CSP Focus, SolarPaces. Luneng Haixi 50MW Molten Salt Tower CSP Project, Haixi, Qinghai Province, China. 2019.
<https://www.solarpaces.org/china-connects-its-5th-csp-project-in-climate-push/>. Accessed Aug. 2020.
4. Alec Ernest, Chris Clarke, KCET. Crescent Dunes Solar Energy Project, Tonopah, NV. 2017.
<https://www.kcet.org/redefine/video-offers-a-compelling-look-at-nevadas-largest-solar-plant>. Accessed Aug. 2020.
5. Ewwind. Heliogen Lancaster Tower, Lancaster, CA. 2020.
<https://www.ewwind.es/2020/02/13/self-aligning-heliostats-arrive-to-slice-concentrated-solar-power-costs/73563>. Accessed July 2020.
6. Pfahl, et al. Progress in Heliostat Development. *Solar Energy* **152**, pp. 3-37, 2017. Figure 31.

HelioCon – Advanced Manufacturing

HelioCon Lead: Randy Brost (Sandia), Co-Lead: Parthiv Kurup (NREL)

- What are the key outstanding problems in heliostat manufacturing?
- What parts/processes are not well supported?
- What can HelioCon impact?
- What is the most productive use of automation?
- Are there any key fundamental manufacturing processes that are bottlenecks for heliostats?
- Are there any products or components that would enable improved manufacturing?


A large field of heliostats, which are mirrors used to reflect sunlight onto a central receiver. The mirrors are arranged in a grid pattern and reflect bright sunlight.

Your input is welcome!
heliostat.consortium@nrel.gov

HelioCon: Component & Controls

Lead: Ken Armijo (SNL) Co-lead: Matt Muller (NREL)

- Reliability of components and controls is critical for favorable financing, operation, maintenance
 - Environmental (wind loading, repetitive motion, rain/snow/hail, dust, UV, temperature cycles) safety, security, repeatable accuracy
 - Requires validated accelerated testing → → →
 - Design & Reliability standards do not exist for Heliostat components and Controls
- Components and Controls are tied to manufacturing, optical metrology, and field deployment.
- Opportunity for advanced controls: remote operation, next-gen control algorithms
- Component and materials list is extensive; control systems are custom to each field:

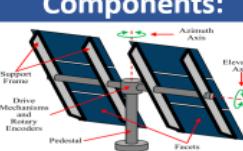


Topic Area Year 1 goal: Conduct industry survey of components and controls

HelioCon – Components and Controls

Lead: Ken Armijo (SNL) Co-lead: Matt Muller (NREL)

- **What are the key outstanding problems in component operation?**
 - Control system operation?
- **What parts/processes are not well supported?**
- **What can HelioCon impact?**
- **What is the most productive implementation of automation, wireless controls, etc.?**
- **Are there any key fundamental failures in components/controls that cripple heliostat operation?**
- **Are there any key fundamental failures in components/controls that cause a significant safety issue?**
- **Are there any missing capabilities in controls that would enable improved operations?**



Your input is welcome!

HelioCon – Field Deployment

Lead: Mark Speir (SNL), Co-Lead: Alex Zolan (NREL)

- Field Deployment strategies vary widely across all commercial scales
 - Deployment periods over two years are common!

Heliostat Development Cycle	Conceptual Design: 	Heliostats Components: 	An Integrated Heliostat: 	Mass Production of Heliostats: 	A Heliostat Field:
	<ul style="list-style-type: none">• Solar Field optimization• Design guidelines and standards• Resources of past design lessons• Catalog of conditions for size and geo-type	<ul style="list-style-type: none">• Prototyping and engineering• Component installation/deployment• Foundation and installation cost/time reduction	<ul style="list-style-type: none">• Heliostat test protocol & standards• Simultaneous design of product & installation process• Full heliostat reduction tech.	<ul style="list-style-type: none">• Mass field deployment• Optical field validation• High Volume low cost foundation for various soils	<ul style="list-style-type: none">• Site layout• Site geo type• Operation & Maintenance optimization• Efficient, low cost installation and initial calibration• High fidelity site survey

HelioCon – Field Deployment

Lead: Mark Speir (SNL), Co-Lead: Alex Zolan (NREL)

- **What are the key outstanding problems in field deployment?**
What stages are not well supported? Are field installation time and field calibration time high priorities? What else?
- **How could automated and semi-automated methods affect field layout and installation, cable/trenching vs wireless, heliostat assembly, initial calibration, commissioning, repair (including in-situ recalibration)?**
- **How could we Improve predictability of life-time performance models of commercial deployment?**
- Optimize O&M, including component replacement, re-canting (if needed), re-calibrating, washing, routine performance monitoring?
- **Adding sensing for real time feedback, fill in unknowns,.....**

Topic Area Year 1 goal: Conduct solar field deployment gap analysis

Your input is welcome!

HelioCon Request for Proposals

- **Timeline:**
 - **Summer 2022** – HelioCon Roadmap published
 - **Mid Summer 2022** - HelioCon will issue the first annual Request for Proposals.
 - RFP will invite proposals in the priority topic areas described in the roadmap
 - Who can apply? Non-lab entities, including industry and academia are eligible to respond with required cost share.
 - Partnership with core laboratories is encouraged to provide support in development, testing, validation, and certification.
 - **RFP budget will be a minimum of 30% of total consortium budget = \$8.5 M total for awards in FY 23, 24, and 25.**
 - **Target Timeframe for awards from the first RFP is late 2022.**

Watch for more announcements mid 2022!

HelioCon Goals

Why employ a centralized research consortium?

- HelioCon will link researchers and stakeholders advancing the state of the art in Heliostats – webinars, workshops, etc.
- HelioCon will fund research projects that will realize **low-cost, reliable, high performing** heliostats.
- HelioCon will develop specialized capabilities at the core labs to support the heliostat industry
 - a full list of accessible capabilities will be on the HelioCon website
 - test infrastructures with specifications including working principles, performance metrics, licensing options.
- HelioCon will streamline partnership agreements and tech transfer opportunities → transition IP developed in HelioCon to the private sector
- HelioCon will make available a public database summarizing heliostat related resources, training and education materials
- Annual and Final Reports will summarize research achievements and future perspectives on heliostat research, development, and validation

Your involvement is welcome!

Questions? Thank you!

www.nrel.gov

csp.sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

CLICK TO ADD SAND XXXX-XXXX P