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2 | Introduction

250 A

= Ammonia (NH,) is an energy-dense chemical and a vital

component of fertilizer 290 |
 Also finds use as potential fuel and in CSP
. 150 1 ¥ Alumina
thermochemical energy storage g i Carbide
= NH; synthesized via the Haber-Bosch process s  Ammonia
100 H Soda Ash
* Requires high pressures (15-25 MPa) and temperatures = Glass
(400-500 °C) 50
o Capital-intensive and only practical with large facilities
0
o Process including H, production is responsible for
"‘"1 4% Of gIObaI C02 emiSSionS1 Industrial process emissions (China) from the production of alumina,
plate glass, soda ash, ammonia and calcium carbide in 1990-2013.
= Ammonia synthesis consumes > 1% of the total energy (Liu, Z. {2016). Applied Energy 166: 239.)
worldwide?

Production of NH, via a renewable, carbon-neutral technology powered by
concentrating solar can mitigate climate and CO, impacts

"Kyriakou, V., Joule 2020, 4 (1), 142. ?Institute for Industrial Productivity. Industrial Efficiency Technology Database http://ietd.iipnetwork.org/content/ammonia. ey Orfe ot ENERGY EFFICIENGY
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31 Solar Thermal Ammonia Production (STAP)

An advanced solar thermochemical looping technology to produce and store nitrogen
(N,) from air for the subsequent production of ammonia (NH;) via an advanced two-

stage process
AN

T —— = Inputs are sunlight, air, and hydrogen; the
MO, w0, + 11250, output is ammonia

Solar

MO, MOs Significantly lower pressures than Haber-
Nitrogen Production Reactor BOSCh
MO, + N, ‘N0 -+ 1/25 O, ..
= Greatly decreases or eliminates carbon
Heat Recovery footp r| nt
[ Nitridation Reactor ] = The process consumes neither the oxide
MN,., + 1/2y N, m— MN, cf . . .
VN nor the nitride particles, which actively

MN,.s y participate cyclically

Ammonia Production Reactor ]
MN,._, + 1/y NH; — MN, + 3/2y H,
H, (outside scope)
Heat Balance ENERGY | 27coor EheRaY EFPiciENcY
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4 ‘ Four Project Thrusts

1. Nitrogen Separation: Identify and optimize
redox active metal oxide (MOx) materials for
N, recovery via air separation

Solar Reduction Reactor
MO, m— MO, 5+ 1/25 O,

Nitrogen Production Reactor

MO, + N, ®===== MO _+1/25 O, Rate Limiting Mechanism(s) Determination of SrFe0O;_5 and

(Ba,La)y 1551, gsF€0;_5 Perovskite Reduction/Oxidation Reactions
for Air Separation via Two-step Solar Thermochemical Cycles

MN,, + 1/2y N, m— MN, Nhu P. Nguyen, Georgia Institute of Technology (Thurs 2A)
\ Nitridation Reactor J
MN

y

Ammonia Production Reactor

MN,., + 1/y NH gt VN, + 3/2 2/‘
\_ [ H, (outside SCOPe)I LFarr, T. P.; Nguyen, N. P.; Bush, H. E.; Ambrosini, A.; Loutzenhiser, P. G., "An A- and B-Site Substitutional Study of
NH3 N SrFe03-6 Perovskites for Solar Thermochemical Air Separation." Materials 2020, 13 (22).
2 Nguyen, Farr, Bush, Ambrosini, Loutzenhiser, “Air separation via two-step solar thermochemical cycles based on
Heat Balance SrFe03-6 and (Ba,La)0.155r0.85Fe03-6 perovskite reduction/oxidation reactions to produce N2: Rate limiting
mechanism(s) determination.”, submitted to Phys Chem Chem Phys, in review.

el Ll office of ENERGY EFFICIENCY
ENERGY & rReNewaBLE ENERGY
SOLAR ENERGY TECHNOLOGIES OFFICE

9/27/2021 SOLARPACES 2021



> 1 Four Project Thrusts

O,

Solar Reduction Reactor
MO, m— MO, 5+ 1/25 O,

MO

Nitrogen Production Reactor
MO, + N, &==== MO, ;+ 1/25 O,

Heat Recovery

D

MN,_, + 1/2y N, m— MN,
\ Nitridation Reactor J

Ammonia Production Reactor

MN,., + 1/y NH e VN, + 3/2y
S  — H, (outside scope)l

NH,

9/27/2021

N
Heat Balance

2. NH; Production: Identify and optimize “redox
active” metal nitride (MN,) materials for
ammonolysis reaction

MO, ;

y
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| Four Project Thrusts

5 2.
Solar Reduction Reactor I
MO, wmmm—p MO, + 1/25 O
MO, MO, 3. Lab-scale Reactors Modeling, Design, and ]
C 1 T BEE ) Testing: Model and identify design parameters
S | - for N, separation and NH; synthesis bench-
scale reactors; construct and test with working
materials
MN MN Design and Operation of Reactors for Solar Thermochemical
y-6 y Air Separation for Ammonia Synthesis

Ammonia Production Reauovq\ ]
MN,_, + 1/y NH ; e \N + 3/2 . . .
A R ‘ ’ Ygii,(z Butside scope)| H. Evan Bush, Sandia National Laboratories (Thurs 2A) |

Heat Balance
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7 ‘ Four Project Thrusts

4 A

o, )
Solar Reduction Reactor I
MO, m— MO, 5+ 1/25 O,
Nitrogen Production Reactor
MO, N, S MO, +1/25 O, Solar-Thermal Ammonia Production: System Design and Techno-

economic Analysis

Heat Recovery

¥ 5

Alberto de la Calle, Arizona State University (Tues 2C)
MN,., + 1/2y N, == MN,
VIN ) nliidation Readlor VN 4. System and Technoeconomic Analyses:
y-3 - ————————— y Develop and refine throughout the project, \
mmonia Froduction reactor . .
MN, ., + 1/ NH s MNy+3/2y2/‘ systems and TE models to guide materials I
\ H, (outside scope)l . . .
NH, N choices, reactor design, and determine
k Hont Balance / projected cost for a scaled-up system
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|
8 ‘ NH; Production

Identify and optimize metal nitride material (MN,) that can be reduced by |
H, to produce NH;, then re-nitridized directly by N, to close the cycle ‘
= Nitride is reduced by H, to form Mn,.,+ NH,
_ o then regenerated by N, from 1st cycle |
[ O, ey MO+ 11200, = Not as straightforward as oxide development |
MO, MOys  Pool of candidates much smaller
B e, - Thermodynamics are challenging; NH,
Hoat Rocorery dissociates at high T
o * Nitrogen diffusion in metal nitrides is slower
" NitdaionReaclor’ and less common
y-5 ) — MN, » Synthesis more complex — usually reacting :
Q IVIN|£1 s S/ZYQVH‘Z (outside scope)|

under flowing NH; at high T in ammonolysis
NH, ‘

N reaction
Heat Balance
el Ll office of ENERGY EFFICIENCY
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> 1 Co;Mo;N

= |nitial thermodynamic calculations (ASU) imply that
candidate must be a ternary nitride (MM’N)
possible | 1008

= Preliminary candidate: Co;Mo;N (CMN331)
ternary Non-Metal (18), leaving 44 elements and 1936 nitrides (14.4%) |

« CMN331 can undergo reversible phase change 10 | scarcesimens (s icaving 62 slements ana 388 nitsices (28.3%
CMNG661, reversibly losing 50 mol% of nitrogen: e EEEE—

Co;Mo;N <> CosMogN

- Both phases crystallize in same space group (Fd-
3m) — facilitate kinetics?

No ternaries, leaving 38 nitrides (0.28%)
Neither redox, leaving 60 nitrides (0.45%)

Too favorably bound (20), leaving 21 and 441 (3.3%) ‘

 Evidence that material can be regenerated
directly by N,

*Hunter, S.M., Mckay, D., Smith, R.J., Hargreaves, J.S.J., Gregory, D.H., 2010, Chemistry of Materials, 22(9), pp. 2898-2907.
Gregory, D.H., Hargreaves, J.S.J., Hunter, S.M., Catalysis Letters, 2011, 141(1), pp. 22-26.

uuuuuuuuuuuuuu
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10 ‘ Synthesis of Co;Mo;N

Solution: ' / / . .
Co(NO,),-6H,0 + Heat the solution: Vacuum Dry overnight at 78React5 °C,
(NH,)6Mo,0,,- Purple precipitate filtration CoMoO,- xH,0 10% H,/N,
4H,0
S . Ry

[20200819 3 CoMoO4 calcined at 500C xrdml] 20200819 3 CoMo04 calcined at 500C

PDF# 00-021-0868 CoMoO,

5h conversion
o~ A A A A s\ S A Jk..n._ e M

7.5h conversion

7 E)
E ©
& = B
= E=]
2 0
= c
= (7]
2
=
10h conversion
AN A ,A e ~ A e ‘A o A
| ‘ CozMo3N
—~ [ | I | x » X [ ] n I ] [ ]
50 60 70 80 80 T T T T T T
Two-Theta (deg) 20 30 40 50 60 70 80 %
20 (%)

Synthesis of oxide precursor followed by nitridation in 10% H, for 10 hours results in single phase
Co;Mo;N under milder synthesis conditions compared to ammonolysis’

el Ll office of ENERGY EFFICIENCY
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"1 Co3Mo;N 2> Co,Mo,N Reaction

100% Ar | | 75% H,/Ar I
= Rapid kinetics for T = 500 °C Y
= Reducible for wide range of T, [H,] T -
= Total mass loss is close to theoretical for full conversion to CogMogN (1.46%) 999: /1]1:462 % 0 ‘
= XRD shows no change in structure (expected); no secondary phases detected = ol 300 &
= NH, formation detected by RGA I ; RRE
- Difficult to quantify due to m/z overlap with H,O, N, L | | o] ‘
 Reduction conditions favor NH; dissociation ° 0 10 0

0.5r  10°
‘ 6-8% H,/Ar 8% H,/N,
r
1 || I \\ Am=0 :r ----- '
or  107p " v e 2
- l , i
<+ !
- | || ! \
H o
2 n | I U W | M w S < J <«— (Gas switch “
X =~ v
Slg w0t \oes
<] E = T ———l : ;
E =
_15 L 10-12 L r \
‘ | 5 g i
XRD peaks of Co;Mo;N sample before (black) and after 25 ot | ' : :
0 5000 10000 15000

(after) reduction in TGA under 75% H,/Ar up to 700 °C ‘s

RGA of CMN331; reduction under 6-8% H,/Ar at 500 C (Georgia Tech)

9/27/2021 SOLARPACES 2021

800

1700

600

Co;Mo;N mass loss (dashed black) and sample temperature
(dashed red); 75% H,/Ar (reducing flow) is shown as a red region.

Ammonia
MASS SPECTRUM

17 100
15 NH,, 0% NH,, OH-
28 80

60

18
32
16

Rel. Ir;ltensity ‘
N

40+

NH2
N3
0.0 f L

T
13 14 15 16 17 18 19
m/z

NIST Chemistry WebBook (https://webbook.nist.gov/chemistry)

NH, fragmentation pattern
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2] CMN661->331:Re-nitridation 100K AT | [ 7% H/Ar | | 75% o/,
100.2 ¢ 700
100% I
99.8 | 1600 |
= H,/N, TGA reduction at varying T and [H,] ol 1 500
= Partial re-nitridation attained - 92 1400
£ %9 1300 =
* Maximum of 0.41% weight gain at 700 °C, 75% = o8} - I
H2/N2 98.6 1200
s 284 0.41% | {100
- Corresponds to ~ 35% of complete re-nitridation 9.2 /,,—I-
: ' ' ' 0
° |ncreased W|th [HZ] > 1% 0 100 200t. lnil.lSO['J' 400 500

* No improvement for small induced overpressure
* No change in observed in XRD (right)
= [H,] > 0% necessary; cannot re-nitride in pure N,

Initial
Reduced
Nitride attempt

« “Runaway” linear mass gain under pure N, ‘Z" \ \
> Potential oxidation from small O, impurity in = | 1 EVERIIS [ T '
Swe e p e ..,,,_.m.‘..,_..’ | 'l' *wmmm I
, . . IR | ST S
- Phase change, potential Co-oxide formation (not | Bitak—
shown) . ‘
29’ ° el il Office of ENERGY EFFICIENCY
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3 ‘ Extending Nitride Candidate Pool

I
oo 3, Jeomosonnne [FETITY,
Co;MosN Yes Fe;W;N No |
(Co,Ni,,),MosN (x =0.25, 0.5, 0.75) Yes Ni,W;N No
Ni,Mo,N Yes Co,W;,N No -
(Fe,Ni,),Mo;N (x = 0.25, 0.5, 0.75) Yes (except x = 0.75) CoMnN, No ‘
Fe;Mo;N Yes MnMoN, No
(Co,Fe, )sMo5N (x = 0.25, 0.5, 0.75) Yes Mn,FeN, No
Fe; (W, ,5Mo, 55)5N No Zn;MoN, No
Cos(W, Mo, );N (y=0.1, 0.25, 0.5, 0.75) No

= Attempted both A-site and B-site substitution

(Ni,Fe,Co)Mos;N compounds form almost complete solid solutions

W tends to reduce to metal before other cations in B-site W-substituted nitrides

Testing on the single phase materials underway

EEEEEEEEEEEEEE Office of ENERGY EFFICIENCY
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Conversely, MnOx precursor reluctant to reduce completely, frustrating synthesis of Mn-nitrides ‘
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“ 1 Ammonia Synthesis Reactor (ASU)

thermocouple ‘7_ _, regulator and

ventiation reactions are achieved in one reactor
cyclically by switching between
pressurized H, and N, inlet gas flows

= Operation up to 800°C and 30 bar

R - Encourage more efficient re-
“" For cavity pressure balance n itri d atio n

Sample cell " Insulation
— " Alumina support ring

H~0.75" ¢~0.23" ;;;tongeeve . DiSCOUI’age NH3 decompOSitiOH post_

In-line screen
To vacuum ‘

and RGA © /13«'7':\["7

Two micro orifices

=

11— Reactor tube
=1 = 1D=0.245" 0D=0.375"

I
cpe = NH; synthesis and re-nitridation |

Heating wires (Kanthal\)/

A

Tri-clamp connection
Access point for sample loading/retrieval

For reactor tube/cavity

it separation SyntheSIS

1 * Broaden reaction conditions to
%a:»mzwet access difficult to synthesis nitrides,
Sample H,/N, pulses inlet e.g. W_ and Mn_ nitrides

T A r e gmny | Office of ENERGY EFFICIENCY
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Conclusions

Solar Thermal Ammonia Production has the potential to synthesize ammonia in a green, renewable
process that can greatly reduce the carbon footprint left by conventional Haber-Bosch reaction

Co;Mo;N has been identified as a potential candidate for ammonia production
« Synthesized via oxide precursor synthesis followed by nitridation under 10% H,/N,
« Synthesis method can be extended to other candidate nitrides

Cos;Mo;N - CogMogN reduction demonstrated on TGA with rapid kinetics
- Formation of NH; qualitatively observed, but not quantitatively determined
- Material retains crystal structure; no secondary phases observed in XRD

Partial re-nitridation back to CMN331 of ~35% of max nitridation observed

* Reaction parameters in TGA differ from experimental conditions in literature

« Experiments at Georgia Tech better mimic re-nitridation conditions with more sensitive, quantitative
analytical techniques (GC-MS)

= ASU NH; synthesis/re-nitridation reactor under development that will permit experiments
(reduction/re-nitridation) under precisely controlled T, pH,

9/27/2021 SOLARPACES 2021
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