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 Ammonia (NH3) is an energy-dense chemical and a vital 
component of fertilizer
• Also finds use as potential fuel and in CSP 

thermochemical energy storage
 NH3 synthesized via the Haber-Bosch process

• Requires high pressures (15-25 MPa) and temperatures 
(400-500 ⁰C)

◦ Capital-intensive and only practical with large facilities

◦ Process including H2 production is responsible for 
~1.4% of global CO2 emissions1

 Ammonia synthesis consumes > 1% of the total energy 
worldwide2

1Kyriakou, V., Joule 2020, 4 (1), 142. 2Institute for Industrial Productivity. Industrial Efficiency Technology Database http://ietd.iipnetwork.org/content/ammonia. 

Production of NH3 via a renewable, carbon-neutral technology powered by 
concentrating solar can mitigate climate and CO2 impacts

Industrial process emissions (China)  from the production of alumina, 
plate glass, soda ash, ammonia and calcium carbide in 1990–2013. 
(Liu, Z. (2016). Applied Energy 166: 239.)



Solar Thermal Ammonia Production (STAP)
An advanced solar thermochemical looping technology to produce and store nitrogen 
(N2) from air for the subsequent production of ammonia (NH3) via an advanced two-

stage process

 Inputs are sunlight, air, and hydrogen; the 
output is ammonia
 Significantly lower pressures than Haber-

Bosch
 Greatly decreases or eliminates carbon 

footprint
 The process consumes neither the oxide 

nor the nitride particles, which actively 
participate cyclically
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Four Project Thrusts
1. Nitrogen Separation: Identify and optimize 

redox active metal oxide (MOx) materials for 
N2 recovery via air separation
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1 Farr, T. P.; Nguyen, N. P.; Bush, H. E.; Ambrosini, A.; Loutzenhiser, P. G., "An A- and B-Site Substitutional Study of 
SrFeO3-δ Perovskites for Solar Thermochemical Air Separation." Materials 2020, 13 (22).
2 Nguyen, Farr, Bush, Ambrosini, Loutzenhiser, “Air separation via two-step solar thermochemical cycles based on 
SrFeO3-δ and (Ba,La)0.15Sr0.85FeO3-δ perovskite reduction/oxidation reactions to produce N2: Rate limiting 
mechanism(s) determination.”, submitted to Phys Chem Chem Phys, in review.

Rate Limiting Mechanism(s) Determination of SrFeO3-δ and 
(Ba,La)0.15Sr0.85FeO3-δ Perovskite Reduction/Oxidation Reactions 
for Air Separation via Two-step Solar Thermochemical Cycles

Nhu P. Nguyen, Georgia Institute of Technology (Thurs 2A)



Four Project Thrusts
1. Nitrogen Separation: Identify and optimize 

redox active metal oxide (MOx) materials for 
N2 recovery via air separation

2. NH3 Production: Identify and optimize “redox 
active” metal nitride (MNγ) materials for 
ammonolysis reaction 
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Four Project Thrusts
1. Nitrogen Separation: Identify and optimize 

redox active metal oxide (MOx) materials for 
N2 recovery via air separation1

2. NH3 Production: Identify and optimize “redox 
active” metal nitride (MNγ) materials for 
ammonolysis reaction 

3. Lab-scale Reactors Modeling, Design, and 
Testing: Model and identify design parameters 
for N2 separation and NH3 synthesis bench-
scale reactors; construct and test with working 
materials
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Design and Operation of Reactors for Solar Thermochemical 
Air Separation for Ammonia Synthesis

H. Evan Bush, Sandia National Laboratories (Thurs 2A)



Four Project Thrusts
1. Nitrogen Separation: Identify and optimize 

redox active metal oxide (MOx) materials for N2
recovery via air separation1

2. NH3 Production: Identify and optimize “redox 
active” metal nitride (MNγ) materials for 
ammonolysis reaction 

3. Lab-scale Reactors Modeling, Design, and 
Testing: Model and identify design parameters 
for N2 separation and NH3 synthesis bench-
scale reactors; construct and test with working 
materials

4. System and Technoeconomic Analyses: 
Develop and refine throughout the project, 
systems and TE models to guide materials 
choices, reactor design, and determine 
projected cost for a scaled-up system
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Solar-Thermal Ammonia Production: System Design and Techno-
economic Analysis

Alberto de la Calle, Arizona State University (Tues 2C)



NH3 Production

 Nitride is reduced by H2 to form Mny-γ+ NH3, 
then regenerated by N2 from 1st cycle
 Not as straightforward as oxide development

• Pool of candidates much smaller
• Thermodynamics are challenging; NH3

dissociates at high T
• Nitrogen diffusion in metal nitrides is slower 

and less common
• Synthesis more complex – usually reacting 

under flowing NH3 at high T in ammonolysis 
reaction
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Identify and optimize metal nitride material (MNγ) that can be reduced by 
H2 to produce NH3, then re-nitridized directly by N2 to close the cycle

SOLARPACES 2021
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Co3Mo3N

 Initial thermodynamic calculations (ASU) imply that 
candidate must be a ternary nitride (MM’N) 
 Preliminary candidate: Co3Mo3N (CMN331)

• CMN331 can undergo reversible phase change to 
CMN661, reversibly losing 50 mol% of nitrogen:

Co3Mo3N  Co6Mo6N 
• Both phases crystallize in same space group (Fd-

3m) – facilitate kinetics?
• Evidence that material can be regenerated 

directly by N2

9/27/2021
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*Hunter, S.M., Mckay, D., Smith, R.J., Hargreaves, J.S.J., Gregory, D.H., 2010, Chemistry of Materials, 22(9), pp. 2898-2907.
Gregory, D.H., Hargreaves, J.S.J., Hunter, S.M., Catalysis Letters, 2011, 141(1), pp. 22-26.
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Synthesis of Co3Mo3N

PDF# 00-021-0868 CoMoO4
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Synthesis of oxide precursor followed by nitridation in 10% H2 for 10 hours results in single phase 
Co3Mo3N under milder synthesis conditions compared to ammonolysis1
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1Hunter, S. M., et al., Chem Mater 2010, 22 (9), 2898. 



Co3Mo3N  Co6Mo6N Reaction11

 Rapid kinetics for T ≥ 500 °C
 Reducible for wide range of T, [H2]
 Total mass loss is close to theoretical for full conversion to Co6Mo6N (1.46%)
 XRD shows no change in structure (expected); no secondary phases detected
 NH3 formation detected by RGA

• Difficult to quantify due to m/z overlap with H2O, N2
• Reduction conditions favor NH3 dissociation 

9/27/2021

XRD peaks of Co3Mo3N sample before (black) and after 
(after) reduction in TGA under 75% H2/Ar up to 700 °C
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CMN661331: Re-nitridation
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 H2/N2 TGA reduction at varying T and [H2]
 Partial re-nitridation attained

• Maximum of 0.41% weight gain at 700 °C, 75% 
H2/N2

◦ Corresponds to ~ 35% of complete re-nitridation
• Increased with [H2] > 1%
• No improvement for small induced overpressure
• No change in observed in XRD (right)

 [H2] > 0% necessary; cannot re-nitride in pure N2

• “Runaway” linear mass gain under pure N2

◦ Potential oxidation from small O2 impurity in 
sweep

◦ Phase change, potential Co-oxide formation (not 
shown)
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Extending Nitride Candidate Pool
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 Attempted both A-site and B-site substitution
 (Ni,Fe,Co)Mo3N compounds form almost complete solid solutions
 W tends to reduce to metal before other cations in B-site W-substituted nitrides
 Conversely, MnOx precursor reluctant to reduce completely, frustrating synthesis of Mn-nitrides
 Testing on the single phase materials underway

Composition Target Single Phase? 
(> 95% via XRD)

Co3Mo3N Yes
(CoxNi1-x)2Mo3N (x = 0.25, 0.5, 0.75) Yes
Ni2Mo3N Yes
(FexNi1-x)2Mo3N (x = 0.25, 0.5, 0.75) Yes (except x = 0.75)
Fe3Mo3N Yes
(CoxFe1-x)3Mo3N (x = 0.25, 0.5, 0.75) Yes
Fe3(W0.25Mo0.75)3N No
Co3(WyMo1-y)3N (y=0.1, 0.25, 0.5, 0.75) No

Composition Target Single Phase? 
(> 95% via XRD)

Fe3W3N No
Ni2W3N No
Co3W3N No
CoMnN2 No
MnMoN2 No
Mn2FeN2 No
Zn3MoN4 No



Ammonia Synthesis Reactor (ASU)

 NH3 synthesis and re-nitridation 
reactions are achieved in one reactor 
cyclically by switching between 
pressurized H2 and N2 inlet gas flows
 Operation up to 800°C and 30 bar

• Encourage more efficient re-
nitridation 

• Discourage NH3 decomposition post-
synthesis

• Broaden reaction conditions to 
access difficult to synthesis nitrides, 
e.g. W- and Mn- nitrides
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Conclusions15

 Solar Thermal Ammonia Production has the potential to synthesize ammonia in a green, renewable 
process that can greatly reduce the carbon footprint left by conventional Haber-Bosch reaction
 Co3Mo3N has been identified as a potential candidate for ammonia production 

• Synthesized via oxide precursor synthesis followed by nitridation under 10% H2/N2

• Synthesis method can be extended to other candidate nitrides
 Co3Mo3N Co6Mo6N reduction demonstrated on TGA with rapid kinetics

• Formation of NH3 qualitatively observed, but not quantitatively determined
• Material retains crystal structure; no secondary phases observed in XRD

 Partial re-nitridation back to CMN331 of ~35% of max nitridation observed
• Reaction parameters in TGA differ from experimental conditions in literature
• Experiments at Georgia Tech better mimic re-nitridation conditions with more sensitive, quantitative 

analytical techniques (GC-MS)
 ASU NH3 synthesis/re-nitridation reactor under development that will permit experiments 

(reduction/re-nitridation) under precisely controlled T, pH2

9/27/2021 SOLARPACES 2021
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