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Many-query applications are ubiquitous in science and

engineering
« Uncertainty quantification

« Design and optimization

Motivation

Repeated executions of high-fidelity simulators can be
computationally expensive

Analysts often rely on approximate models that provide
low-cost approximate solutions
« Polynomial surrogates

* Neural networks
- Projection-based reduced-order models

This work combines ideas from deep learning and
ROMs to make approximate models for convection
dominated PDEs
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Homogeneous isotropic turbulence

Computational mesh of NACA 0012 airfail
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- We consider partial differential equations described by

ou

E(watau) T F(U(',t, l’l’)ata l’l’) =0

. PDEstate: u: QX [0,T] x D — RN
- Parameters: p € D C RV«

Projection-based reduced-order models

- We assume a semi-discrete counterpart of the form
du

E(t’“) = f(u(t,p),t, n)

. Semi-discrete state: w(t, ) € RY

« Solving these systems is computationally expensive
« Motivates reduced-order models

Computational mesh of NACA 0012 airfail




/" Data-driven projection-based reduced-order models

Operate in an offline-online paradigm

1. Run a set of training simulations to generate snapshot matrix

S c RNXNtrain

2. Perform dimension reduction on snapshot matrix to find bases

® e RV*H

3. Restrict state to live within subspace spanned by bases

K
w(t, p) = @t p) =Y da(t, p)
i=1
4. Define ROM, e.g., via Galerkin projection

5. Resultsina K <« N dimensional system

S I




Outstanding challenges and manifold ROMs

ROMSs have been very effective for elliptic and parabolic systems, but...

- Difficult to obtain low-dimensional structure for non-smooth parametric
dependencies and convection dominated systems
« This is the so-called Kolmogorov n-width limitation

- Popular alternative: use a nonlinear manifold instead of a linear subspace'~
- Define a manifold based on, e.g., an autoencoder

u(t, p) ~ g(a(t, p))

- Accurate ROMs can be obtained with a low-dimensional manifold

[1]1 Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, K. Lee and C. Carlberg, JCP 2019
[2] A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder, Kim, Y Choi, D Widemann, T Zohdi, arXiv
preprint arxiv:2009.11990




A Difficulties with manifold ROMs

,/- Number of parameters in autoencoder scales with the
. rorp
/ dimension of the full-order model

- Training manifold autoencoders becomes unfeasible for
high-dimensional problems

* Hyper-reduction is non-trivial u(t, 1)
« Requires special modifications to the network architecture

« For existing methods, training costs still scales with the
dimension of the FOM

« Manifold ROMs have not been shown to perform better in
extrapolation than standard POD ROMs
- Perform significantly worse in our experience

- Motivates an alternative approach

[1] A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder, Kim, Y Choi, D Widemann, T Zohdi, arXiv
preprint arxiv:2009.11990




/" The Kolmogorov n-width and a matter of perspective
£ . , . . :

- Consider Burgers' equation as a demonstrative example

ou 1 Ou? I .
Y —(x,t, ;) + 5d—~(r T dd) = arﬁexp(pqr) % _

w(z,0,pm) =1, u(1,0, ) = pq,

«  The Kolmogorov n-width is typically observed from a l l
“spatial” perspective B B W O

i(,t, ) = Zfb 1)
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The Kolmogorov n-width depends on frame of reference Modes retained




/" Deep bases

/" We propose to construct linear subspaces that depend on space, time, and parameters
7 3 via deep neural networks

- We employ an architecture similar to that used in Physics-informed Neural Networks
(PINNSs)!

Q—> u(x,t, p)

Da?iriven basis functions

K
- Final layer comprises a linear subspace2 u(x,t, u) = Z i@, t, p)u

- Subspace depends on space, time, and parameters

M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations, JCP, 2019
E. Cyr, M. Gulian, R. Patel, M. Perego, N. Trask, Robust training and initialization of deep neural networks: An adaptive basis viewpoint, PMLR, 2020




/

74

44

v

Model reduction with deep bases

o We propose an offline—online process for leveraging deep bases

o Offline stage:
Simulate system of interest for training instances

Train deep bases, e.g., by minimizing the MSE:

Ntrain

a—l

0*7 ,&* = arg T Z ||,ul‘;rain . q)('u/’;rain’ t‘;rain; 9),&”2

Project high-fidelity computational model onto low-dimensional subspace spanned by the deep

bases

(6,00, jtiqbi(u,tm) - (

K

qu (M? t)a f(z qu,(ll»; t)’&?la t p’)

1=1

)

Online stage:

Execute solve of the low-dimensional reduced-order model to obtain approximate solutions




/" Empirical UQ with deep ensembles

‘4
/o We need to quantify the accuracy in our ROM
o Many techniques exist for “in-distribution” predictions

o Difficult for out-of-distribution (extrapolation)!!!

"Deep ensembles” is an empirical approach for UQ'

o Identical networks with different initializations result in
different predictions for out-of-distribution
(extrapolation) data

o Relies on stochastic training of neural network

o We investigate using ensembles of deep subspaces
for empirical UQ

Prediction, y

Variance, log,, (var(y))

O  Training data
—— Individual model predictions

—_—y=z

Input feature, x

Input feature,

Example of deep ensembles for learning y=x"3

[1] B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive uncertainty using deep ensembles, NEURIPS, 2017. n




P Numerical example: Burgers Equation

o We consider model reduction of the parameterized i
Burgers' equation =

du 1 Ou? i

E(T:t:p‘) P Ed_(T t,[.b) — _OEXP(H‘QQ:)'

w(z,0,m) =1, u(1,0, 1) = pq, S

o We consider two training-testing setups
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/" Deep basis ROMs details

/0 Network architecture;
o Fully connected layers

4 o Width doubles at each layer .
o Examine various depths and widths
Hno—

o Training details:
o Trained in PyTorch

o We train on 10% of the snapshot data (randomly sampled)
o Training performed on GPUs
o Each network is trained 3 times to quantify stochastic training

o ROM details:

o We define our ROM based on ¢!and ¢?norm residual minimization
over all of time, space, and parameters

o Residual minimization problem is solved with
scipy.optimize.least_squares




/ +  Examine subspace capacity and
generalizability

- Compare a priori projection errors
to ML prediction

» ML prediction is similar to optimal
projection for I.D. data

- Optimal projection is much
better for 0.0.D. data
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/~ Results: ML predictions and a priori projection errors
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/"« Compiled errors across all parameter instances
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Results: ROM and ML predictions for O.0.D dataset
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MSE (avg.) MSE (median) MSE (best) (¢ (avg.) ¢ (average) ¢> (best)
Deep Bases-ResMin-¢2  0.351 0.179 0.0411 4.666 4.231 2.620
Deep Bases-ResMin-f!  0.262 0.100 0.0290 4.298 3.893 2.297
ML 0.713 0.207 0.0445 6.514 4.191 2.870
LSPG (K = 87) 1.211 1:211 1211 7377 1371 1801
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/" Results: ROM and ML predictions for O.0.D dataset
74
/"« Examine ML and ROM predictionsat p; =1, gy = 3

10

O FOM
=== Training end
LSPG
— ML
—_— |5 ROM
— |1 ROM

a

T T T T T T
1 20 40 (il 50 100

ML and Deep bases ROMs outperform LSPG
- Deep bases out performs ML in future state prediction

- Ensemble provides empirical UQ indicator
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/ Numerical example: Shallow water equations with Coriolis forcing

/ o Consider the shallow water equations parameterized by
“4 Coriolis forcing

oh Ohu  Ohv
_|_

0
ot + Ox oy

ohu 0 s 1 5 0 B

5 + o (hu + ngh ) + 9y (hv) = —pv

1
hv + 5 pgh?

ohv 0 5 0 (

Surface plot of water height
hu N = uu
o T as )t g ) H

o Testing training setup

CanSi SonS o IaShams( aCammeS)
() Training point
O Testing point

x-velocity




/" Deep basis ROMs details
o Network architecture:

g o Fully connected layers
o Width doubles at each layer B
o Set depth =6, final layer dimension =10 t —

o Training details:
o Trained in PyTorch

o We train on 10% of the snapshot data (randomly sampled)
o Training performed on GPUs
O

Each network is trained 8 times to quantify stochastic
training

o ROM details:

o We define our ROM based on ¢* and #2 norm residual
minimization over a time window of 2.5

o Residual minimization problem is solved with
scipy.optimize.least_squares
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P Results

o Examine prediction for water height in the middle of ©
the domain as a function of time for predictive point

)

1.04

O FOM
—— LS ROM

0.99

time, t

o Ensemble variance grows in time

o Global error metrics: MSE (avg.) MSE (median) MSE (best)

Deep Bases-ResMin-#?  0.0264 0.0263 0.0251
Deep Bases-ResMin-¢/!  0.0217 0.0252 0.0110
ML 0.0256 0.0256 0.0250

o L1 residual minimization yields the lowest MSE




‘4 Conclusions

Projection-based reduced-order models are promising tools to generate accurate approximate

solutions

Difficult to identify low-dimensional subspaces for convection-dominated problems and problems

exhibiting non-smooth parametric dependence
The Kolmogorov “n-width” depends on the frame of reference

We are investigating using “deep bases” emerging from fully connected MLPs

o Stochastic training provides a tool for empirical UQ

Numerical results on the Burgers' equation and shallow water equations demonstrate the potential of

the approach
o Deep bases ROM with |1 residual minimization outperforms purely data-driven approach in terms of MSE

o Deep bases ROM with both 12 and I1 residual minimization results in lower residuals




, -’/'

Thank you!

This work was supported by Sandia ASC V&V P/T 103723/05.30.02. This presentation describes objective
technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of Energy or the United States Government Sandia
National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

[1] K. Lee and C. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, JCP
2019

[2] Kim, Y Choi, D Widemann, T Zohdi, A fast and accurate physics-informed neural network reduced order model with shallow masked
autoencoder, arXiv preprint arXiv:2009.11990

[3] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, JCP, 2019

[4] E. Cyr, M. Gulian, R. Patel, M. Perego, N. Trask, Robust training and initialization of deep neural networks: An adaptive basis
viewpoint, PMLR, 2020

[5] B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive uncertainty using deep ensembles, NEURIPS, 2017.




