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Pit morphology differences are RH-dependent

Atmospheric 
exposures

Full immersion 
exposures in 
eq. brines

40% RH 76% RH

Ellipsoidal, faceted pits

1Weirich et al., J. Electrochem. Soc. 166 (2019).
2Srinivasan et al., J. Electrochem. Soc. 168 (2021).

cross-hatched pits, 
microcracks, fissures



Differences in electrolyte chemistry may be 
responsible for morphology differences

Low-RH – Mg-Cl-rich

High-RH – Na-Cl-rich



HCO3− specifically looked at 
due to its potential effects 
on HER cathodic kinetics1

Full immersion in relevant electrolytes to evaluate chemical causes

0.566 M MgCl2
2.61 M MgCl2

4.47 M MgCl2 (satd.)
40% RH eq. brine

5.22 M NaCl (satd.)
76% RH eq. brine

4.47 M MgCl2 (satd.) + 
MgCO3
40% RH w/o MgCO3

5.22 M MgCl2 
(satd.) + MgCO3

1Katona et al., Corr. Sci. 177 (2020).



Full immersion experiments to evaluate 
specific chemical causes

Solution pH [Cl−]/M [HCO3−] /M

76% RH 

equivalent sea 

salt brine

7.61 5.009 5.73 × 10–3

5.22 M NaCl 5.187 5.22 5.09 × 10–6

5.22 M NaCl + 

added MgCO3
8.61 5.22 7.29 × 10–3

Solution pH [Cl−]/M [HCO3
−] /M

40% RH equivalent sea 

salt brine
6.85 9.003 9.79 × 10–2

40% RH sea salt brine 

without MgCO3 addition
3.39 9.003 2.82 × 10–5

0.566 M MgCl2 5.42 1.132 1.37 × 10–5

2.61 M MgCl2 4.90 5.22 1.60 × 10–5

4.47 M MgCl2 3.51 8.94 3.08 × 10–5

4.47 M MgCl2 + added 

MgCO3
7.07 8.94 4.55 × 10–2



Na-Cl-rich brines show ellipsoidal pits

76% RH-eq. brine 5.22 M NaCl

Ellipsoidal pits, faceting on base



40% RH eq. brines show cross-hatching, 
micro-crack-like features
24 h

1 wk

2 wks

Microcrack-like features may be consumed by pit growth 
for longer exposures

Cross-hatching consistent across different exposure 
times



[MgCl2] influences pit morphology

7 wks
2 wks

2 wks

0.566 M MgCl2
2.61 M MgCl2

4.47 M MgCl2 (satd.)

Saturated MgCl2 shows cross-hatching, no clearly 
discernible microcrack-like features

Concentrations < saturation show ellipsoidal pits



Microcracking seen very early in 40% RH-eq. brine

4.47 M MgCl2
40% RH

a) Cross-hatching observed in unary sat. MgCl2 
solutions, no micro-cracks however

b) Micro-cracks originate even at very short exposure 
times in 40% RH-eq. brine



Solution [Cl−]/M [HCO3
−] /M

40% RH equivalent sea 

salt brine
9.003 9.79 × 10–2

Presence of sat. MgCl2 related to cross-hatching but 
what leads to micro-cracking?

40% RH sea salt brine 

without MgCO3 addition
9.003 2.82 × 10–5

4.47 M MgCl2 8.94 3.08 × 10–5

4.47 M MgCl2 + added 

MgCO3
8.94 4.55 × 10–2



Microcracking may occur due to [HCO3−] 

40% RH 

4.47 M MgCl2

4.47 M MgCl2 + added MgCO3

40% RH without 
MgCO3

While cross-hatching may be due to sat. MgCl2, HCO3− may 
affect micro-crack occurence

1 wk

1 wk

1 wk

1 wk



But HCO3− on its own does not produce 
microcracks, may need cross-hatching

Saturated NaCl + MgCO3 
produces no microcracks

Enhanced HER due to higher 
[HCO3−] 

Strain-induced martensite from 
surface grinding

Residual stress, cross-
hatching stress concentrator

1 wk

Weirich et al. JECS (2019).



Higher [HCO3−] may accelerate HER kinetics by precipitate  
buffering

Lower near-surface pH raises HER Nernst potential, enhances kinetics

Exact Mg-species that precipitates is kinetics-dependent – MgCO3 precipitation 
kinetically hindered2,3 2Katona et al., Echem. Comm. 118 (2020).

3Swanson et al., PCCP 16(42) (2014).

1Katona et al., Corr. Sci. 177 (2020).

Higher [HCO3−] may cause carbonate species to precipitate (ppt), 
buffering surface to lower pH

E = E0 – 60 (mV/pH) pH



Microcracking may occur via HEAC at low RH

Stress 
concentration Sufficient residual 

stress, SI martensite

Weirich et al. JECS (2019).

Accelerated HER



Key takeaway points from current work

• Ellipsoidal pits observed in NaCl-rich brines and MgCl2 

brines at concentrations less than saturation

• Cross-hatching observed in MgCl2 brines at saturation

• Microcracking observed in saturated MgCl2 brines with 

high [HCO3−]

• Micro-cracking may occur via HEAC due to enhanced 

HER as Mg-species ppt buffer near-surface pH to lower 

values



Currently open questions and future work

• In situ HER quantification to determine role of H2 

in determining morphology

• Combined corrosion-permeation tests 

• Removal of residual stress by annealing to 

evaluate effects on morphology

• Identity of precipitating Mg-species to better 

understand near-surface pH buffering effects
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SUPPLEMENTAL



Cathodic current availability determines polarization levels, 
morphology



Easier to initiate pits at low RH due to high [Cl−]

Low RH → High [Cl-] 
multiple pits initiate

High RH → fewer pits 
initiate due to high Epit 
required

40%RH 76%RH

Wang et al., Corrosion  (1988).



RH shows differences in pit density

Pit density appears to plateau at long exposure time (>26 weeks)
Higher pit density (4-6x) at low RH than high RH



RH shows differences in corrosion damage volume

Pit volume loss appear to plateau at long exposure time (>26 weeks)
Corrosion damage at low RH much greater (≈10x) than at high RH



Deformation substructure may contribute to susceptible morphology

Deformation from grinding may 
create susceptible microstructure

FIB-SEM of small pits show long 
cracks

SCC initiator?

Weirich et al. JECS (2019).



Susceptible morphology does not match ferrite distribution

Grain structure map Phase distribution map – 
red indicates 
ferrite/martensite


