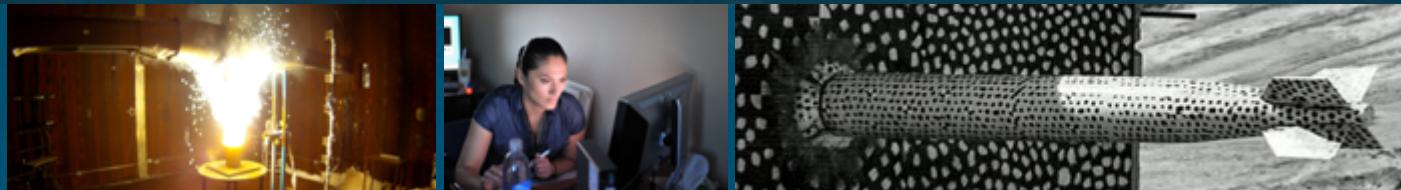


Sandia
National
Laboratories

Machine learning of Physics-Informed Graph Neural Networks from TCAD models



Presented By

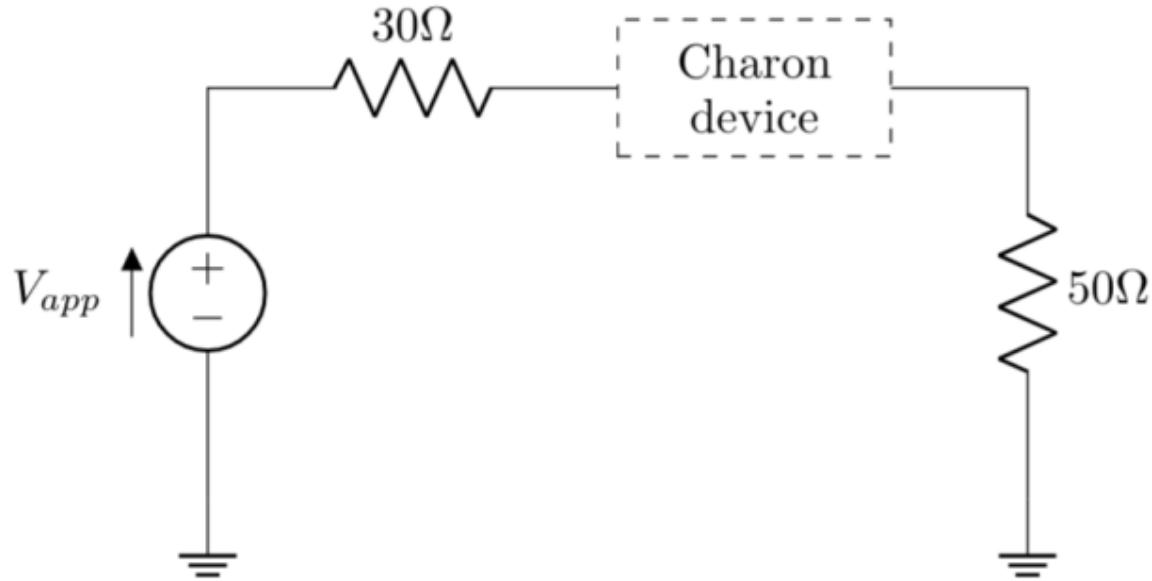
Andy Huang for MMLDT-CSET 2021

on work w/ Nathaniel Trask (SNL), Suzey Gao (SNL), Shahed Reza (SNL),
Ravi Patel (SNL), Christopher Brissette (RPI), and Xiaozhe Hu (Tufts)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

- 1) Multiphysics problems and reduced-order models
- 2) Desirable structures: physics conservation laws
- 3) Data-driven Discrete Exterior Calculus (DDEC) on a graph as a machine-learning framework with desirable structure
- 4) DDEC graph structure from TCAD simulation

Large picture: Multiphysics (expensive) electrical systems example

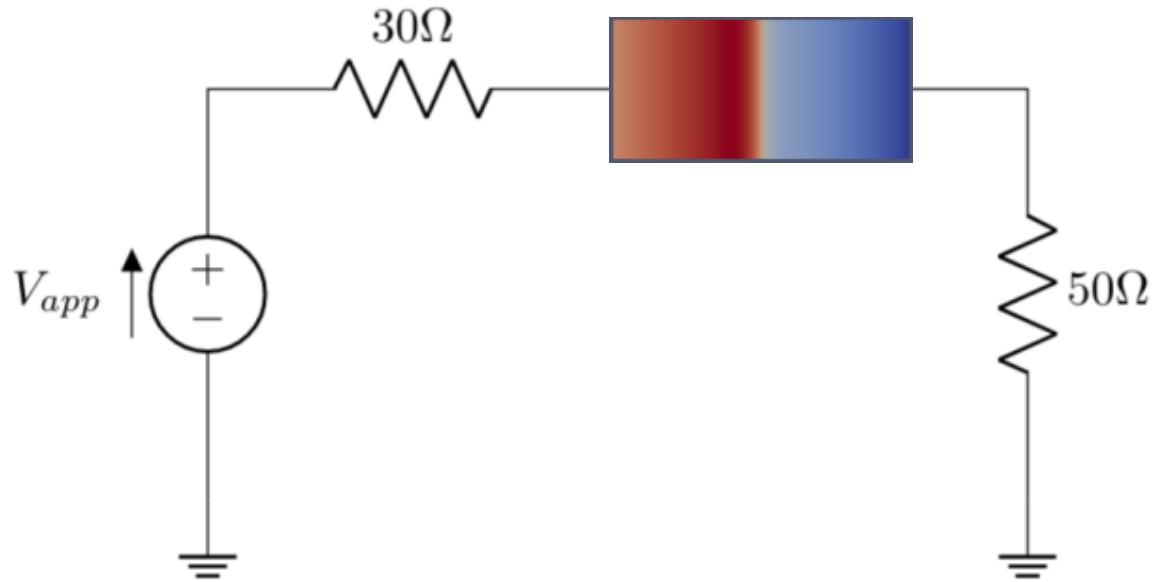
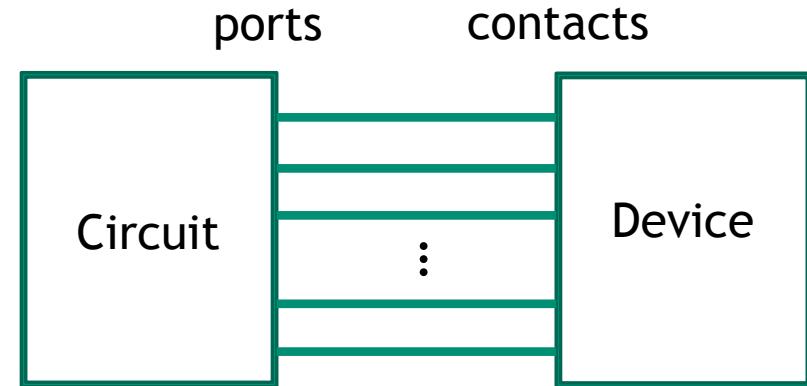
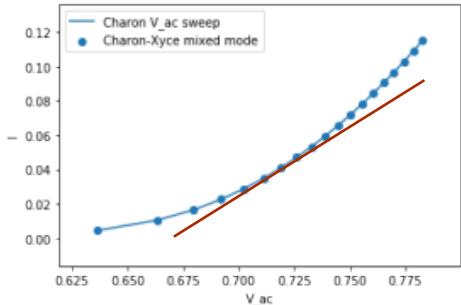


```
Resistor Circuit Netlist - lower level.
*****
R1      1 2 30
vconnectL 2 0 1.0
vconnectR 3 0 3.0
R2      3 0 50
VR      1 0 5.0
.DC R1 5 5 0
.options nonlin nox=1
.options device debuglevel=-100
.END
```


input decks

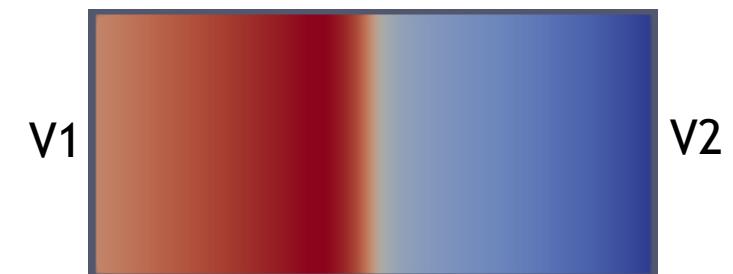
```
Import State File pndiode.dd.exo at index 1
tpetra is on
start output parameters
  Output State File resistorX_pndiodeC_resistorX.dd.exo
end output parameters
start Physics Block Semiconductor
  geometry block is silicon
  standard discretization type is drift diffusion gfdm
  material model is siliconParameter
end Physics Block Semiconductor
start Material Block siliconParameter
  material name is Silicon
  relative permittivity = 11.9
start Carrier Lifetime Block
  electron lifetime is constant = 1e-11
  hole lifetime is constant = 1e-11
end Carrier Lifetime Block
start step junction doping
  acceptor concentration = 1e16
  donor concentration = 1e16
  junction location = 0.5
  dopant order is PN
  direction is x
end step junction doping
end Material Block Silicon Parameter
BC is mixed mode via current for anode on silicon as node named vconnectL in netlist resistorX_pndiodeC_resistorX.cir with initial current -1e-3 with initial voltage 1.5
BC is mixed mode via current for cathode on silicon as node named vconnectR in netlist resistorX_pndiodeC_resistorX.cir with initial current 1e-3 with initial voltage 1.0
initial conditions for ELECTRIC_POTENTIAL in silicon is Exodus File
Initial Conditions for ELECTRON_DENSITY in silicon is Exodus File
Initial Conditions for HOLE_DENSITY in silicon is Exodus File
start solver block
  start tpetra block
    problem type is householder constrained steady state
    verbosity level is high
    start nonlinear solver wrms block
      absolute tolerance = 1.0e-10
      relative tolerance = 1.0e-8
    end
  end
end solver block
```


Large picture: Mixed-mode simulation coupling model fidelities



Expensive non-linear conductance matrix calculation at each Newton step

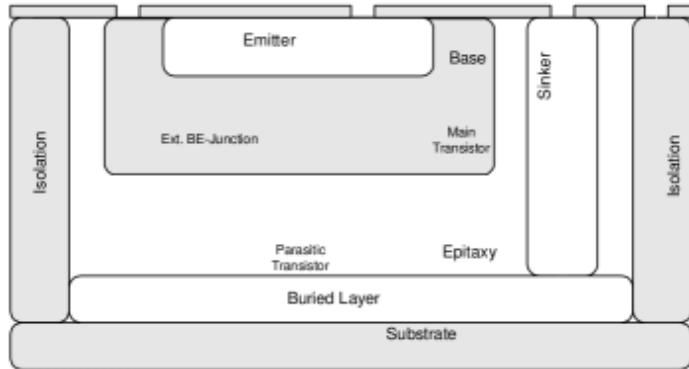
$$\left[\begin{array}{cc|c} \frac{\partial I_1}{\partial V_1} & \frac{\partial I_1}{\partial V_2} & \\ \frac{\partial I_2}{\partial V_1} & \frac{\partial I_2}{\partial V_2} & \end{array} \right]$$



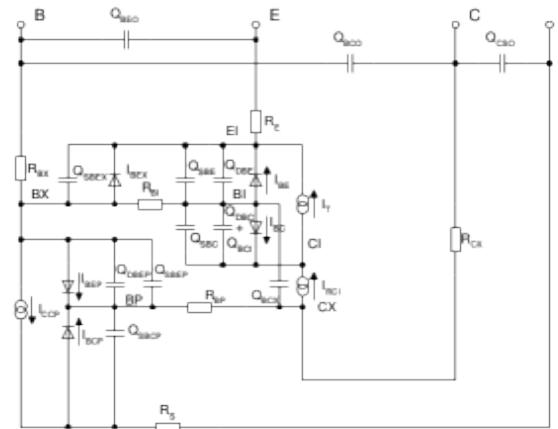
How do we transfer PDE-based physics knowledge to a reduced order model?

PDE-based physics model

$$\begin{aligned}\nabla \cdot \epsilon \nabla \phi &= -(p - n + N_D^+ - N_A^-) \\ \frac{\partial n}{\partial t} &= \frac{1}{q} \nabla \cdot (-\mu_n n E - D_n \nabla n) - R_n(n, p) \\ \frac{\partial p}{\partial t} &= -\frac{1}{q} \nabla \cdot (\mu_n p E - D_p \nabla p) - R_p(n, p)\end{aligned}$$



Machine learned reduced order model



Traditional example from electrical engineering:

heuristically **identify local physical processes** and map input-output relationships to electronic components **assembled in a global circuit topology**.

Desired structure: Physics conservation laws

Many physical laws appear in **conservation form** as $\nabla \cdot \vec{J} = f$

- Kirchhoff's Current Law: $\sum_k I_{ik} = 0$
- Maxwell's equation: $\nabla \cdot \vec{E} = \frac{\rho}{\epsilon}$
- Incompressible flow $\nabla \cdot \vec{u} = 0$

Many physical laws and principles manifest through **potential theory**:

- Kirchhoff's Voltage Law: $\vec{V} = \nabla \phi$
- Darcy flow: $\vec{u} = -K \nabla \phi$ and $\nabla \cdot \vec{u} = 0$
- Gauge invariance: $\nabla \times \vec{A} = \vec{v}$ and $\vec{A} \rightarrow \vec{A} + \nabla f$

Related to **vector calculus identities**: $\nabla \cdot (\nabla \times \vec{A}) = 0$ and $\nabla \times (\nabla \phi) = 0$

Expressed in language of vector calculus (actually, operators on differential forms).

We choose to **express and embed these a priori in a network architecture**.

Data-driven Discrete Exterior Calculus

Topological structure with machine-learnable geometry (see Nathaniel Trask's talk @ TIME)

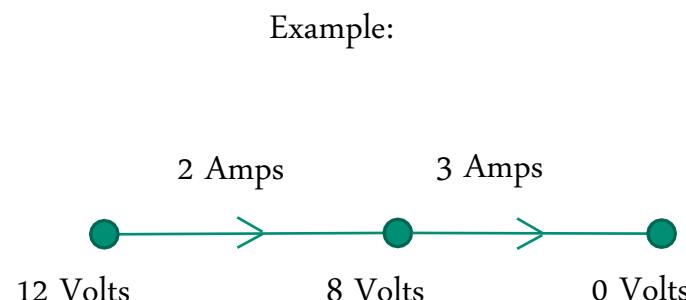
$$C_0 \xleftarrow{\partial_0} C_1 \xleftarrow{\partial_1} C_2 \xleftarrow{\partial_2} \dots \xleftarrow{\partial_{n-2}} C_{n-1} \xleftarrow{\partial_{n-1}} C_n$$

Topological chain complex:

$$C^0 \xrightarrow{\delta_0} C^1 \xrightarrow{\delta_1} C^2 \xrightarrow{\delta_2} \dots \xrightarrow{\delta_{n-2}} C^{n-1} \xrightarrow{\delta_{n-1}} C^n$$

Geometric parameterization
of differential operators:

$$\begin{aligned} d_k &:= B_{k+1} \delta_k B_k^{-1} \\ d_k^* &:= D_k^{-1} \delta_k^* D_{k+1} \end{aligned}$$



Ohm's law:

$$\delta_0 V = RI$$

Combinatorial (topological):

$$\begin{bmatrix} -1 & 1 \\ & -1 & 1 \end{bmatrix} \begin{bmatrix} 12V \\ 8V \\ 0V \end{bmatrix} = \begin{bmatrix} R_1 & \\ & R_2 \end{bmatrix} \begin{bmatrix} 2A \\ 3A \end{bmatrix}$$

$$R_1 = 2\Omega, R_2 = \frac{8}{3}\Omega$$

⇒ DDEC operator: $d_0 = \frac{1}{R} \delta_0$
 DDEC Ohm's Law: $d_0 V = I$

Data-driven Discrete Exterior Calculus

For these circuit compact models, we will look for a graph topology.

Current i = edge vector
(oriented)

Voltage v = edge vector
(oriented)

Potential ϕ = nodal scalar

Kirchhoff Voltage Law: $v \in \text{im}(A^T)$

Kirchhoff Current Law: $i \in \ker(A)$

Tellegen's theorem: $(v, i) = 0$

A = incidence matrix
(branches to nodes)

Objective: obtain graph from TCAD simulations and then dress it up for DDEC.

Large Picture Revisited: Workflow with DDEC

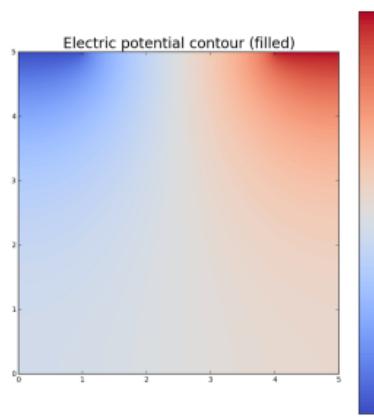
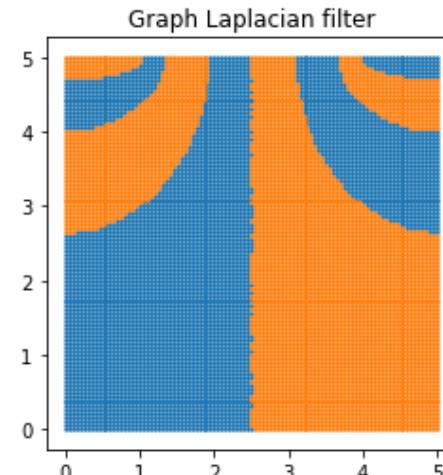
Prime Physics

Recognize Regions

Tailor Topology

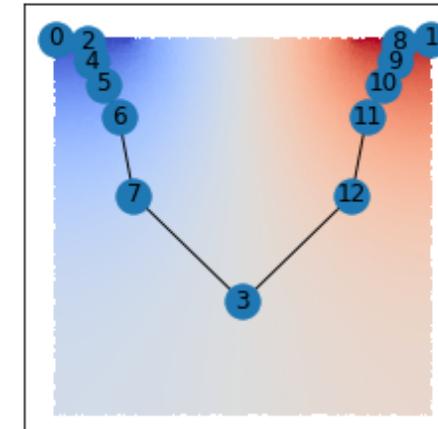
Identify Interactions

**Greedy Fiedler Spectral partitioning
(obtain DDEC structure)**



Mapper & scikit-tda

**Physics-informed Graph Neural Network
(trained DDEC model)**



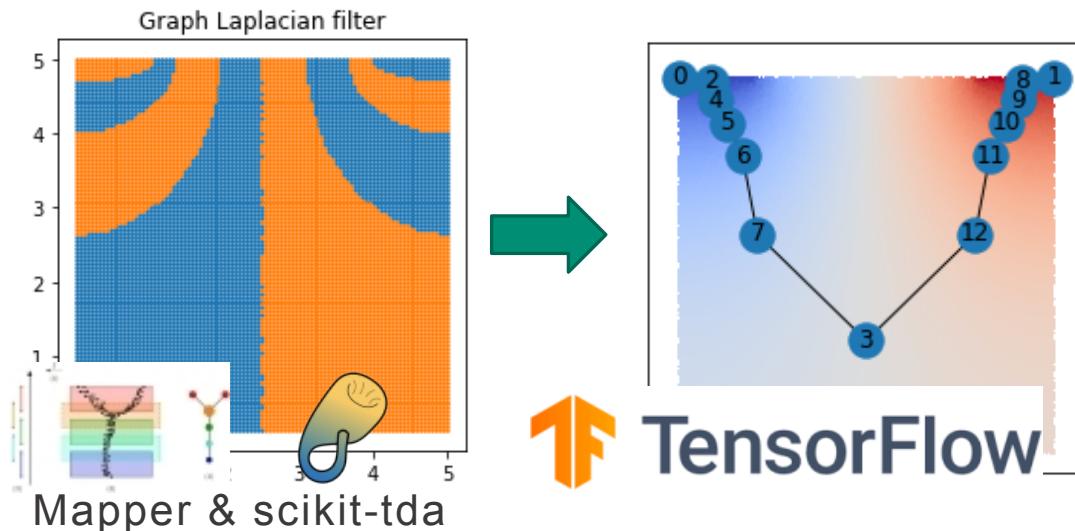
```
* Auto-generated netlist from NetworkX Graph
R0 0 1 1.0
R1 1 2 2.0
R2 1 2 2.0
R3 2 3 1.0
V1 3 0 2.0
.DC V1 0 2.0 0.2
.PRINT DC V(3) I(V1)
.END
```


 TensorFlow

 XyceTM
PARALLEL ELECTRONIC SIMULATOR

Reduced-order model from DDEC

Physics-informed Graph Neural Network



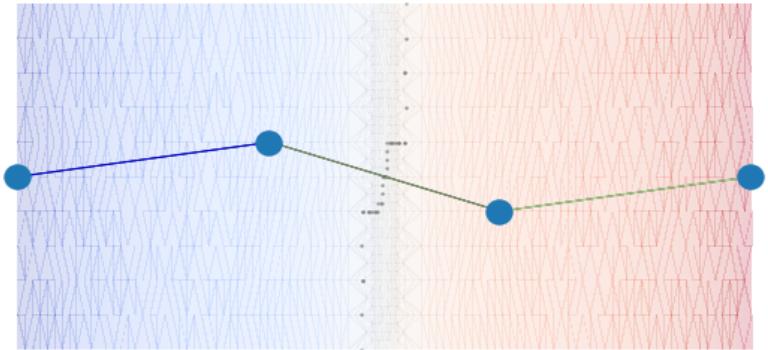
Key benefits:

- Realizes NN *computational graph topology* as a *circuit topology*:

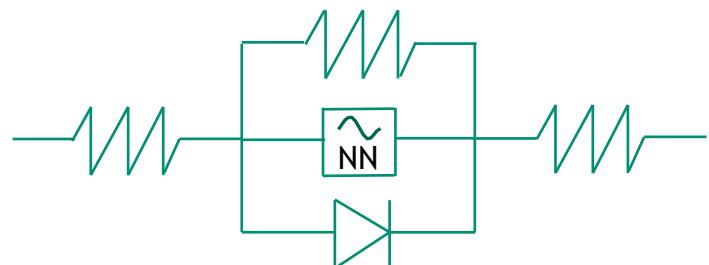
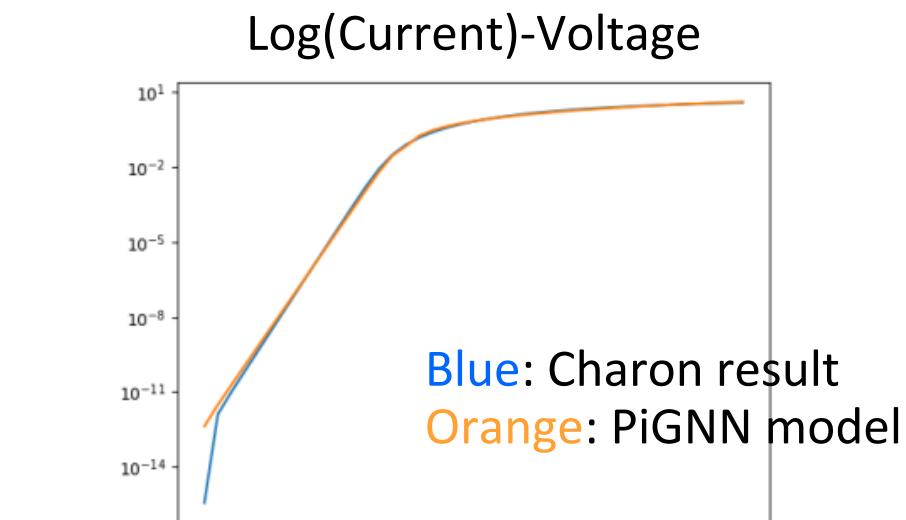
The diagram shows a neural network structure with three layers, L_1 , L_2 , and L_3 . Layer L_1 has nodes x_1 , x_2 , x_3 , and $+1$. Layer L_2 has nodes $a_1^{(2)}$, $a_2^{(2)}$, and $+1$. Layer L_3 has a single node $h_{0,3}(x)$. The nodes are connected by a fully connected graph. A large green arrow points to the right, leading to a circuit diagram.

- Transfers PDE-based physical conservation to DDEC neural network structure.
- In contrast with state-of-the-art Physics informed Neural Networks, use PDE constraint optimization for parameter-free learning.
- Modifying PDE incorporating new physics models does not change workflow.

Example workflow: PN diode model on uniform partition [2]



PiGNN PN diode
compact model topology



TensorFlow learned parameters

```

edge_0-2_resistor_conductance:0 has value: 15.8
edge_1-3_resistor_conductance:0 has value: 15.8
edge_2-3_diode_I0:0 has value: 1e-13
edge_2-3_diode_knot:0 has value: 0.7641590468787397
edge_2-3_diode_exponent:0 has value: 35.91716524715814
edge_2-3_resistor_conductance:0 has value: 15.8
edge_2-3_nn_biases:0 has value: [2.46351959 ... 3.22326079]
edge_2-3_nn_weights:0 has value: [2.70549157 ... 2.29335275]
edge_2-3_nn_coeffs:0 has value: [0.53980711 ... 0.53774219]

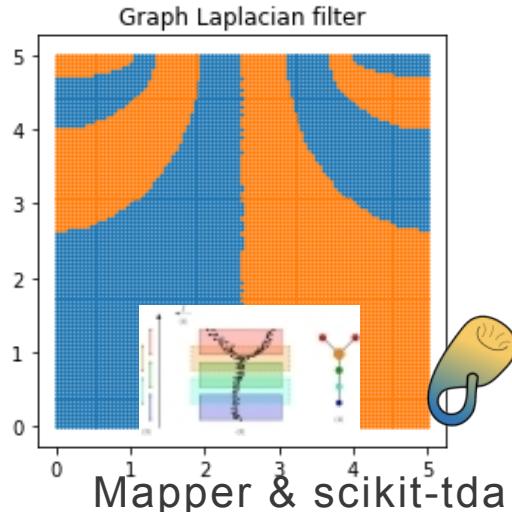
```

Greedy Fiedler Spectral partitioning scheme

Partitioning scheme on FEM mesh

Algorithm

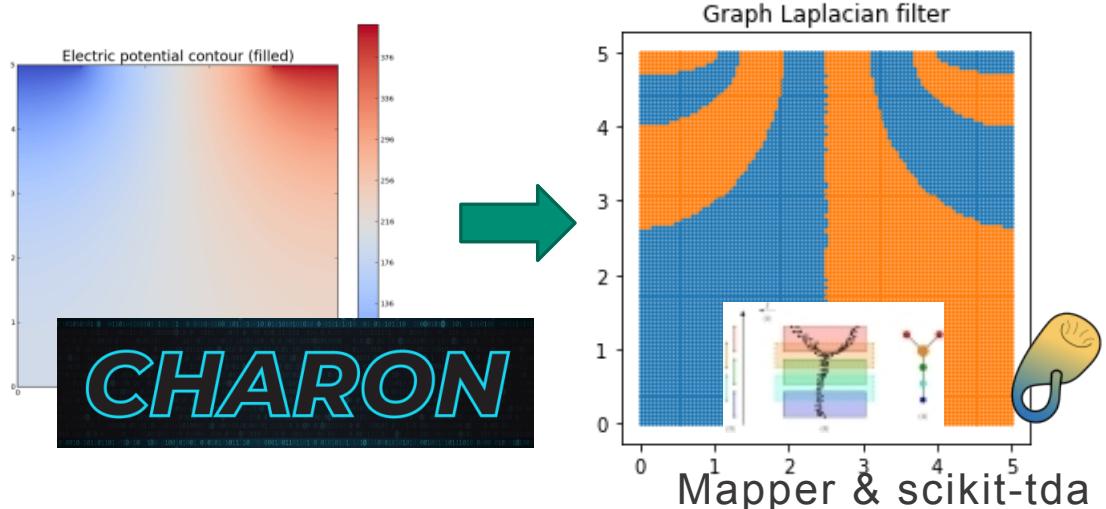
1. Obtain solution manifold $(x, y, \phi(x, y))$.
Define Laplacian Δ_S on it.
Choose number of partitions N desired.
2. Compute the Fiedler eigenvector of Δ_S .
Use it to partition the domain D .
3. Determine partition D' among all sub-domains obtained with largest $L^2(\nabla\phi)$ measure.
4. Greedy
If num parts < N:
If num parts = N:
Continue
5. Construct the graph $C = \{\{n_i\}, \{e_{ij}\}\}$ dual to the domain partition.



Algorithm

1. Obtain solution manifold $(x, y, \phi(x, y))$.
Define Laplacian Δ_S on it.
Choose number of partitions N desired.
2. Compute the Fiedler eigenvector of Δ_S .
Use it to partition the domain D .
3. Determine partition D' among all sub-domains obtained with largest $L^2(\nabla\phi)$ measure.
4. Greedy step:
If num parts < N: Go to Step 2, with $D' \rightarrow D$
If num parts = N: Continue
5. Construct the graph $C = \{\{n_i\}, \{e_{ij}\}\}$ dual to the domain partition.

Partitioning scheme on FEM mesh

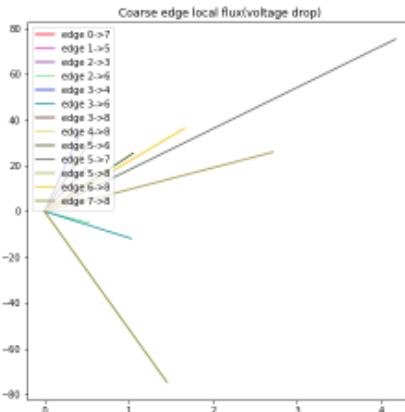
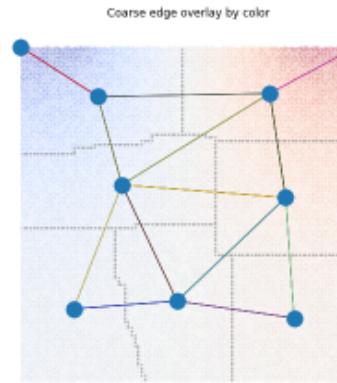


Key benefits:

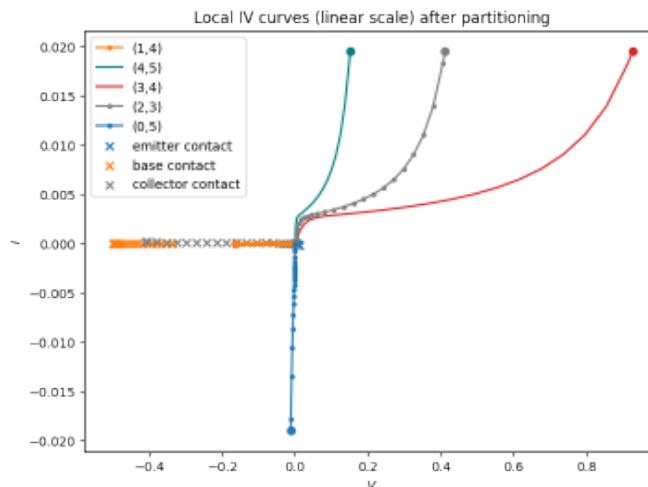
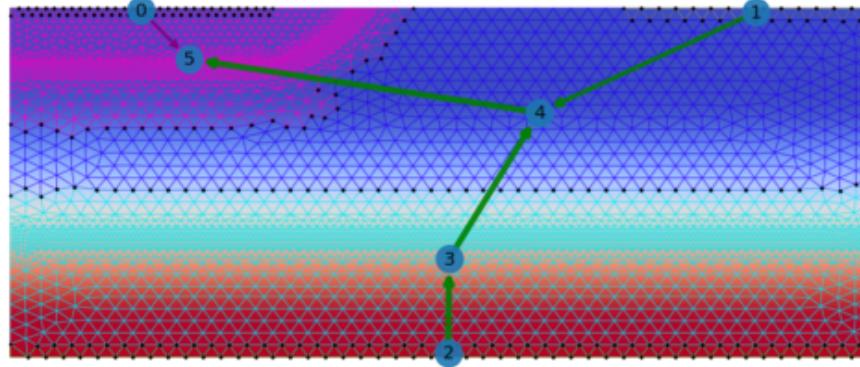
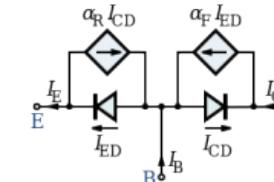
- Eigenfunctions form a basis for L^2 functions, suggesting **well-approximability** of PDE solutions by piecewise constants on nodal sets.
- Dual graph identifies 1D flow directions, transferring structure of PDE solution dynamics to a 1D graph “backbone”.

Examples: Partitioning schemes and resulting DDEC complexes

Resistor
Two contacts
Metis partition



BJT (Transistor)
Three contacts
Eigenfunction
partition
(x, y, electric
potential)



Compare topology
to Ebers-Moll

References

1. Enforcing exact physics in scientific machine learning: a data-driven exterior calculus on graphs
Submitted to Journal of Computational Physics
Preprint available: <https://arxiv.org/abs/2012.11799>
Nathaniel Trask, Andy Huang, Xiaozhe Hu
2. Physics-Informed Graph Neural Network for Circuit Compact Model Development
SISPAD International Conference on Simulation of Semiconductor Processes and Devices 2020
doi: [10.23919/SISPAD49475.2020.9241634](https://doi.org/10.23919/SISPAD49475.2020.9241634)
Xujiao (Suzey) Gao, Andy Huang, Nathaniel Trask, Shahed Reza
3. Greedy Fiedler Spectral Partitioning for Data-driven Discrete Exterior Calculus
AAAI Spring Series 2021 Symposium on Combining AI and ML with Physics Sciences
Andy Huang, Nathaniel Trask, Christopher Brissette and Xiaozhe Hu
4. Partitioning Physics Data via Laplacian Nodal Sets
SIAM CSE 2021 in two days: Thursday Mar 4 MS229 10:05-10:20 CST
Christopher Brissette, Andy Huang and Nathaniel Trask

Software

1. BSIM model <http://bsim.berkeley.edu/models/bsim4/>
VBIC model <https://designers-guide.org/vbic/> **CHARON**
2. Charon <https://charon.sandia.gov/> (open e!)
3. Xyce <https://xyce.sandia.gov/> (open source!)
4. TensorFlow <https://www.tensorflow.org/about/bib>