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2 I Overview

Multiphysics problems and reduced-order models

Desirable structures: physics conservation laws

Data-driven Discrete Exterior Calculus (DDEC) on a graph
as a machine-learning framework with desirable structure

DDEC graph structure from TCAD simulation



3 ‘ Large picture: Multiphysics (expensive) electrical systems
exa m p I e Import State File pndiode.dd.exo at index 1

tpetra is on

;;[]SE I- - -1 ------ ! start output parameters
. Charon

r device

Output State File resistorX_pndiodeC_resistorX.dd.exo
end output parameters

geometry b
standard discretization type is drift diffusion gfem
material model is siliconParameter

end Physics Block Semiconductor

s + = start Material Bl siliconParameter
I’ "}(]SE material name is Silicon

app :
relative permittivity 11.9

start Carrier Lifetime Block
electron lifetim 5 constant = le-11
hole lifetime is constant = le-11
end Carrier Lifetime Block

start ju ion doping
centration = lelb
— donor tration = lel6
— —
— — c

junction on = 8.5
dopant ord
direction is
end step junction ng
end Material Block Silicon Parameter

- BC is mixed mode via current for anode on silicon as node named vconnectlL in netlist r\
p torX_pndiodel_r . ith initial current -1 3 with ini oltage 1.5
BC is mixed mode via t for n silicon as node named vcon tR in netlistM
resistorX_pndiode(_re torX.cir with initial current le-3 with initial voltage 1.0
PARALLEL ELECTRONIC SIMULATOR itial cc iti for ELECTRIC_POTENTIAL silicon is Exodus File

1ons for ELECTRON_DENSITY Exodus File
itions for HOLE_DENSITY in s s 5 codus File

esistor Circuit Netlist - lower lewvel.
HREEREERRER R R R R R R R R R R R R R R g

R1
vconnectlL .
vconnectR .
start solver bl
5.0 start tpetra block
DCR1558@ problem type is householder constrained steady state

verbosity level is high
.options nonlin nox=1 start nonlinear solver wrms block
options device debuglevel=-100

absolute tolerance o-10

: e i n p ut d eCkS En;elati_'-e'e tolerance = 1.0e-8

end
end solver block




4 ‘ Large picture: Mixed-mode simulation coupling model
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5 ‘ Large picture: Problem Statement

How do we transfer PDE-based physics knowledge to a reduced order model?

PDE-based physics model
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Traditional example from electrical engineering:

heuristically identify local Physica] processes and map input-output relationships to electronic components assembled in a global

circuit topology.

Machine learned
reduced order model
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¢ I Desired structure: Physics conservation laws

Many physical laws appear in conservation form as V-] = f

o Kirchhoff's Current Law: }};, I;; = 0

e Maxwell’s equation: V - E = %

o Incompressible flow V-1 = 0
Many physical laws and principles manifest through potential theory:

> Kirchhoff's Voltage Law: V = V¢
o Darcy flow: u = =KV and V-u =0

o Gauge invariance: VXA =% and A - A + Vf

Related to vector calculus identities: V - (VxA) = 0 and Vx(V¢) = 0

Expressed in language of vector calculus (actually, operators on differential forms).

We choose to express and embed these a priori in a network architecture.



Data-driven Discrete Exterior Calculus

Topological structure with machine-learnable geometry (See Nathaniel Trask’s talk @ TIME)

Topological chain complex:

Geometric parameterization

of differential operators:

Example:
2 Amps 3 Amps
@ @ L
12 Volts 8 Volts 0 Volts

do _ 81 _ 9,

Co < C4 {—1(:2

Cﬂ—)C1 C2
d *= Bi418kB "

dy = Dﬂlaﬁnkﬂ

Ohm’s law: 8§,V =RI

12V R
Combinatorial (topological): [ 1 1 ] [ ] ’ 1

Ry =20,R; =20

= DDEC operator: dg = —80
DDEC Ohm’s Law: dyV = l

1l

2A
3A

al



s | Data-driven Discrete Exterior Calculus

For these circuit compact models, we will look for a graph topology.

Current j = edge vector Kirchhoff Voltage Law: v € im(A")
(oriented) Kirchhoff Current Law: i € ker(A)
Voltage v = edge vector Tellegen’s theorem: (v,i) = 0

(oriented)
Potential ¢ = rkdal scalar : A = incidence matrix 4

(branches to nodes)

Objective: obtain graph from TCAD simulations and then dress it up for DDEC.



9 ‘ Large Picture Revisited: Workflow with DDEC

Prime Physics Recognize Regions Tailor Topology Identify Interactions
< \° ® ‘ () ! o ’
Greedy Fiedler Spectral partitioning Physics-informed Graph Neural Network
(obtain DDEC structure) (trained DDEC model)

Graph Laplacian filter

Electric patential contaur (filled)

lu 5]
e

* huto-generated netlist from HetworkX Graph
1.0

= T Tensorflow  XLJCE

'Mapper & scikit-tda


https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.tensorflow.org%2F&psig=AOvVaw2nCMGUVeV043O5N35fDX87&ust=1589039298201000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOCszunOpOkCFQAAAAAdAAAAABAJ
https://scikit-tda.org/

10 ‘ Reduced-order model from DDEC

Key benefits:

Realizes NN computatioﬂa/ grap]z topo/ogy
Physics-informed Graph Neural Network as a circuit topology:

Graph Laplacian filter

Cathode

Anode D
— .
= A e
Pl
e L, Rp

‘ ® Transfers PDE-based physical conservation to DDEC neural network structure.

In contrast with state-of-the-art Physics informed Neural Networks, use PDE

constraint optimization for parameter-free learning.
| =&+ "F TensorFlow._ :
Mapper & scikit-tda

Modifying PDE incorporating new physics models does not change workflow.


https://www.google.com/imgres?imgurl=http%3A%2F%2Fufldl.stanford.edu%2Ftutorial%2Fimages%2FNetwork331.png&imgrefurl=http%3A%2F%2Fdeeplearning.stanford.edu%2Ftutorial%2Fsupervised%2FMultiLayerNeuralNetworks%2F&tbnid=5SkhCL5jAFV7FM&vet=12ahUKEwjOpImg6K7pAhUBmJ4KHZzrAZoQMygIegUIARCXAg..i&docid=J07U7YTMwPC2nM&w=1070&h=755&q=neural%20network%20layers&client=firefox-b-1-e&ved=2ahUKEwjOpImg6K7pAhUBmJ4KHZzrAZoQMygIegUIARCXAg
https://www.google.com/imgres?imgurl=x-raw-image%3A%2F%2F%2F48209a5820860a5c8e769edcef20f2fa74b01debdfca93ab3133c85617672b80&imgrefurl=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F1757-899X%2F441%2F1%2F012036%2Fpdf&tbnid=XAqGIFiaIEij-M&vet=12ahUKEwi4stHE967pAhXTgZ4KHWiXDgIQMygMegUIARCRAg..i&docid=TbfbRBbOwqNDnM&w=558&h=298&q=pn%20diode%20compact%20model&client=firefox-b-1-e&ved=2ahUKEwi4stHE967pAhXTgZ4KHWiXDgIQMygMegUIARCRAg
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.tensorflow.org%2F&psig=AOvVaw2nCMGUVeV043O5N35fDX87&ust=1589039298201000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOCszunOpOkCFQAAAAAdAAAAABAJ
https://scikit-tda.org/

11 ‘ Example workflow: PN diode

[2]

PiGNN PN diode
compact model topology
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Blue: Charon result
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TensorFlow learned parameters

edge_0-2_resistor_conductance:® has value: 15.8
edge_1-3 resistor_conductance:® has value: 15.8
edge _2-3 diode_I0:0 has value: le-13

edge_2-3 diode_knot:0 has value: 0.7641590468787397
edge_2-3 diode_exponent:0 has value: 35.91716524715814
edge_2-3 resistor_conductance:® has value: 15.8
edge_2-3 nn_biases:0@ has value: [2.46351959 ...
edge_2-3 nn_weights:0 has value: [2.70549157 ...
edge_2-3 nn_coeffs:0 has value: [0.53980711 ...

3.22326079]
2.29335275]
0.53774219]



2 I Greedy Fiedler Spectral partitioning scheme

Algorithm

1. Obtain solution manifold (x,y, $(x,y)).

Partitioning scheme on FEM mesh Define Laplacian Ag on it. |
Choose number of partitions N desired.

Algorithm Graph Laplacian filter

1. Obtain solution manifold (x,y, $(x,y)).
Define Laplacian Ag on it.
Choose number of partitions N desired.

2. Compute the Fiedler eigenvector of Ag.
Use it to partition the domain D.

2. Compute the Fiedler eigenvector of Ag.
Use it to partition the domain D,

3. Determine partition D’ among all sub-domains
obtained with largest L%(Vd) measure.

4. Greed
If nu
If nu

5. Cons

3. Determine partition D’ among all sub-domains
obtained with largest L2(V$) measure.

— 1 4. Greedy step:
Mapper & scikit-tda If num parts < N: Go to Step 2, withD” > D
If num parts = N: Continue

T
0

5. Construct the graph C = {{n;},{e;;}} dual to
the domain partition.


https://scikit-tda.org/

13 ‘ DDEC graph from Greedy Fiedler Spectral Partitioning

Partitioning scheme on FEM mesh .
Key benefits:

Graph Laplacian filter

» Eigenfunctions form a basis for L? functions,
suggesting well-approximability of PDE
solutions by piecewise constants on nodal sets.

) * Dual graph identifies 1D flow directions,
_ transferring structure of PDE solution
° Mapper & sdikit:tda  dynamics to a 1D graph “backbone”.



https://scikit-tda.org/

14 I Examples: Partitioning schemes and resulting DDEC

complexes

Resistor

Two contacts
Metis partition

BJT (Transistor)

Three contacts
Eigenfunction
partition

(X, y, electric
potential)
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Compare topology
K% to Ebers-Moll


https://en.wikipedia.org/wiki/File:Ebers-Moll_model_schematic_(NPN).svg
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Software

1.

2.
3.
4

BSIM model http://bsim.berkeley.edu/models/bsim4/
VBIC model https://designers-quide.org/vbic/ [l
Charon https://charon.sandia.gov/ (oper XYEE e!)

Xyce https://xyce.sandia.gov/ (open source!)
TensorFlow https://www.tensorflow.org/about/bib
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