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Overview

1) Multiphysics problems and reduced-order models

2) Desirable structures: physics conservation laws

3) Data-driven Discrete Exterior Calculus (DDEC) on a graph
as a machine-learning framework with desirable structure

4) DDEC graph structure from TCAD simulation
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Large picture: Multiphysics (expensive) electrical systems 
example
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Large picture: Mixed-mode simulation coupling model 
fidelities
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Expensive non-linear
conductance matrix calculation

 at each Newton step

Circuit Device…

ports contacts



Large picture: Problem Statement5

How do we transfer PDE-based physics knowledge to a reduced order model?

Traditional example from electrical engineering: 

heuristically identify local physical processes and map input-output relationships to electronic components assembled in a global 

circuit topology.

PDE-based physics model

Machine learned 
reduced order model



Desired structure: Physics conservation laws6



Data-driven Discrete Exterior Calculus
 Topological structure with machine-learnable geometry (see Nathaniel Trask’s talk @ TIME)

Topological chain complex:

             Geometric parameterization 
                     of differential operators:
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Data-driven Discrete Exterior Calculus8

Current i = edge vector 
(oriented)
Voltage v = edge vector 
(oriented)
Potential ϕ = nodal scalar

Objective: obtain graph from TCAD simulations and then dress it up for DDEC.

For these circuit compact models, we will look for a graph topology.



Large Picture Revisited: Workflow with DDEC9

Mapper & scikit-tda

Prime Physics Recognize Regions Tailor Topology Identify Interactions

Greedy Fiedler Spectral partitioning
(obtain DDEC structure)

Physics-informed Graph Neural Network
(trained DDEC model)

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.tensorflow.org%2F&psig=AOvVaw2nCMGUVeV043O5N35fDX87&ust=1589039298201000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOCszunOpOkCFQAAAAAdAAAAABAJ
https://scikit-tda.org/


Reduced-order model from DDEC10

Key benefits:

• Realizes NN computational graph topology
as a circuit topology:

• Transfers PDE-based physical conservation to DDEC neural network structure.

• In contrast with state-of-the-art Physics informed Neural Networks, use PDE 

constraint optimization for parameter-free learning. 

• Modifying PDE incorporating new physics models does not change workflow.Mapper & scikit-tda

Physics-informed Graph Neural Network

https://www.google.com/imgres?imgurl=http%3A%2F%2Fufldl.stanford.edu%2Ftutorial%2Fimages%2FNetwork331.png&imgrefurl=http%3A%2F%2Fdeeplearning.stanford.edu%2Ftutorial%2Fsupervised%2FMultiLayerNeuralNetworks%2F&tbnid=5SkhCL5jAFV7FM&vet=12ahUKEwjOpImg6K7pAhUBmJ4KHZzrAZoQMygIegUIARCXAg..i&docid=J07U7YTMwPC2nM&w=1070&h=755&q=neural%20network%20layers&client=firefox-b-1-e&ved=2ahUKEwjOpImg6K7pAhUBmJ4KHZzrAZoQMygIegUIARCXAg
https://www.google.com/imgres?imgurl=x-raw-image%3A%2F%2F%2F48209a5820860a5c8e769edcef20f2fa74b01debdfca93ab3133c85617672b80&imgrefurl=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F1757-899X%2F441%2F1%2F012036%2Fpdf&tbnid=XAqGIFiaIEij-M&vet=12ahUKEwi4stHE967pAhXTgZ4KHWiXDgIQMygMegUIARCRAg..i&docid=TbfbRBbOwqNDnM&w=558&h=298&q=pn%20diode%20compact%20model&client=firefox-b-1-e&ved=2ahUKEwi4stHE967pAhXTgZ4KHWiXDgIQMygMegUIARCRAg
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.tensorflow.org%2F&psig=AOvVaw2nCMGUVeV043O5N35fDX87&ust=1589039298201000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOCszunOpOkCFQAAAAAdAAAAABAJ
https://scikit-tda.org/


Example workflow: PN diode model on uniform partition 
[2]
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NN

TensorFlow learned parameters
edge_0-2_resistor_conductance:0 has value: 15.8
edge_1-3_resistor_conductance:0 has value: 15.8
edge_2-3_diode_I0:0 has value: 1e-13
edge_2-3_diode_knot:0 has value: 0.7641590468787397
edge_2-3_diode_exponent:0 has value: 35.91716524715814
edge_2-3_resistor_conductance:0 has value: 15.8
edge_2-3_nn_biases:0 has value: [2.46351959 ... 3.22326079]
edge_2-3_nn_weights:0 has value: [2.70549157 ... 2.29335275]
edge_2-3_nn_coeffs:0 has value: [0.53980711 ... 0.53774219]

PiGNN PN diode
compact model topology

Log(Current)-Voltage

Blue: Charon result
Orange: PiGNN model



Greedy Fiedler Spectral partitioning scheme12

Mapper & scikit-tda

Partitioning scheme on FEM mesh

https://scikit-tda.org/


DDEC graph from Greedy Fiedler Spectral Partitioning13

Mapper & scikit-tda

Partitioning scheme on FEM mesh

https://scikit-tda.org/


Examples: Partitioning schemes and resulting DDEC 
complexes
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Resistor
Two contacts
Metis partition

BJT (Transistor)
Three contacts

Eigenfunction 
partition

 (x, y, electric 
potential)

Compare topology 
to Ebers-Moll

https://en.wikipedia.org/wiki/File:Ebers-Moll_model_schematic_(NPN).svg
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Software
1. BSIM model http://bsim.berkeley.edu/models/bsim4/ 

VBIC model https://designers-guide.org/vbic/ 
2. Charon https://charon.sandia.gov/ (open source!)
3. Xyce https://xyce.sandia.gov/ (open source!)
4. TensorFlow https://www.tensorflow.org/about/bib 
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