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// Objective

« Predict the optical port from which a particular spectrum was produced
- Compare the effectiveness of decision trees versus fully-connected neural networks

ao7

0.06
/ N
oo fA> ifA<=x,
e AN
Port 2 S A Vs
i£B >xy iFB <= xn ifC>xc ifC<=xc °
d ™~ / N
Pons
e N
002 if D> xp ifD <= xp / \.

- N d
:




/.
i~

Data Generation

« 750,000 spectrum-port pairs - 250,000 from each optical device
« Spectra = 451-component vectors
« Ports (0-9) = label encoding ( [9] ) or one-hot vector encoding ( [0, 0, 0,0,0,0,0,0, 0, 17)
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P Data Generation cont.

Multilabel classification -> classify both port number AND optical device
1. 30-component vector
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[0,0,0,0,00,0,000000,0000000000,000,0,0,0,1]
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2. 13-component vector
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[0,0,0,0,0,0,0,0,0,1,0,0,1]
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/" Machine Learning Methods

Inner activation function: ReLU

Final activation function: softmax % AR ,_:._M.
Optimizer: Adam ;.d’f’/ A?I@E@ﬂ.jﬁ}ﬁ.
Loss: categorical crossentropy GRS (R ﬁé’?iﬁ..\\\
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Training time: 3 hours on 32 GB GPU A‘{‘ <\
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P Machine Learning Methods cont.

scikit-learn DecisionTreeClassifier
 Criterion: Gini impurity function

«  Minimum samples: 2

 Training time: 1 hour on 1 CPU

All Data

Training data

Test data

| Fold1 || Fold2 || Fold3 | Folda | Folds O

Split1 | Fold1 | Fold2 | Fold3 | Fold4 | Fold5 |

Spiit2 | Fold1 || Fold2 | Fold3 | Fold4 | Fold5 |

Spiit3 | Fold1 | Fold2 || Fold3 | Fold4 | Fold5 |

Split4 | Fold1 | Fold2 | Fold3 || Fold4  Fold5 |

Spiit5 | Fold1 || Fold2 | Fold3 | Fold4 | Folds

Finding Parameters

Final evaluation '[

Test data
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Results

s’

Neural network: 98.07% (standard deviation: 0.727%)
Decision tree: 99.43% (standard deviation: 0.0112%)
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Results cont.

 Multilabel neural network: 98.99%
« Multilabel decision tree: 95.02%
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P/ Results cont.
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* Feature |mportance
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/ Results cont.

>

/ Percentage of data / Fully-connected neural Decision tree classifier
number of data samples network accuracy (%) ~ accuracy (%) ~ standard

used for training and standard deviation (%) over | deviation (%) over 10 runs
testing (% / samples) 10 runs

100 / 750,000 98.07 ~ 0.727 99.43 ~ 0.0112
90/ 675,000 96.81 ~ 1.054 98.88 ~ 0.0137
80/ 600,000 96.25 ~ 0.644 98.29 ~ 0.0157
70 / 525,000 93.36 ~ 1.512 96.54 ~ 0.0194
60 / 450,000 89.96 ~ 2.809 94.32 ~ 0.0395
50 /375,000 82.60 ~ 2.077 86.98 ~ 0.0564
40 / 300,000 73.61 ~ 2171 81.03 ~ 0.0659
30 / 225,000 61.73 ~ 0.508 62.56 ~ 0.0781
20 / 150,000 39.73 ~ 1.411 37.65 ~ 0.1391

10 / 75,000 35.82 ~ 6.332 44.04 ~ 0.1682
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P Conclusion

 Decision trees
« Less hyperparamter tuning

« Higher accuracy with less data
- Better intuition for performance
- More flexible with output vector format

* Neural networks
- Less sensitive to length of output vector representation




