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Summary 
 

Moment tensors (MTs) have long been used in earthquake and explosion source 
analysis, and there has been a renewed interest in how they can inform us about the seismic 
source, particularly in the geophysical monitoring community due to its application in event 
identification and yield analysis. However, parameter uncertainties in seismic MT inversion are 
rarely available. The inverse procedure often does not quantify MT model errors such as event 
location, data noise and Earth model that are essential for estimating solution robustness. To 
address this need, we propose to adopt the Bayesian probabilistic framework to incorporate 
uncertainties in MT inversions. In this study, we present the theoretical background of a 
probabilistic Bayesian framework for MT inversion accounting for model and measurements 
errors and illustrate the implementation of the method using a synthetic example. 
 
1 Introduction 
 

Moment tensors (MTs) have long been used in earthquake and explosion source analysis, 
and there has been a renewed interest in how they can inform us about the seismic source 
particularly in the geophysical monitoring community due to its application in event identification 
and yield analysis (Ford et al., 2020; Pasyanos & Chiang, 2021). Some of this interest derives from 
our recent ability to routinely determine six-component MT that takes advantage of the full 
description of the MT to characterize isotropic and non-isotropic radiation of seismic sources. 
The elements of the tensor are used to derive the source-type and subsequently tested against 
theoretical mechanisms such as explosion, earthquake and collapse. MTs and their source-types 
have been shown to be valuable geophysical monitoring tools in identifying explosions (Alvizuri 
& Tape, 2018; Chiang et al., 2018; Mustać et al., 2020) and other nuisance signals (Boyd et al., 
2018; Mustać et al., 2018; Shuler et al., 2013), as well as discriminating explosions from 
earthquakes when varied-data type inversion is applied to the analysis (Ford et al., 2012).The 
MTs can be used to augment traditional semi-empirical based methods that utilize surface-to-
body-wave magnitude ratios (Fisk et al., 2002; Selby et al., 2012) and regional phase amplitude 
ratios (Bottone et al., 2002; Walter et al., 2018). The effort to develop and improve the MT 
discriminant for monitoring and enforcement of nuclear test-ban treaties continue to be an area 
of active research. 

However, parameter uncertainties in seismic MT inversion are rarely available. The 
inverse procedure often does not quantify MT model errors such as event location, data noise 
and Earth model that are essential for estimating solution robustness. Here we propose to 
adopt the Bayesian probabilistic framework to incorporate uncertainties in MT inversions. The 
probabilistic formulation described by Tarantola and Valette (1981) casts the inverse problem 
in a Bayesian framework where information on the model parameters is represented in 
probabilistic term. With this approach the solution is given as the complete posterior 
probability density function of the data and model parameters, instead of a single best-fit 
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solution. Subsequent works such as those by Duputel et al. (2012); Mustać and Tkalčić (2015); 
Phạm and Tkalčić (2021); Stähler and Sigloch (2014) presented the methods for incorporating 
model uncertainties in seismic source and MT inversions. 

In this report we will cover the theoretical background for MT inversion using a 
probabilistic Bayesian model and demonstrate the incorporation of data noise and Earth model 
uncertainty in MT inversion using a synthetic experiment. The analysis is done using open 
source Python packages NumPy, SciPy and ObsPy. 

 
2.1 Bayesian Source Inversions 

Based on the formulation of Gesret et al. (2015) we can describe the general forward 
problem that predicts the observations dobs for a set of MTs m at a spatiotemporal location l in 
a velocity field v as, 

𝑑!"# = 𝑔(𝑚, 𝑙, 𝑣) + 𝜖 = 𝑑 + 𝜖	 (1) 
 

where m contains the six independent MT elements and scalar moment m0, and g, the 
deterministic part of the forward problem, is the function that computes the observations dobs 
with error 𝝐. 

For a simple case of a point source inversion at a given location the predicted 
observations d can be expressed as the linear combination of weighted basis Green’s functions 
(Jost & Herrmann, 1989), 

𝑑 = 𝐺𝑚 (2) 
 

where G is the impulse response of the Earth at the seismic station for a point force 
applied at the source, including near-, intermediate-, and far-field terms for body and surface 
waves. The classical approach assumes there is a true MT m that explains the data and finds the 
best solution by minimizing the misfit between observations and predictions. But because our 
knowledge of the Earth’s structure is imperfect, we cannot predict exactly the observations for 
a given m. 

In a probabilistic Bayesian framework, all the information of the inverse problem is 
formulated in terms of probability densitiy functions (PDFs). The solution is given by the 
posterior distribution (or a posteriori distribution) p(x|d), which is the probability density of the 
model parameters x, given the observed data d. The posterior is given by Bayes' theorem, such 
that data and modeling uncertainties enter as prior (or a priori) information into the inversion, 

𝑝(𝑥|𝑑) =
𝑝(𝑑|𝑥)𝑝(𝑥)

𝑝(𝑑)
	 (3) 

where p(x) quantifies the a posteriori information we have for x and p(d|x) is the likelihood 
function quantifying the probability of the measured data d for different values of x. The prior 
represents our previous knowledge about the model and enable us to reject physically 
implausible solutions. The marginal likelihood p(d) is not a function of x but a constant factor 
ensuring that the integral of the posterior distribution equals to one. Therefore, the Bayes’ 
theorem can also be written as 

𝑝(𝑥|𝑑) = 𝑐𝑝(𝑑|𝑥)𝑝(𝑥)	 (4) 
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𝑐$% = 𝑝(𝑑) = 7𝑝(𝑑|𝑥)𝑝(𝑥)𝑑𝑥 	 (5) 

Suppose that the error 𝝐 follows a Gaussian probability distribution, we can rewrite Eq. 
1 as  

 
𝑑!"#~𝑁(𝑔(𝐺,𝑚), Σ)	 (6) 

  
where N is the multivariate Gaussian distribution with mean vector and variance matrix Σ. Both 
measurement and modelling errors are accounted for by Σ. Here we can separate two sources 
of error, the modeling uncertainty for a given G and m, and the background noises recorded at 
the station (Duputel et al., 2014). Given the forward problem from Eq. 2, Duputel et al. (2014), 
Phạm and Tkalčić (2021) and others have shown that the likelihood function for the 
measurement process m and a reference model Ĝ is 
 

𝑝(𝑑!"#|𝑑) =
1

=(2𝜋)&|𝐶|
exp C−

1
2 E𝑑!"# − 𝑔F𝐺

G,𝑚HI'𝐶$%E𝑑!"# − 𝑔F𝐺G,𝑚HIJ (7) 

 
where the covariance matrix C (Fig. 1) is defined as the sum of the data noise covariance matrix 
Cd (measurement error) and model prediction covariance matrix Ct(m), which is the result of 
physical and mathematical approximations in the forward model (theory error).  
 
 

𝐶(𝑚) = 𝐶( + 𝐶)(𝑚)	 (8) 
 

𝐶)(𝑚) =
1

𝑁 − 1M
([𝑔(𝐺* , 𝑚) − 𝑔̅(𝑚)]'[𝑔(𝐺* , 𝑚) − 𝑔̅(𝑚)])

&

*+%

	 (9) 

 
where 𝑔̅(𝑚) is the sample mean over the predicted data vectors (mean Green’s function). In 
the simplest form, we can represent G as a collection of velocity models deviating around a 
reference model Ĝ. This works well when the true Earth model lies within the population of 
models described by the reference model and its uncertainty. For the data noise covariance 
matrix, its simplest form is proportional to the identity matrix (ignoring correlated noise) 𝐶( =
𝜎,Ι, where s2 is the noise variance. Works by Mustać and Tkalčić (2015) and Vasyura-Bathke et 
al. (2021) explored and presented different parameterizations of the measurement error and 
theory error in MT estimation. 
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Figure 1. An example of the complete data covariance matrix of transverse component synthetic 
Green’s functions. From left to right is the model covariance matrix Ct(m), data noise covariance 
matrix Cd, and the combined covariance C(m) 
 
2.2 Random Moment Tensor Sampling 
 The seismic MT is a 3x3 matrix consists of nine force couples that represent the 
equivalent body forces for seismic sources of different geometries (Jost & Herrmann, 1989), 
which due to conservation of angular momentum reduce to six independent couples and 
dipoles. In the Bayesian framework, an appropriate choice of a priori moment tensor 
probability is important, but what constitutes as a random moment tensor is not 
straightforward and depends on the coordinate domain of the parameterized MT. Tape and 
Tape (2015) have shown that uniformly distributed MTs have uniformly distributed orientations 
(eigenvectors) but not uniformly distributed source-types (eigenvalues). In fact uniformly 
distributed MTs favors double-couples in the source-type space.  
 Tape and Tape (2015) have provided two approaches to generate uniformly distributed 
moment tensors based on the 5-D space of all MTs of unit norm, in which one of the 
approaches uses a parameterization of the MT that is closely related to the MT orientations and 
source types. The Tape parameterizations has five parameters and have finite upper and lower 
bounds: k (strike), h (dip cosine), s (slip), u (similar to lune colatitude) and v (similar to lune 
longitude), where the pair (u,v) determines the eigenvalues of MT (source type). We can now 
construct the uniform priors using the five Tape parameterization and the moment magnitude 
(or seismic moment). 
 A method of sampling to explore the parameter space is needed to evaluate the 
posterior PDF. In practice, an exhaustive search of all possible parameters can be impractical or 
require large amounts of computational resources. Here we will sample the posterior 
distribution with the Markov Chain Monte Carlo (MCMC) method, which is a random walk 
through the parameter space guided by the likelihood values, and the commonly used 
Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953). The chain starts at an 
initial model and is accepted unconditionally. In the second iteration, a new model is proposed 
as a perturbation of the current model, where the deviation is randomly drawn from a proposal 
distribution. The proposal is accepted and added to the chain if it is within the pre-set bounds 
and with the probability 

𝛼 = minX
𝑝(𝑥-)𝑝(𝑑|𝑥-)𝑝(𝑥-|𝑥)
𝑝(𝑥)𝑝(𝑑|𝑥)𝑝(𝑥|𝑥-) , 1Y	

(10) 
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If the proposal distribution is symmetric the ratio can be dropped from the acceptance 
calculation. In the next section for the synthetic test case, the Gaussian distribution is used as 
the proposal distribution. 
 
3 Synthetic Test Case: Earthquake 
 We designed a simple synthetic setup to demonstrate the incorporation of Earth model 
in regional MT inversion. In this setup, we simulated the observed data of a pure double-couple 
source and added uncorrelated noise to the data. We pre-computed the ensemble Green’s 
functions of 100 velocity models, where the velocity models were generated from random 
perturbations to a reference model. The Green’s functions are calculated using a 1D wave 
propagation solver from the software package Computer Programs in Seismology (Herrmann, 
2013), a frequency–wavenumber integration method. Both the simulated data and synthetics 
are bandpass filtered from 20 to 50 seconds. The station coverage is set to mimic a realistic 
configuration of stations in regional MT inversion. For this simple test case we did not solve for 
the noise hyperparameters and only sample the MT parameters while accounting for Earth 
model error in the inversion. Each Markov chain consists of 25,000 steps where the first half 
(called the burn-in period) is discarded and models from the post-burn-in thinned chain are 
collected for the ensemble. Here we show results from one Markov chain but in practice it 
would be essential to run multiple Markov chain to ensure the target posterior distribution is 
fully explored. It can be done iteratively or mixing several independent chains to get the mean 
solution. 
 First, we show the result from a single Markov chain where the true velocity model is 
used in the inversion. The initial MT is randomly chosen from a uniform prior, as described in 
the previous section. Not surprisingly, the source models converge relatively quickly to the true 
solution and with very narrow posterior distributions (Fig. 2). The ensemble source models 
(shown in the focal mechanism plot) have a mean solution very close to the input. However, in 
practice we do not know the exact velocity model, only an approximation of it to the real Earth. 
Thus, Figure 3 shows the result of an inversion from a randomly selected initial MT and 
randomly selected Green’s functions. The Green’s functions are randomly selected from the 
ensemble Green’s functions used to calculate the model covariance matrix. In this case we 
observe some source parameters converged quickly with very narrow posterior distributions, 
like k (strike) and magnitude, while others have broader distributions compared to the previous 
example. But the variation with each step resembles a white noise process with no obvious 
trends, producing a mean solution that is still closely located to the input source model. 
 The two examples illustrate the advantages of a Bayesian probabilistic MT inversion. The 
ability to quantify uncertainties are especially important when examining the non-double-
couple components of the MT. As shown here the velocity model error has a clear impact on 
the inverted solutions. 
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Figure 2. Inversion results when the true Earth model is known. The solution converges relatively 
quickly to the input source parameter (denoted as a black star). The focal mechanisms of the 
input earthquake source and the post-burn-in solutions are also plotted. 
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Figure 3. Inversion result when the Green’s function is randomly selected. In this case we observe 
some source parameters converged relatively quickly and the mean solution matches closely to 
the input source. 
 
4 Conclusions 
 

MTs are valuable tools for event identification and yield estimation but the 
uncertainties, if provided, are often significantly underestimated. As we move towards 
monitoring smaller events, an estimation of the velocity model becomes increasingly more 
important. To address this need, we presented the theoretical background of a probabilistic 
Bayesian framework for MT inversion accounting for model and measurements errors, and we 
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illustrated the method using a simple synthetic example. Future work should focus on the 
complete sampling of the source model space where we draw location parameters (latitude, 
longitude and depth) from a prior distribution defined by a given hypocenter or a previous 
calculation, as well as the velocity model from a prior distribution. Then for a location with a 
model, calculate G, the set of covariates for the linear problem, and find the likelihood for a 
uniform distribution of source parameters. This is done for several draws of the location 
parameters and velocity models, and the likelihoods for the given source parameters are 
integrated to find the posterior distribution.  It is also possible to extend the approach to 
include other datasets such as polarity information (Jia et al., 2022; Pugh & White, 2018) and 
incorporate correlated noise models. 
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