
 

 

SANDIA REPORT 
SAND2022-13571 
Printed October 2022 
 

Emulating the Android Boot 
Process 
 
Alex R Bertels, Robert E Bell, Brandon K Eames 
 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico 
87185 and Livermore, 
California 94550 

SAND2022-13571



 

2 

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National 
Technology & Engineering Solutions of Sandia, LLC. 
 
NOTICE:  This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of 
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency 
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily 
state or reflect those of the United States Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best available copy. 
 
Available to DOE and DOE contractors from 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN 37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@osti.gov 
 Online ordering: http://www.osti.gov/scitech 
 
Available to the public from 
 U.S. Department of Commerce 
 National Technical Information Service 
 5301 Shawnee Rd 
 Alexandria, VA 22312 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.gov 
 Online order: https://classic.ntis.gov/help/order-methods/ 
 
 

 
  



 

3 

ABSTRACT 

Critical vulnerabilities continue to be discovered in the boot process of Android smartphones used 
around the world. The entire device’s security is compromised if boot security is compromised, so 
any weakness presents undue risk to users. Vulnerabilities persist, in part, because independent 
security analysts lack access and appropriate tools. In response to this gap, we implemented a 
procedure for emulating the early phase of the Android boot process. 
 
This work demonstrated feasibility and utility of emulation in this space. By using HALucinator, we 
derived execution context and data flow, as well as incorporated peripheral hardware behavior. 
While smartphones with shared processors have substantial code overlap regardless of vendor, 
generational changes can have a significant impact. By applying our approach to older and modern 
devices, we learned interesting characteristics about the system. 
 
Such capabilities introduce new levels of introspection and operation understanding not previously 
available to mobile researchers. 
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1. INTRODUCTION 

Consider CVE-2021-35134, a vulnerability located in the boot stage of the most modern of 
Qualcomm processors [1]. A seemingly insignificant, but also incorrect, verification step posed a 
critical risk to devices trusted everyday by users around the world. Rather than through the common 
practice of publicly promoted bug bounty programs, this vulnerability was discovered by an internal 
review. Other recent boot time vulnerabilities associated with just two vendors, Qualcomm and 
Samsung, include: CVE-2020-11284, CVE-2020-11127, CVE-2021-39647, CVE-2021-25481, CVE-
2020-12746, CVE-2020-10850 [2].  

Bug detection amongst Android Operating System (OS) based smartphone processors relies heavily 
on internal exploration of chipset vendors without the security validation of independent security 
researchers, but broader external review opportunities increase the rate of vulnerability discovery 
and reduce exposure time of production security flaws. Unfortunately, external analysts face 
challenges with performing this validation due to lack of access and lack of appropriate tools. 
Android’s sizeable market has a diverse set of vendors, models, and chipsets, each with unique 
variations on the boot process; such diversity of firmware elements compounds the difficulty of 
crafting portable, broadly applicable, cross-platform tools that support security analyses of boot time 
software. 

In response to this technological gap, we implemented a procedure for emulating parts of the 
Android boot process for two devices. Our procedure offers a crucial first step toward 
understanding this fundamental aspect of Android device security. If boot security is compromised, 
then the entire device’s security is compromised, so the boot process is the root of all trust. 

1.1. Background 

From the perspective of a smartphone end-user, the boot stage may seem like a moderately short 
inconvenience. However, the comprised phases are quite complex – a rigorous secure boot process 
is difficult and involves many phases. Intricacy is also demanded because the chip vendors do not 
own the full system ecosystem. Peripheral components integrated into chips are provided by third 
parties, and their requisite device driver software must be incorporated and provisioned during the 
boot process – while avoiding boot process compromise. Furthermore, there is a balance between 
chipset vendors, smartphone manufacturers, and operating system developers; their interactions 
increase the complexity.  

Understanding the internal system state assumptions before each boot phase executes is essential for 
emulation. These assumptions include the state of the data or code in memory that has been 
previously initialized, the permissions assigned to address ranges in memory, the physical hardware 
components available for use by the firmware, the verification steps required before transitioning to 
the next stage, and the capabilities of the execution environment. In absence of documentation, 
collecting this information is not trivial.  
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Figure 1. The figure illustrates the high-level stages of the boot sequence for Android devices. Starting 
with the primary bootloader (PBL), each step must initialize and verify the next step from the secondary 
bootloaders (SBLs) up through the applications for both the Rich Execution Environment (REE) and the 

Trusted Execution Environment (TEE). 

While the boot sequence of each device varies with chipset and phone vendor implementations – as 
well as generational changes – there are several similar components across devices. An approximate 
outline of a general Android boot sequence is illustrated in Figure 1. The foundation of the boot 
process is provided by the chipset, or the processor [3] [4] [5]. The processor establishes the 
environment data and interfaces with internal peripheral hardware components. The first phase is 
the primary bootloader (PBL), which is fetched from the BootROM. The PBL is a relatively small, 
unmodifiable piece of code responsible for initiating the boot of other components and starting the 
chain-of-trust in the sequence. As components are booted, the initiating component must verify that 
the new component passes some security check (e.g., digital signature, hash comparison). The PBL 
initializes hardware responsible for power management, digital signal processing (DSP), and graphics 
processing, and then the PBL verifies and launches the secondary bootloaders (SBLs). The boot 
process also splits between the normal world and the secure world. The secure world contains the 
ARM TrustZone Trusted Execution Environment (TEE). The TEE operates in parallel with the 
Rich Execution Environment (REE), but it is isolated by the underlying hardware. On the REE 
side, the SBL establishes the normal world components, such as a hypervisor, before moving on to 
the operating system (OS) loader. Several vendors follow similar specifications for loading the OS 
kernel and peripheral images (e.g., Bluetooth, WLAN, cellular modem). The file system is initialized, 
and, subsequently, the user interface and applications are launched. Each smartphone vendor makes 
unique modifications to the Android OS and supplies required libraries and applications.  

1.2. Related Work 

Multiple disjoint efforts in emulating aspects of Android smartphone boot processes exist.  

In several blog posts, researchers demonstrated their capabilities. Roee Hay and Noam Hadad 
detailed the steps to extract and analyze the PBL for several older Qualcomm chipsets [6]. Frederic 
Basse described how to emulate the PBL of a Samsung Exynos 4210 process extracted from a 
Samsung Galaxy S2 [7]. Alexander Tarasikov emulated most of the TEE bootloader and TEE OS 
for a Samsung Galaxy S10 [8]. Additionally, Aris Thallas emulated the hypervisor for a Samsung 
Galaxy S8+ [9]. The demand for such efforts for iOS is evident in the fact that an iPhone emulator 
was implemented by Corellium [10]. While Corellium has not publicly released their iOS emulator, 
an attempt at replicating a small portion of that work was documented by Zhuowei Zhang [11].  

Academic sources also provide some insight and tools. For example, BootStomp is a static analysis 
and symbolic execution tool for searching the early boot process for potential vulnerabilities [12]. 
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Another group of researchers from Samsung and the University of California, Berkeley, investigated 
the ability to emulate the TrustZone OSs of multiple vendors in a project called PARTEMU [13]. 
Given the complexity of executing the SBL prior to transferring control to the TrustZone 
components, the PARTEMU team opted to skip that phase and address the missing data elements 
as needed. This leaves a critical link in the boot chain of trust without a means for effective security 
assessment. 

Even with all these emulation efforts, the current best approach for independent researchers to 
assess the security of the SBL is to employ static analysis techniques. By importing the firmware into 
a common disassembler or decompiler, an analyst can see the functionality built into the SBL. 
However, debug strings are limited, and context and data flow are difficult to track outside of actual 
execution. Being able to step through code and monitor state information offers an insight 
unavailable through static methods, especially given the size and complexity of the firmware. The 
SBL is dependent on external configuration and peripheral hardware components as well as other 
executable binaries that must first be extracted or loaded from storage. Dynamic analysis through 
emulation will by no means replace static analysis, but it presents an opportunity to complement 
other approaches. 



 

12 

2. INITIAL PROOF-OF-CONCEPT 

2.1. Device Selection 

The aim of this project was to provide a capability to evaluate the security properties of boot 
processes. Before we can produce a portable emulation-based capability, we must prove the idea 
through proof-of-concept implementations. Diversity of the Android ecosystem presents numerous 
devices to select from. There are several smartphone and chipset vendors, along with generational 
changes of hardware, firmware, and Android versions. We needed to choose a single device to 
emulate initially. To reduce development time, initial constraints were that the associated firmware 
execute with an architecture that has documented support by an emulation framework and that the 
device represent vendors with significant market coverage. While QEMU has implemented features 
for ARMv8.1+ instruction sets, QEMU specifically states that available Cortex-A architectures 
include 53, 57, and 72; our selection was limited to devices containing a processor with those 
specifications. Qualcomm Snapdragon processors appear in various models of Android-based 
smartphones manufactured by Samsung, Huawei, Xiaomi, Vivo, OPPO, Google, Motorola, and 
many others. To ensure a generalizable process, we wanted a device operating on a Qualcomm 
chipset. Additionally, the device needed to be demonstrative of modern devices by including 
characteristics such as UEFI and UFS. These constraints drove our choice of the first device we 
emulated.  

2.2. Resource Acquisition 

Often smartphone firmware is packaged up for the purposes of providing offline updates to devices. 
These packages for various vendors can be found through unofficial and official hosts. As an 
example, Google hosts factory firmware packages for Nexus and Pixel devices [14]. We used 
similarly packaged firmware for this emulation.  

As for useful supplementary materials, Google releases kernel source [15] that includes information 
about peripheral device drivers and device tree layouts for different models, and Samsung Open-
Source services release code pertaining to the Samsung Galaxy models that employ Qualcomm 
Snapdragon processors [16]. 

We additionally turned to public forums for information on this phone and firmware. 

2.3. Environment Setup 

Our next phase was to begin configuring the emulation environment for the needed memory layout. 
In the interest of quick adaptation to the target, Sandia’s HALucinator [17] – a firmware rehosting 
framework – was adopted. In collaboration with HALucinator developers, we added support for 64-
bit ARM instructions and exposed internal features necessary for our use case. HALucinator wraps 
avatar2 and, consequently, the QEMU engine, but adds features for easy configuration, debugging, 
and execution modification. While not always necessary for dynamic analysis of systems, debugging 
allows access to information beyond run logs. Users can step through the software and pause to 
examine memory when needed. Also, users can alter the current state of memory, potentially 
affecting the path taken through the firmware. With this, someone could understand what the 
software did and also what it might do. When trying to make sense of the Android boot sequence, 
being able to trigger different modes and to engage security mechanisms is important. 

Remaining hardware-independent and only basing emulation on update firmware presents some 
limitations, forcing us to focus on modifiable firmware and data. The PBL is not included in 
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firmware update packages because it is implemented as immutable instructions in the BootROM of 
the processor. This means that the emulation would start with the SBL or (in Qualcomm terms) the 
eXtensible Boot Loader (XBL). 

Before execution can begin, firmware associated memory regions must be properly initialized. As 
with many firmware image files at this early phase, the XBL is stored as an Executable and Linkable 
Format (ELF) file. A readily available tool (i.e., readelf), was used to determine the permissions of 
the required XBL memory regions. As the team progressed through the emulation, we were able to 
determine and configure HALucinator with the necessary memory regions and permissions (i.e., 
read, write, execute). Embedded within the XBL image is a character string that is passed to a later 
boot stage called UEFI. This string is useful in expanding one’s knowledge of the device data layout. 
The XBL will parse PBL-provided data and confirm configuration of hardware peripherals, each of 
which have their own dedicated address ranges in memory. By searching open-source files, we 
identified Device Tree Source (DTS) files that detailed the respective locations of hardware 
component interfaces. 

2.4. Emulation 

For our first proof of concept device emulation, we spent much of the time trying to understand the 
operations of the phone XBL. This required both static reverse engineering and dumping state 
information from the emulation. Our process primarily iterated through the following steps:  

1. Run the emulation until a problem occurs (e.g., crash, error, infinite loop, etc.) 

2. Locate the appropriate XBL execution points in the static binary analysis tool 

3. Add HALucinator handlers to break execution at points-of-interest and dump the state 

4. Continue steps 2 and 3 until the problem is identified 

5. Use handlers to modify state information to meet expectations 

6. Record properties of the functionality for future reference and understanding 

7. Repeat steps 1-6 

Often when the execution gets caught in an infinite loop, there is no immediate indication of this. 
The instruction trace log can quickly become quite large, so we spun off a process to monitor the 
log to detect loops and automatically shut down the emulation. With lengthy log files, following the 
instructions back to the source of an error can take time, so we also wrote scripts to read 
instructions from the trace log and identify scope changes, reducing the time to find approximate 
error locations. To improve emulation runtime, we increased memory write sizes and employed 
QEMU techniques to store and load state snapshots.  

The XBL starts by initializing its own read-write data region with configuration information 
provided by the PBL. The XBL is aware of the memory layout of the system, but it needs to be told 
about environment details such as the storage (e.g., UFS, eMMC), whether secure boot is possible, 
and whether current execution is on a development board. In our case, we had to locate the storage 
field and indicate that UFS storage is available. Also, during initialization the XBL will check the 
state of various peripheral hardware components. Each component has a series of registers that the 
XBL would either write to or read from. When a read register value did not meet required values, 
the emulation execution would either enter an error state or get caught in an infinite loop waiting for 
the external hardware to change a status register. To force progress, we would simply add a 
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HALucinator handler to the instruction address checking the hardware device and alter the incorrect 
value.  

Once the XBL is sufficiently initialized, the next image files needed to be loaded from storage. Each 
image has a data structure describing how this image should be loaded. The image has a reference to 
the respective Globally Unique Identifier (GUID). These GUIDs are used to request the image from 
the connected storage device. The image data structure also has references to a list of functions that 
will be executed before the image is loaded. In some cases, this list of functions will explicitly load 
the image or other support images from storage. This is because the default process is to read an 
image from storage and load the image as an ELF file. However, not all images fit the standard, and 
some need a different loading process. (The image data structure also has a list of functions to be 
executed after the image is loaded.) The image data structure contains status fields and a reference to 
the image description character string. As each section of an ELF image is loaded, the address range 
is compared against a growing list of other ranges to ensure no other regions are being clobbered by 
the new section. This check occasionally failed and had to be forced.  

After an image is loaded from storage in this phone, the XBL will make a couple of secure monitor 
function calls (SMCs) back to the PBL, including authenticating the image and performing a hash 
comparison. Without the PBL and the relevant authentication data, we wrote an interrupt handler to 
catch these SMCs and respond as if the checks had passed. We did have to skip the execution of 
some images. For instance, power management was skipped because no power source exists in the 
emulator. Also, code related to serial devices was skipped. Instead, all outgoing log information was 
collected by a HALucinator handler attached to the logging function start address and was printed to 
terminal console. After all the images were loaded, the XBL would decompress the REE OS 
bootloader – in this case the Unified Extensible Firmware Interface (UEFI) image – from its own 
memory regions.  

We were able to execute much of the XBL code from our first device, with some exceptions. Stages 
that expected feedback from external sources (e.g., clock, DDR) had to be specially emulated or 
skipped. The largest contributor to the necessary modifications was the communication with the 
UFS storage. Using HALucinator handlers, we initially produced a work-around for loading 
executable image files from the host filesystem. The largest downside is that this solution would be 
unusable at later stages such as in UEFI or in initializing the Android filesystem. These phases 
normally interact with storage devices at established memory regions, but the handlers are tied to 
XBL-specific instruction addresses. Relying on specific address-based handlers would also be a 
recurring problem in supporting additional devices.  

Later, by studying Qualcomm’s interface and reviewing the UFS specification documents [18], we 
implemented a proof-of-concept UFS driver for QEMU.1 This allows us to load the executable 
images into virtual drives and place the interface at the appropriate address on the memory map so 
that the XBL can read data from the virtual drives. Ideally, this interface will be utilized by later 
stages of the boot process and the driver could be ported with minimal modification to other 
devices.  

We also implemented a Universal Asynchronous Receiver-Transmitter (UART) QEMU driver. 
Rather than locating the logging functions and implementing a HALucinator handler at that 
instruction address to read and print log information, we could simply attach the driver to the 
UART interface and store the output to a file. 

 
1 QEMU does not currently supply a peripheral driver for UFS storage. 
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When the XBL came to its end, control would be handed over to the next image. For some reason, 
the data structure informing execution of which address to execute next was misconfigured. This 
configuration data had to be forced by using a HALucinator handler to assign that next instruction 
address.  

Rather than transitioning to the TrustZone image or the hypervisor, we opted to transition to the 
UEFI image so that we could better understand how completely the XBL set up the environment 
required by the dependent boot phases. By emulating some of the UEFI phase, we learned that our 
initial XBL emulation attempt misconfigured the system and required changes. Some were simply 
altering a few HALucinator handler forced values. By working through the UEFI Driver eXecution 
Environments (DXEs), we came to realize that logging and peripheral hardware components that 
we had implemented handlers for would need to be reimplemented with the new functions in the 
later phase. With lessons learned and a much greater understanding of the boot process, we knew 
that we needed to back track to correct shortcomings in our approach before moving forward into 
new boot phases. 
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3. DEVICE-AGNOSTIC APPROACH 

This was a pivotal moment in the project to decide which direction to move. With limited time, only 
one route could be taken. We could try to acquire a PBL for the first device, start the first device or 
a related second device from scratch to correct our approach, or select a more modern Android 
smartphone to bring our emulation closer to future needs. Ultimately, choosing to confirm 
emulation for newer devices seemed to provide the most long-term benefits. 

3.1. Device Selection  

For our second device, we wanted to be able to reuse much of our prior work but also consider a 
widely used modern smartphone. We chose a phone using the Qualcomm Snapdragon 888 
processor. 

3.2. Resource Acquisition 

Again, we used a public firmware update package and related open source files for this device. 

During this second effort, we also used a physical version of the phone for validation. The firmware 
version was newer on the physical device but was similar enough for our purposes.  

3.3. Environment Setup 

In a similar fashion to establishing a base line memory layout for our first device, we used a 
combination of the following to start the memory layout for our boot process emulator for our 
second device: 

 A UEFI platform configuration file that can be found included in an XBL image 

 A “readelf” section analysis of each image file in the firmware bootloader directory 

 A few known peripheral hardware components found in the DTS files 

Before we started the emulation, we were prepared to establish the known QEMU peripheral 
hardware driver interfaces. Given that we had already implemented an older version of the UFS 
driver, that was the first to be added. We needed to use the relevant DTS file to determine the 
address ranges for the interfaces. Figure 2 illustrates a Samsung Open Source example DTS file –
listing registers of UFS starting at address 0x01d84000 with all other registers following. This 
example UFS driver is compatible with “qcom,ufshc”. To better understand how a phone would 
communicate through this interface, we can visit the compatible source code in the 
“Kernel/drivers/scsi/ufs/” directory. Similarly, the “ufsphy_mem” source code can be found at 
“Kernel/drivers/phy/qualcomm/”. The register offsets for that phone are also given throughout 
the various header files in those directories.  

In this case, the team’s prior experience was limited. Rather than constructing the QEMU driver 
from a blank file, we decided to fork and modify another Small Computer System Interface (SCSI)-
related QEMU driver and to rely on UFS specifications. The extent that the Android kernel interacts 
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with storage does not necessarily match that of the XBL image, so we only implemented the 
registers and minimal functionality required by the XBL.  

With the driver in place, we needed disks containing the firmware images for XBL to load. Using the 
qemu-img tool, we were able to create multiple disks. But, to understand the partition layouts on 
those disks, we needed to look at a physical smartphone. The file “/proc/partitions” shows the 
partitions sizes for sda, sdb, sdc, sdd, and sde. To get the names for each partition, we pulled those 
by matching the symbolic links in “/dev/block/by-name/”. Next, we had to find the GUIDs for 
the partitions used by XBL. There are some common GUIDs used by Android, such as that of the 
CDT partition: A19F205F-CCD8-4B6D-8F1E-2D9BC24CFFB1. XBL stores a list of these 
internally in a mixed-endian format. Which for CDT would appear as: “5f 20 9f a1 d8 cc 6d 
4b 8f 1e 2d 9b c2 4c ff b1”. One can discover the less common GUIDs by using a static 
analysis tool and searching for the CDT GUID value in memory and noting the surrounding byte 
values. Each GUID is referenced by a data structure that also contains a reference to an image 
descriptor string. Once the GUIDs were matched to partitions, we used “gdisk” to update the disk 
alignment, modify partition names and GUIDS, and write the decompressed image files to the 
appropriate partitions. 

We were able to add some additional QEMU device drivers to eliminate the need for some 
HALucinator handlers. Unfortunately, the UART device driver had changed between the first device 
and the second. To address this, we wrote three additional minimal UART drivers. 

3.4. Emulation 

We mostly replicated our previous approach of repeatedly finding errors and addressing them, but, 
this time, we tackled missing hardware by first trying to emulate the peripheral hardware component 
interactions by implementing compatible QEMU drivers. Only when the drivers were overly 
complicated would a HALucinator handler be employed to address the problem. Ideally, to prepare 
the emulation for later boot phases, most of the drivers mentioned by the DTS would need to be 
included.  

Early in the emulation, we discovered that with the same configuration and firmware images, the 
execution trace and errors across team members were different. By upgrading HALucinator’s 

        ufsphy_mem: ufsphy_mem@1d87000 { 
                reg = <0x1d87000 0xe10>; 
                reg-names = "phy_mem"; 
… 
        }; 
 
        ufshc_mem: ufshc@1d84000 { 
                compatible = "qcom,ufshc"; 
                reg = <0x1d84000 0x3000>, 
                      <0x1d88000 0x8000>, 
                      <0x1d90000 0x9000>; 
                reg-names = "ufs_mem", "ufs_ice", "ufs_ice_hwkm"; 
… 
        }; 

Figure 2. UFS hardware interfaces from Kernel/arch/arm64/boot/dts/vendor/qcom/lahaina.dtsi included in 
the Samsung Open Source package 
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QEMU core from version 4 to 6, the problem no longer occurred. The source of the non-
deterministic behavior remains unknown. 

We were able to keep some of the features from the initial proof-of-concept emulator such as the 
SMC interrupt handler, loop detection, trace analysis, and snapshots. Unfortunately, there were 
some unexpected changes in moving to a newer firmware version. When working with the first 
device, there was no memory enforcement, so we could establish memory regions as needed. 
However, with the second device, establishing and accessing arbitrary memory regions was not 
possible. This became a problem given that, for us to create a region dedicated to the PBL 
configuration data without overwriting other data, we needed to be able to incorporate new memory 
regions. We were able to add a feature to edit the page tables and flush the Translation Lookaside 
Buffer to fix the problem. 

After setting the location of our PBL configuration data, we had to set that this device was using 
“UFS” for storage. We also ran into the problem of an internally managed “whitelist” of allowed 
memory ranges. Each list was specific to a loaded image, but some were corrupted by logging data. 
Without knowing the cause of the corruption, we opted to add a HALucinator handler to ignore this 
check. Due to limited time and unnecessary functionality, we also skipped sleep features, power 
management, Universal Serial Bus (USB), and DDR training. 

In most cases where the emulation environment was improperly configured, the firmware would 
enter an error state and dump some execution related information. After the error information was 
logged, the firmware would then proceed to try to enter an emergency download mode. In the 
interest of progressing the emulation, we did not investigate whether this mode had included 
firmware or if that was another missing software component.  

Our emulated UART devices write out log information to a file rather than the same stream as either 
the HALucinator or QEMU output. Figure 3 illustrates the format of the early output for our 
second device. This logging data was validated against the log from a physical device. 
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Format: Log Type - Time(microsec) - Message - Optional Info 
Log Type: B - Since Boot(Power On Reset),  D - Delta,  S - Statistic 
... 
S - Boot Interface: UFS 
S - Secure Boot: On 
... 
S - Core 0 Frequency, 1459 MHz 
S - PBL Patch Ver: 0 
D -         0 - pbl_apps_init_timestamp 
D -         0 - bootable_media_detect_timestamp 
D -         0 - bl_elf_metadata_loading_timestamp 
D -         0 - bl_hash_seg_auth_timestamp 
D -         0 - bl_elf_loadable_segment_loading_timestamp 
D -         0 - bl_elf_segs_hash_verify_timestamp 
D -         0 - bl_sec_hash_seg_auth_timestamp 
D -         0 - bl_sec_segs_hash_verify_timestamp 
D -         0 - pbl_populate_shared_data_and_exit_timestamp 
S -         0 - PBL, End 
B -         0 - SBL1, Start 
... 
B -         0 - usb: usb2_rcal 
B -         0 - usb: platform 
B -         0 - usb: usb_shared_hs_phy_init: hs phy cfg size , 0xc 
D -         0 - sbl1_hw_init 
B -      4544 - UFS INQUIRY ID: QEMU    QEMU HARDDISK   2.5+ 
B -      4544 - UFS Boot LUN: 0 
B -      6557 - UFS MD   : CE0321 
B -      6557 - UFS size : 1GB 
B -      6557 - UFS spec : 0310 
D -      6557 - boot_media_init 
D -         0 - smss_load_cancel 
B -      6557 - SMSS -  Image Load, Start 
D -         0 - SMSS -  Image Loaded, Delta - (0 Bytes) 
D -         0 - Auth Metadata 
D -         0 - sbl1_xblconfig_init 
B -      6557 - XBL Config -  Image Load, Start 
D -         0 - shrm_load_cancel 
B -      6557 - SHRM -  Image Load, Start 
D -         0 - Auth Metadata 
D -         0 - Segments hash check 
D -         0 - SHRM -  Image Loaded, Delta - (40096 Bytes) 
… 

Figure 3. XBL logging output collected from UART device. 
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4. DISCUSSION 

Comparing the firmware structure of different processor vendors is important for determining the 
investment needed to support other devices. PC processors have made the shift to supporting the 
UEFI specifications, but smartphone processors lag. UEFI is a valuable first step toward removing 
the boot dependence on a particular OS. In this way, Qualcomm Snapdragon processors technically 
do not require Android OS as the next stage after the UEFI bootloader. Similarly, generations of 
MediaTek smartphone processors incorporate U-Boot, an OS bootloader that meets a subset of the 
UEFI specification. Samsung Exynos processors, however, combine many of the boot phases into a 
single image called S-BOOT. The SBL, OS bootloader, and Android kernel launch all occur within 
the span of S-BOOT’s execution. This process largely falls in line with the source code provided by 
ARM Trusted Firmware-A [19]. Google’s Tensor processor [20], which is based on Eyxnos 
processors, breaks up S-BOOT into the separate stages, but – like Exynos – relies on Little Kernel 
rather than UEFI.  

While some vendors differ, if the DTS files of the image can be obtained and appropriate open-
source files are available, then QEMU peripheral component drivers could be developed and added 
at the correct address ranges. We have considered some alternatives to implementing each specific 
component. One attempted approach was to use QEMU TCG plugins to try to determine when a 
loop has been encountered while waiting for a hardware status update – and then use the current 
trace information to modify register values to meet exit conditions. Unfortunately, TCG plugins 
cannot modify memory or register values without modifying QEMU’s framework. Making such 
alterations comes with risk of damaging the integrity of the execution. Given this, we have also 
considered using TCG plugins to collect ongoing state information and, upon entering a loop, 
inform another process to snapshot and kill the current emulation, then provide information to 
generate a new device. This information could include addresses accessed and conditions checked 
around those values. Once a new driver is added, then the execution could pick-up from the saved 
snapshot or an earlier point in execution if necessary. We have also considered using HALucinator 
Peripheral objects, but that can be slow if the hardware is accessed frequently. 
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5. CONCLUSION 

This work has demonstrated the feasibility and utility of emulation as a form of dynamically 
analyzing the early boot process of Android-based devices. By using features provided by 
HALucinator and QEMU, we were able to not only derive execution context from limited logging 
strings and data flow, but also incorporate behavior of selected peripheral hardware components 
such as storage. Both the acquired context and learned hardware behavior is invaluable in supporting 
the emulation and program understanding of additional devices. We should note that while there can 
be significant overlap of code from different smartphone vendors that employ the same processor, 
the generational changes with modern devices can have a significant impact in functionality and data 
structures. In some cases, certain loaded image types were removed, and new images were added. By 
applying our approach first on an older device and then on a modern device, we were able to use the 
tool to learn some interesting things about the system. 

At boot time, image and data files are accessed by GUID. This type of access does not consider 
what the files are named, or even what drive they are stored on. If there is a GUID match on any 
mapped partition in the drive, that is the content that gets loaded. As a result, for us to match 
GUIDs with actual firmware image files, we had to either look for strings in the debug output or 
find a header file online which makes the mapping. If two files have the same GUID, the system 
does not crash, but merely loads the first file it comes to – this was verified with experimentation. 

Though the ARM architecture in our first device allowed for memory protection, memory 
protection was not implemented at boot time. On the other hand, the second device enables 
protections very early in its boot process. More surprising is the fact that QEMU gdb debug honors 
the emulated phone’s memory protections. In other words, if a piece of memory is marked 
inaccessible in the emulated phone’s page tables, it cannot be accessed by our handlers. This implies 
that gdb walks the page tables to access memory, which makes sense as it needs to obtain the 
physical address to read.  If this is the case, it is more surprising that we were able to access 
anywhere in memory on the first device. That would imply that either that device is operating with 
page tables turned off, or that the early boot of the device uses very rudimentary page tables with 
everything mapped in as a one-to-one mapping. 

The most unexpected behavior we learned about Android boot is that the system management calls 
(SMCs) at boot time appear to be for integrity checking purposes only. The SMC environment is 
setup by the PBL, which we did not have access to. As an early implementation, we hooked all SMC 
calls and just returned 0 (the universal OK), thinking that for some of the calls actual work would 
need to be performed and we would have to reverse engineer those situations when we got to them. 
That never happened for either phone.  In other words, returning 0 for all SMCs was sufficient 
emulation for either boot. This strongly points to the SMCs being for pass/fail checks only, and not 
for actual work or calculation. We were able to verify that integrity checking does not exist in the 
XBL itself (supporting that image authentication is in the SMCs). We modified a couple of the many 
ELF files that get loaded at boot, with no effect on the simulation. To prove the files were getting 
loaded, we then modified the files in a way that, if loaded, they would crash the system – and they 
did. 

Project software is available in an internal git repository and relevant documentation is stored in a 
collaborative drive. The emulation platform will be used and supported for at least the next 2 years.  

This research is far from complete. Other processor vendors must be investigated to ensure a truly 
device agnostic approach. Also, adopting an approach to automatically handle responses for 
unknown peripheral components would greatly speed up the process. Attempting this from static 
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analysis prior to execution is made difficult by the loading and decompressing of other firmware 
images. However, we discussed possible ways to tackle this issue. In combination with prior work on 
emulating other boot phases, a more comprehensive picture can be painted and enable an 
unmatched capability in mobile security analysis.  
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