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Introduction and Background
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Introduction and Background
Stochastic Media

= Spatially heterogenous mixing

— BWR Coolant ol R
— Concrete

— Rayleigh-Taylor instabilities

£

— Pebble Bed Reactors (PBR)

= Cheese
— Smoked Gouda (atomically mixed)
— Colby Jack (binary)
— Pepper Jack (N-ary)
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Introduction and Background
Methods for One-Dimensional, Binary, Markovian-Mixed Media

Benchmark (bench)

— (M. L. Adams, E. W. Larsen, and G. C. Pomraning, 1989)

—  Brute force method that performs transport on ensemble of realizations
—  Exact but slow to converge

= Atomic Mix (AM) approximation
— (P.S. Brantley, 2011)
— Mixing at atomic level
— Exact in the limit of small mean chord lengths (autocorrelation = 0)

= Algorithm A — Chord Length Sampling (CLS)
— (G.B.Zimmerman and M. L. Adams, 1991)
— Monte Carlo equivalent of Levermore-Pomraning Closure
— Exact for purely absorbing media
— No memory of chord length after each particle segment

= Algorithm B — Local Realization Preserving (LRP)
— (G. B. Zimmerman and M. L. Adams, 1991) and (P. S. Brantley and G. B. Zimmerman, 2017)
— Remembers current chord length until particle leaves current material

= Algorithm C
— (G. B. Zimmerman and M. L. Adams, 1991)
— Remembers current chord length and chord lengths on each side

= Conditional Point Sampling (CoPS)
— (E.H.VuandA.l. Olson, 2021)
— Two components: algorithm (errorless) and conditional probability function
— Uses Woodcock tracking to make discrete point-wise material designations in real-time
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Introduction and Background
Extension to d-Dimensional, Binary, Markovian-Mixed Media

= Benchmark (bench)

= Atomic Mix (AM) approximation

= Algorithm A — Chord Length Sampling (CLS)

= Algorithm B — Local Realization Preserving (LRP)
= Algorithm C (Alg. C)

= Conditional Point Sampling (CoPS)

= Poisson-Box Sampling (PBS)
— (C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, and A. Mazzolo., 2018)
— Defines “Cartesian boxes” using Poisson-distributed hyperplanes in Cartesian-coordinate directions
— Samples material type of Cartesian boxes on-the-fly
— Memory versions of PBS (PBS-1 and PBS-2) analogous to LRP and Alg. C

Lawrence Livermore National Laboratory N A' S@ 5

LLNL-PRES-XXXXXX National Nuclear Security Administration



Introduction and Background
Extension to One-Dimensional, N-ary, Markovian-Mixed Media

= S.D. Pautz and B. C. Franke. “The Levermore-Pomraning and Atomic Mix closures for n-ary

stochastic materials.” M&C 2017, on USB (2017).
— Produced transport benchmark results
— Work based on theoretical work of:

* R.Sanchez (1989).
¢ 0. Zuchuat, R. Sanchez, I. Zmijarevic, and F. Malvagi (1994)
* G. C. Pomraning (1991)

= A.J. Olson, S. D. Pautz, D. S. Bolintineanu, and E. H. Vu. “Theory and generation methods for N

-ary stochastic mixtures with Markovian mixing statistics.” M&C 2021 (2021).

— Provides general framework for N-ary mixtures that form a Markov-chain process. Two types of

Markovian mixtures are the
« Uniform Sampling Model
* Volume Fraction Sampling Model

— Both models recover input mean chord lengths, volume fractions, and other measurable descriptors
in sampled material realizations.
— Both models reduce to the established binary, Markovian-mixed model (Pomraning, 1991).

In this work, we investigate two material sampling schemes based on the models

in (Olson et al., 2021) using Monte Carlo algorithms CLS and LRP.
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N-ary Material-Mixing Models
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Material-Mixing Models:

Stochastic Transport Equation for Planar Geometry

= Stochastic Transport Equation

oY (x, u,
p PR Ly e ) = = @)

f A" p(x, i, w)

= Boundary Conditions
0<x<L;-1<uc<il
YO,u)=2,u=20;y(L,u)=0,u<0

= Nomenclature
— L — domainlength
— X, 1, w — spatial, angular, and stochastic dependence
— Z.(x, w) — total cross section
— P (x, u, ) — angular flux
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Material-Mixing Models:
Binary Markovian-Mixed Media Mixing Statistics

- Chord Length Distribution
Ao = =N, logé§
A‘,H = —1"‘\.](; lﬂg{:

- Correlation Length
LR S
Ae Ay Mg

_ A(IA_H
Ay + Ap

A

Material Volume Fraction
Aﬂf
e =351,
Pp=1-P,
Material Probability at Interface
n(a|f) =1
n(fla) =1
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Material-Mixing Models:

N-ary Markovian-Mixed Media Mixing Statistics — Uniform Sampling

- Chord Length Distribution
';li = _Ai lﬂgf

- Material Volume Fraction

- Material Probability at Interface

1
m(ji) =N_1
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Material-Mixing Models:

N-ary Markovian-Mixed Media Mixing Statistics — Volume Fraction Sampling

- Chord Length Distribution

’:li = _Ai lUg&'
- Correlation Length
N-1
¢ 1
N1
Ei A[
- Material Volume Fraction
AC
P, = 1_ﬂ_z’ A, < A

Material Probability at Interface

P
n(ili) = —
L
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Monte Carlo Algorithms
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Monte Carlo Algorithms:
Chord Length Sampling (CLS)

1)

2)

3)

> dc :di‘
I
‘ I |
> di > d,
I M ]
| |
. . d,

Sample distance to material interface, d;, with the material type sampled in proportion to
volume fraction.

1)  Uniform Sampling: P; = E’:—‘A
j

2)  Volume Fraction Sampling: P; =1 — %

Compute distance to boundary, d;, and sample distance to collision, d...

Determine particle event by computing the minimum of d;,d., and d;, and stream particle.
1)  If boundary is crossed, terminate particle.

2)  If minimum distance is to collision event, sample collision type. Terminate particle if absorbed. Return to step 2.

3)  If material interfaceis crossed, sample a new d;. Return to step 2.

1) Uniform Sampling: 7(f|i) ﬁ

2) Volume Fraction Sampling: m(j|i) = 11

Lawrence Livermore National Laboratory NVYSE

LLNL-PRES-XXXXXX National Nuclear Security Administration



Monte Carlo Algorithms:

Local Realization Preserving (LRP)

>

dt_ =10 L :d;-
% |
|

P> dc

d; < o
% ]
|

di =0 > d;- > d,

| ————— |

1) Sample distance to material interface in the forward and backward direction, d;" and d;,
respectively, with the material type sampled in proportion to volume fraction.
1)  Uniform Sampling: P; = :"
Zj 4
2)  Volume Fraction Sampling: P; = 1 — %
2) Compute distance to boundary, d;,, and sample distance to collision, d..
3) Determine particle event by computing the minimum of d;, d., and d;, and stream particle.
1)  If boundary is crossed, terminate particle.
2)  If minimum distance is to collision event, sample collision type. Terminate particle if absorbed. Otherwise, adjust
d; and d; . In case of backscatter, switch d;" and d; . Return to step 2.
3)  If material interfaceis crossed, sample new d;” and set d;” to zero. Return to step 2.
1) Uniform Sampling: (j|i) = ﬁ
2) Volume Fraction Sampling: m(j|i) = %
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Problem Description and Results and Analysis
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Problem Description:

Benchmark Suite Problem Parameters

= Benchmark Set Cross Section Parameters

Case Number | 2, 1 Yo s Case Letter | ¢ ¢ 2 iy
1 10/99  100/11  10/99  100/11 a 1.0 0.0 1.0 0.0

2 2/101  200/10  2/101  200/101 b 0.0 1.0 00 1.0

3 10/99  100/11  2/101 2004101 C 09 09 09 09

d 0.0 0.0 00 0.0

= Results
— Benchmark results produced using PlaybookMC

— CLS and LRP results produced using Mercury
— Results produced using 1E7 particles
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Problem Description:
Benchmark Suite Problem Parameters for Each Sampling Scheme

= Benchmark Set Parameters for Uniform Sampling

Case Derived Material Mean
Number Volume Fraction Chord Length
LN 1 L L Ay Ay A Ag
| 9/110 /110 9/11 1/11 99/100 11/100  99/10  11/10
2 1/4 1/4 1/4 1/4 101/20 101/20 101/20 101/20
3 99/1120 11/1120 101/224 101/224[99/100 11/100 101/20 101/20
= Benchmark Set Parameters for Volume Fraction Sampling
Case Material Derived Mean Correlation
Number Volume Fraction Chord Length Length
o ” o D3 Ao A Ao Aj A,
| 9/110  1/110  9/11 1/11 110/101  110/109  11/2  11/10 1
2 1/4 1/4 1/4 1/4 101/20 101/20 101720 101/201  303/80
3 99/1120 11/1120 101/224 101/224 | 1680/1021 1680/1109 112/41 112/41 372
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Results and Analysis:
Computed Error Metrics

Relative Error
X — Xapprox
X

ER:

Root Mean Squared Relative Error

RMS E 125'2
R~ | R;
N 1_ i

Mean Absolute Relative Error

1
Mean |Eg| =EZ|ER,;|
[

Maximum Absolute Relative Error
Max|Eg| = max|Eg|
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Results and Analysis:
Generated Mean Leakage Benchmarks — Uniform Sampling Results

Eeflection Transmission

Sampling Scheme [Case | Bench CLS LRP Bench CLS LRP

la |0.2942(1) 0.2318(1) 0.2748(1) |0.2231(1) 0.2073(1) 0.2207(1)
Ib |0.2230¢1) 0.1748(1) 0.1925(1) |0.1084(1) 0.1336(1) 0.1244(1)

e (0320000 030232 0.302002) [02148(1) 02197(1) 0.2294(1)
1d |0.0000(0) 0.0000(0) 0.0000(0) |0.08914(9) 0.08891(9) 0.08918(8)

, 2a |0.04482(7) 0.03153(6) 0.03886(6)|0.1318(1) 0.1304(1) 0.1314(1)

Uniform 2b [0.6522(2) 0.574%2) 0.6041(2) [0.2019(1) 0.2737(1) 0.2469(1)

_2¢ 104225(2) _0.314002) _0363002) 10156110 0169001 0 1735(1)
2d |0.000000)  0.000000)  0.0000(0) |0.1099(1) 0.10998(9) 0.11011(9)
3a |0.05457(7) 0.03563(6) 0.04467(7)|0.1031(1) 0.1017(1) 0.10249(9)
3b |0.6203(2) 0.5437(2) 0.5669(2) |0.1663(1) 0.2228(2) 0.2054(1)

Jc 1043512y 0.3241(2)  0.3646(2) [0.1325(1) 0. 1468(1) 0. 1516(1)
3d [0.000000)  0.000000)  0.000000) [0.0837(1) 0.0836(1) 0.0836((8)

e CLS and LRP produce statistically errorless results for purely
absorbing problems (“d” cases).

Lawrence Livermore National Laboratory N A'S_Sﬁ 19

LLNL-PRES-XXXXXX National Nuclear Security Administration



Results and Analysis:

Generated Mean Leakage Benchmarks — Volume Fraction Sampling Results

Sampling Scheme

Case

Reflection
Bench CLS LEP

Transmission

Bench CLS LRP

Volume Fraction

2a
2b
2c

0.2880(1) 0.2192(1) 0.2478(1)
0.2362(1) 0.1797(1) 0.2202(1)

04324020 _0.2806(1) _03780(1) |
0.0000(0)  0.0000(0) 0.0000(0)

0.04451(7) 0.03156(6) 0.038746)
0.652002) 0.5746(2) 0.6041(2)
0.4225(2) 0.314001) 0.3625(2)

0.1974(1) 0.1811(1) 0.1893(1)
0.09913(9) 0.12879(9) 0.10724(9)
7 o

0.0782008) 0.07827(7) 0.0T857(8)

0.1318(1) 0.1304(1) 0.1315(1)
0.2022(1) 0.2739(1) 0.2470(1)
0.1559(1) 0.1691(1) 0.1736(1)

2d

0.0000(0)  0.000000)  0.0000(0)

O0.1101(1) 0.1100(1) . 1103(1)

3a
ib
3¢

[ 3d]

0.04405(6) 0.02866(5) 0.03654(5)
0.6745(1) 0.5915(2) (0.6288(2)
0.4633(2) 0.3421(1) 040192

0.03434(6) 0.03361(6) 0.03409(6)
0.1169(1) 0.1794(1) (.1496(1)

0.0000(0)  0.000000)  0.0000(0)

0.06312(8) 0.07836(8) 0.07677(8
0.0268005) 0.02679%(5) 0.02679(5) I

e CLS and LRP produce statistically errorless results for purely
absorbing problems (“d” cases).
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Results and Analysis:
Mean Leakage Accuracy Comparison — Computed Error Metrics

Reflection | Transmission
Sampling Scheme | Error Metric | CLS LRP | CLS LRF

EMS E [ 0246 0.131 [ 0.189 (.135
Uniform Mean|Eg| | 0235 0.125 | 0.137  0.105
Max|Eg| | 0.347 0.181 | 0.356 0.235

RMS Ey | 0257 0,122 | 0.253  0.150
Volume Fraction Mean|Ep,| | 0.245 0.116 | 0.186 0.117

Max|Eg| | 0.349 0.170 | 0.535 0.280

* The relative error of purely absorbing leakage results (“d” cases)
were not included in computation.
* LRP is more accurate than CLS for this set of benchmark problems.
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Results and Analysis:
Scalar Flux Distributions: Case 1d — Uniform Sampling

2.0,
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Results and Analysis:

Scalar Flux Distributions: Case 3¢ — Volume Fraction Sampling

P2(x)
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Outline

Conclusions and Future Work
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Conclusions and Future Work

= Conclusions

— Demonstrated Chord Length Sampling (CLS) and Local Realization
Preserving (LRP) to extend to N-ary stochastic medium for one-
dimensional planar geometry

— Assessed accuracy of CLS and LRP algorithms by comparing mean leakage
results and material scalar flux distributions to benchmark results

— Uniform and volume fraction-based sampling schemes are self-consistent
for each set of problem parameters

— CLS and LRP produce exact results for purely absorbing problems

— LRP is generally more accurate than CLS for the problems examined

= Future Work
— Extend N-ary CLS and LRP to multi-dimensional problems
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