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▪ Spatially heterogenous mixing
— BWR Coolant

— Concrete

— Rayleigh-Taylor instabilities

— Pebble Bed Reactors (PBR)

▪ Cheese 

— Smoked Gouda (atomically mixed)

— Colby Jack (binary)

— Pepper Jack (N-ary)

Introduction and Background
Stochastic Media
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▪ Benchmark (bench)
— (M. L. Adams, E. W. Larsen, and G. C. Pomraning, 1989)
—  Brute force method that performs transport on ensemble of realizations
—  Exact but slow to converge

▪ Atomic Mix (AM) approximation
— (P.S. Brantley, 2011)
— Mixing at atomic level
— Exact in the limit of small mean chord lengths (autocorrelation = 0)

▪ Algorithm A – Chord Length Sampling (CLS) 
— (G. B. Zimmerman and M. L. Adams, 1991)
— Monte Carlo equivalent of Levermore-Pomraning Closure
— Exact for purely absorbing media
— No memory of chord length after each particle segment

▪ Algorithm B – Local Realization Preserving (LRP)
— (G. B. Zimmerman and M. L. Adams, 1991) and (P. S. Brantley and G. B. Zimmerman, 2017)
— Remembers current chord length until particle leaves current material

▪ Algorithm C
— (G. B. Zimmerman and M. L. Adams, 1991)
— Remembers current chord length and chord lengths on each side

▪ Conditional Point Sampling (CoPS)
— (E.H. Vu and A.J. Olson, 2021)
— Two components: algorithm (errorless) and conditional probability function
— Uses Woodcock tracking to make discrete point-wise material designations in real-time

Introduction and Background
Methods for One-Dimensional, Binary, Markovian-Mixed Media
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Introduction and Background
Extension to d-Dimensional, Binary, Markovian-Mixed Media

▪ Benchmark (bench)

▪ Atomic Mix (AM) approximation

▪ Algorithm A – Chord Length Sampling (CLS) 

▪ Algorithm B – Local Realization Preserving (LRP)

▪ Algorithm C (Alg. C)

▪ Conditional Point Sampling (CoPS)

▪ Poisson-Box Sampling (PBS) 
— (C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, and A. Mazzolo., 2018)
— Defines “Cartesian boxes” using Poisson-distributed hyperplanes in Cartesian-coordinate directions
— Samples material type of Cartesian boxes on-the-fly
— Memory versions of PBS (PBS-1 and PBS-2) analogous to LRP and Alg. C
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▪ S. D. Pautz and B. C. Franke. “The Levermore-Pomraning and Atomic Mix closures for n-ary 
stochastic materials.” M&C 2017, on USB (2017).
— Produced transport benchmark results
— Work based on theoretical work of:

• R. Sanchez (1989).

• O. Zuchuat, R. Sanchez, I. Zmijarevic, and F. Malvagi (1994)

• G. C. Pomraning (1991)

▪ A. J. Olson, S. D. Pautz, D. S. Bolintineanu, and E. H. Vu. “Theory and generation methods for N

-ary stochastic mixtures with Markovian mixing statistics.” M&C 2021 (2021).
— Provides general framework for N-ary mixtures that form a Markov-chain process. Two types of 

Markovian mixtures are the 
• Uniform Sampling Model
• Volume Fraction Sampling Model

— Both models recover input mean chord lengths, volume fractions, and other measurable descriptors 
in sampled material realizations.

— Both models reduce to the established binary, Markovian-mixed model (Pomraning, 1991).

Introduction and Background
Extension to One-Dimensional, N-ary, Markovian-Mixed Media

In this work, we investigate two material sampling schemes based on the models 
in (Olson et al., 2021) using Monte Carlo algorithms CLS and LRP.
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▪  

Material-Mixing Models:
Stochastic Transport Equation for Planar Geometry
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Material-Mixing Models:
Binary Markovian-Mixed Media Mixing Statistics
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Material-Mixing Models:
N-ary Markovian-Mixed Media Mixing Statistics – Uniform Sampling



11
LLNL-PRES-xxxxxx

Material-Mixing Models:
N-ary Markovian-Mixed Media Mixing Statistics – Volume Fraction Sampling
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Monte Carlo Algorithms:
Chord Length Sampling (CLS)
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Monte Carlo Algorithms:
Local Realization Preserving (LRP)
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▪ Benchmark Set Cross Section Parameters

▪ Results
— Benchmark results produced using PlaybookMC
— CLS and LRP results produced using Mercury
— Results produced using 1E7 particles

Problem Description:
Benchmark Suite Problem Parameters
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▪ Benchmark Set Parameters for Uniform Sampling

▪ Benchmark Set Parameters for Volume Fraction Sampling

Problem Description:
Benchmark Suite Problem Parameters for Each Sampling Scheme
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Results and Analysis:
Computed Error Metrics
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Results and Analysis:
Generated Mean Leakage Benchmarks – Uniform Sampling Results

• CLS and LRP produce statistically errorless results for purely 
absorbing problems (“d” cases).
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Results and Analysis:
Generated Mean Leakage Benchmarks – Volume Fraction Sampling Results

• CLS and LRP produce statistically errorless results for purely 
absorbing problems (“d” cases).
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Results and Analysis:
Mean Leakage Accuracy Comparison – Computed Error Metrics

• The relative error of purely absorbing leakage results (“d” cases) 
were not included in computation.

• LRP is more accurate than CLS for this set of benchmark problems.
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Results and Analysis:
Scalar Flux Distributions: Case 1d – Uniform Sampling
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Results and Analysis:
Scalar Flux Distributions: Case 3c – Volume Fraction Sampling
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▪ Conclusions
— Demonstrated Chord Length Sampling (CLS) and Local Realization 

Preserving (LRP) to extend to N-ary stochastic medium for one-
dimensional planar geometry

— Assessed accuracy of CLS and LRP algorithms by comparing mean leakage 
results and material scalar flux distributions to benchmark results

— Uniform and volume fraction-based sampling schemes are self-consistent 
for each set of problem parameters

— CLS and LRP produce exact results for purely absorbing problems
— LRP is generally more accurate than CLS for the problems examined

▪ Future Work
— Extend N-ary CLS and LRP to multi-dimensional problems

Conclusions and Future Work
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