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Abstract—Pyomo and Dakota are openly available software
packages developed by Sandia National Labs. In this tuto-
rial, methods for automating the optimization of controller
parameters for a nonlinear cart-pole system are presented. Two
approaches are described and demonstrated on the cart-pole ex-
ample problem for tuning a linear quadratic regulator and also
a partial feedback linearization controller. First the problem is
formulated as a pseudospectral optimization problem under an
open box methodology utilizing Pyomo, where the plant model
is fully known to the optimizer. In the next approach, a black-
box approach utilizing Dakota in concert with a MATLAB or
Simulink plant model is discussed, where the plant model is
unknown to the optimizer. A comparison of the two approaches
provides the end user the advantages and shortcomings of
each method in order to pick the right tool for their problem.
We find that complex system models and objectives are easily
incorporated in the Dakota-based approach with minimal setup
time, while the Pyomo-based approach provides rapid solutions
once the system model has been developed.

I. INTRODUCTION

Control system engineering is largely concerned with
the stabilization of a dynamic system of interest to bring
about a desired response. Typically the control design pro-
cess involves mathematically modeling the dynamic system,
synthesizing a stabilizing control law, and tuning the free
parameters through some means. In particular, control system
tuning is becoming an increasingly difficult task due to
the highly complex nature of modern systems as well as
the multi-objective nature of most control tasks. As such,
systematic methods to automate the tuning process are highly
desirable.

For linear time invariant (LTI) systems, the MATLAB
Control System Toolbox [1] provides a suite of tools for
establishing guarantees of gain and phase margin, rise time,
system overshoot, etc. The MATLAB Robust Control Tool-
box [2] automates the design of robust controllers for un-
certain LTI systems. A survey of evolutionary algorithms in
control systems engineering, mostly for LTI systems, is pro-
vided in [3]. Feedback linearization [4] is a well-established
control method for nonlinear systems. In particular, dynamic
inversion (DI) control (a type of feedback linearization
involving an inner and outer loop) has been widely adopted
in aerospace applications as it provides a straight-forward
way of designing multi-variable control laws for nonlinear
systems which operate over broad, highly nonlinear regimes
[5]. Multi-Objective optimization is used to tune DI control
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laws in [5] using the Multi-Objective Parameter Synthesis
[6] software.

In this work we discuss two additional approaches for
control system tuning based on Pyomo and Dakota, two
open-source software packages developed at Sandia National
Labs. Pyomo is a Python-based, open-source optimization
modeling language with a diverse set of optimization capa-
bilities. Pyomo requires an “open box” model in order to
leverage its capability in determining effective gains for a
specific plant and controller. Dakota is written in C++, and
unlike Pyomo, can leverage a “closed box” model where
Dakota provides parameters as inputs to a model created in
MATLAB/Simulink or other modeling packages. Dakota is
able to interact with MATLAB/Simulink using its closed box
interface. Both methods have advantages and shortcomings
which will be highlighted in this work by applying the
methods to a nonlinear cart-pole system. We develop two
controllers for this well-studied nonlinear system, and then
tune each controller with both software packages.

II. BACKGROUND: DAKOTA AND PYOMO
A. Overview of Pyomo

Python Optimization Modeling Objects (Pyomo) was de-
veloped by Sandia National Labs and is an open-source soft-
ware written in Python for devising mathematical models for
optimization [7]. Pyomo allows encoding system dynamics,
variables, constraints, and objective functions using natural
syntax. The Pyomo model is packaged so that it can be
automatically differentiated and passed to a user-specified
solver for optimization. The extension pyomo.dae [8]
allows for the incorporation of differential algebraic equa-
tions (DAEs) into the Pyomo model. Once the model is
formulated, the user can select one of the supported (linear
program, nonlinear program, mixed integer linear program-
ming, quadratic program, etc.) solvers to minimize the user-
defined objective function. In [9], the authors perform open-
loop trajectory generation with Pyomo via nonlinear opti-
mization for a variety of dynamic systems. In that same work,
the authors present a method for gain and phase margin-
constrained closed-loop control system optimization using
Pyomo. Expanding upon this methodology of closed-loop
control system optimization with Pyomo is a focus of this
paper.

In this work we focus on solving nonlinear control prob-
lems via nonlinear optimization [10]. To solve the opti-
mal control problems, the Pyomo model is discretized and
constraints are enforced along the time horizon via direct
collocation. The horizon time 7' can be pre-determined by
the user or left as an optimization variable. In either case, a

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2021-12149C



simple time transformation ¢t = T'7 is used where 7 € [0, 1]
is normalized time. All subsequent derivative variables are
scaled appropriately by the horizon time as, for example,
de — L4t and f;TZ = %%. The extension pyomo.dae
allows the user to select the desired discretization scheme,
e.g, backward Euler finite different or orthogonal collocation,
the number of finite elements (nfe), and/or the number of
collocation points per finite element (ncp) [8]. In our work
pyomo.dae is interfaced with IPOPT [11], a nonlinear
interior point optimization software which is compiled with
the automatic differentiation library “AMPL Solver Library”
(ASL). Pyomo handles all of the backend model formatting
so the model can be read and differentiated by ASL, which
provides first and second order derivatives to the IPOPT
solver for use during optimization.

B. Overview of Dakota

The Dakota toolkit is another open-source tool developed
by Sandia National Labs that can be leveraged for complex
optimization problems in control design. Dakota is written
in C++ and offers the ability to apply iterative optimization
and sampling techniques to models developed in various
programs, including MATLAB [12]. Using a model with
Dakota can be completed by either leveraging Dakota’s
black-box interface or library mode. In this paper, we will
focus on using Dakota’s black-box interface with models
developed in either MATLAB or Simulink, which are ubig-
uitous in control development problems. Using the black-box
interface, a user can easily and quickly define repeatable
optimization studies with varying systems or optimization
methods. Dakota offers various local and global methods that
can be easily interchanged for a given model. Efficacy of
the different methods depends on the system and objective
function.

In this paper, we use Dakota’s black-box interface to
solve nonlinear control problems with the various available
solution methods. Dakota simplifies the setup of the control
problem for optimization because existing models can be
used alongside the approach, which reduces the setup time
for the method. We will show that Dakota can be easily used
alongside MATLAB and Simulink models in order to benefit
from existing model development and built-in MATLAB
commands. It is not shown in this paper, but MATLAB
could easily be replaced with GNU Octave in order to
provide a complete open-source solution [13]. Using Dakota
provides the ability to apply global optimization methods
without costly MATLAB toolboxes. Within this work, the
differential equations governing the system of interest are
solved using the ordinary differential equation (ODE) solvers
in MATLAB/Simulink [14].

III. THE CART-POLE NONLINEAR SYSTEM

In this work we focus on the cart-pole system described
in [15], shown in Fig. 1(a). The horizontal position of the
cart with mass m,. is given by x, and the angular position of
the pendulum with mass m,, is given by 6, where 6 = 7 is
the vertical orientation. The length of the pole is given by /.
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Fig. 1: (a) Cart-pole system. (b), (c), and (d) compare the
resulting 6, z. and u trajectories using the Dakota-, Pyomo-,
and MATLAB-generated LQR controllers.

A single linear force input u is exerted on the cart. For this
system the accelerations can be solved for directly [15],
1
Me + My sin? 0
1

¢(m. + m, sin® 0

= [u +mysin0(66% + gcosB)|  (1a)

6 = )[fucosf)fmpéézcosf)sinef

(me +myp)g Sin9:| (1b)
The state of the system is defined as x = [z, &, 0, 9}T with
control vector u = wu. The task in this work is to stabilize the
unstable equilibrium x°¢ = [0,0, 7,0]7, u® = 0. Note that
substituting x°? and u®? into (1) produces ¥ = O,é = 0.
We focus our attention on two approaches for closed-loop
controller synthesis. The first approach produces a linear full
state feedback controller based on linear quadratic regulator
(LQR) optimization. The resulting linear control law is valid
locally around x®?. The second approach produces a globally
valid nonlinear feedback control based on a partial feedback
linearization. These two approaches are discussed in the
following sections.

IV. LQR OPTIMIZATION WITH PYOMO AND DAKOTA

LQR synthesis is formulated as the following optimization
problem subject to linear dynamics [16]

T
minimize J:/ x()TQx(t) +u(t)” Ru(t)dt 2)
0

subject to  x(t) = Ax(t) + Bu(t)

For a finite horizon the solution to (2) is a time-varying
state-feedback control of the form u(t) = —K(t)x(t). The
solution to the time-varying gain feedback matrix K () is
given by the well-known matrix differential Riccati equation,
which can be solved numerically backward in time along
the horizon from a known boundary condition. The matrix
K (t) reaches steady state due to the limiting behavior of the
matrix differential Riccati equation, and when the horizon is
infinite (T" — o0), the solution of (2) produces a fixed gain
state-feedback control u(t) = —Kx(t).



In this work we take an alternative approach to LQR
synthesis, solving a modified version of (2). We numerically
minimize the LQR objective over a finite horizon subject to
the full nonlinear dynamics.

minimize J = /0 ’ ()T Qx(t) + u(t)" Ra(t)dt

Nonlinear dynamics given by (1)
u(t) = —Kx(¥)

3)

subject to

where x°? and u®? are defined above, and X(t) = x(t) —
x(t),a(t) = u(t) —u®l(t). We have assumed a linear form
of the feedback control, and the gain matrix K is directly
optimized by the software. Using the LQR controller the
goal is to drive X to zero, so we consider the initial error
Xg=[-Im Om/s 02rad O rad/s]T where the pole’s
orientation is slightly offset from vertical.

A. Optimization in Pyomo

In Listing 1 below we provide pseudocode illustrating
the creation of a fixed-horizon Pyomo model for the LQR
optimization problem.

Listing 1: Creating Pyomo model

# Define absolute coordinates

x =m.ql[tau] + x_eq

u =m.uf[tau] + u_eq

# Dynamics

m. dxdt_Constraint[tau] =\
m.dqldtau[tau] == q2[tau]

# LOR control law

m. control_Constraint[tau] =\

m.uf[tau] == (RHS of LQR control law (3))
# Objective

dJdt = (integrand of (2))
m.dJdtau_constraint[tau] = \

m.dJdtau[tau] == m.T = dJdt

We then define the system boundary conditions and the
objective function to be minimized by the software,

Listing 3: Defining boundary conditions in Pyomo

#Define boundary conditions
def BCs(m):
yield m.ql[0] == -1
yield m.q2[0] ==
yield m.q3[0] == 0.2
yield m.q4[0] == 0
yield m.J[0] ==
#Pyomo constraint list
m. BC_Constraint = pe. ConstraintList(rule=BCs)
#Pyomo objective function

m.obj = pe.Objective (expr=m.J[1], sense=pe.Minimize)

import pyomo.environ as pe

import pyomo.dae as pdae

#Define the Pyomo model

m = pe.ConcreteModel ()

#Define normalized time horizon set

m. tau = pdae.ContinuousSet(bounds=(0,1))
#Define the actual time horizon (fixed—-length)
m.T = pe.Param(initialize =(15))

#Pyomo phase variables indexed along horizon

m.ql = pe.Var(m.tau) # x deviation from x_eq
m.q2 = pe.Var(m.tau) # dx/dtau

m.q3 = pe.Var(m.tau) # theta deviation from eq
m.q4 = pe.Var(m.tau) # dtheta/dtau

#Pyomo derivative vars with respect to tau
m.dqldtau = pdae.DerivativeVar(m.ql, wrt=m.tau)
m.dq2dtau = pdae.DerivativeVar(m.q2, wrt=m.tau)
m.dq3dtau = pdae.DerivativeVar(m.q3, wrt=m.tau)
m.dq4dtau = pdae.DerivativeVar(m.q4, wrt=m.tau)
#Pyomo control variable indexed along horizon
m.u = pe.Var(m.tau) # u deviation

# Objective function, J

m.J = pe.Var(m.tau)

m. dJdtau = pdae.DerivativeVar(m.J, wrt=m.tau)

The final step is to specify the solver (in our case, IPOPT)
and solve the model. We do not illustrate these steps here,
and leave the details to [7], [8]. The bounds and initial values
of K are shown in Listing 4:

Listing 4: Initializing LQR K gains in Pyomo.

m.K_x = pe.Var(initialize=0, bounds=(-200, 200))
m.K_xd = pe.Var(initialize=0, bounds=(-200,200))
m. K_theta = pe.Var(initialize=0, bounds=(-200,200))
m. K_thetad = pe.Var(initialize =0, bounds=(-200,200))

After the time horizon-indexed variables have been defined
we can define the system dynamics constraints along the
horizon. We first discretize the horizon and then populate
the dynamics constraint along the horizon. We also define
the quadratic objective function dynamics. The position
dynamics are outlined in the example Listing below,

Listing 2: Defining dynamic constraints in Pyomo

#Discretize the horizon
discretizer = \
pe. TransformationFactory (’dae.collocation’)
discretizer.apply_to(m, wrt=m.tau, nfe=10, ncp=5, \
scheme="LAGRANGE-RADAU" )
#Dynamics constraints

m. dxdt_Constraint = pe.Constraint(m. tau)
m. dJdt_Constraint = pe.Constraint(m. tau)
#Populate the constraints along the horizon

for tau in m.tau:

The dynamic constraints are imposed in Pyomo by con-
verting (1) to four first order differential equations. Before
imposing these constraints, we shift values from relative error
state (X(t)) to absolute state (x(¢)), and impose constraints
on the absolute state. Pyomo is then used to encode (3). We
select the () and R values to be () = 50 X Iyx4 and R =1,
where I,4 is the 4 x 4 identity matrix.

We solve this problem with 7' = 15 s, using orthogonal
collocation with Gauss-Radau roots, 35 nfe, and 5 ncp.
All Pyomo-based optimization is completed on a Windows
10 laptop PC with 32.0 GB of RAM and a Intel Core
i7-8850U CPU. The time to build and solve the Pyomo
model is 1.64 s, and Pyomo selects the gains as K =
[-6.82, —12.45,92.32, 28.68]. The results are shown in Fig.
1(b)-(d). The most interesting item to note is that the Pyomo
formulation does not require the user to explicitly linearize
the dynamics, which is a necessary step for nonlinear systems
when using the Riccati equation to solve for K.

B. Optimization in Dakota

In order to run a Dakota analysis, a set of files to define the
optimization process and simulation of the cart-pole system
is required. In this paper, MATLAB and Simulink are used
to complete the simulation of the cart-pole system. The




following files are required to setup the Dakota black-box
interface for control design:

« *.in: The input file (*.in) specifies the solver type for the
Dakota optimization process as well as the ranges and
initial values for the design variables. For the black-
box interface, a *.vbs/*.sh script is used to open and
interface with MATLAB/Simulink. Temporary results
and parameter files are specified in the *.in in order
to update the parameters in MATLAB/Simulink and
send the current value of the objective function back to
Dakota to inform the next iteration’s parameter choices.

o *.sh / *.vbs: The *.sh or*.vbs file opens MATLAB in
either Linux (*.sh) or Windows (*.vbs) in a working
directory. Using Windows and a *.vbs allows for MAT-
LAB to be called as a COM Automation Server, which
can speed up simulations when calling Dakota in serial
on Windows compared to Linux.

o * Wrapperm: A MATLAB file is used to specify
the current parameter choices made by Dakota in the
MATLAB/Simulink model of interest, the cart-pole
system here, and save the current values of the objective
functions as a temporary text output file that can be read
by Dakota to continue to subsequent iterations.

o *.m: An additional MATLAB function is used to con-
tain the dynamic model and control implementation of
interest, which can subsequently call a Simulink model
(*.slx). This function is called within the * Wrapper.m
file using the current parameter choices made by
Dakota. Using Dakota and the black-box interface al-
lows for the various built-in functionalities of MAT-
LAB/Simulnk to be used within this process.

The design variables for the Dakota process were defined
as the four values that define the K vector. The ranges for
the values of the K vector were defined in the input file
for the process as continuous design variables with specified
ranges, as shown in Listing 5:

Listing 5: Initializing LQR K gains in Dakota.

variables ,
continuous_design = 4

cdv_initial_point 0 0 0 0

cdv_lower_bounds -100 -100 -100 -100
cdv_upper_bounds 100 100 100 100
cdv_descriptor k1’ 'k3” k2 *k4”

where ’k1’, ’k2’, ’k3’, and 'k4’ is K, K;, Kg, K, respec-
tively. As was stated in the previous section for Pyomo, the
design variables are not warm-started and are all initialized at
Owithxo=[-Im Om/s w+02rad 0rad/s]”. The
system of four first order differential equations are solved
using ode45 within MATLAB, which uses an an explicit
Runge-Kutta (4,5) (RK45) formula [14]. The () and R values
are again selected to be ) = 50 X I4x4 and R = 1. For
the Dakota simulations, we define 7" = 10 s. The Dakota
simulations are completed on a Windows 10 laptop PC with
16.0 GB of RAM and a Intel Core i7-8650U CPU.

The optimization problem in Dakota is solved using the
COLINY EA solver, which is an evolutionary algorithm pro-
vided in the Sandia Colin Optimization Library (SCOLIB)

collection of non-gradient-based optimizers which support
the Common Optimization Library Interface (COLIN) [12].
The maximum function evaluations were defined as 8000
with a population size of 75 in the minimization of (3). The
overall time to run the optimization process with the Dakota
black-box interface is 31.3 min, and Dakota selects the gains
as K = [—6.85,—12.42,91.13,28.10].

The response of the system and input force defined with
the Dakota gains is provided in Fig. 1(b)-(d). The Dakota-
defined LQR controller is able to settle the pendulum within
2% of the desired value of 7 rad in 4.68 s. As with Pyomo,
it was also possible to acquire K without linearization using
Dakota.

C. Validation

The gains obtained with Dakota and Pyomo can be com-
pared with the results obtained using the 1gr function within
MATLAB, which requires the system to be linearized. Table
I and Fig. 1(b)-(d) compare the resulting LQR controller
definitions from Pyomo, Dakota, and MATLAB. Final cost
function values, defined using (3), for the Pyomo and Dakota
gains were 0.23% and 0.32% lower than the final cost with
the MATLAB gains obtained with 1qgr, respectively. The
largest difference in the gains obtained with the optimization
approaches was 4.67% for the value of K, obtained with
Dakota. Responses of the mass and pole of the system
with Dakota and Pyomo are indistinguishable from what is
observed with the MATLAB gains, which can be observed
in Fig. 1(b) and 1(c). Maximum position error for the pole
is 4.3% for the MATLAB and Pyomo gains and slightly
higher at 4.5% for the Dakota solution. The required input
force trajectories obtained with the Pyomo and Dakota gains,
shown in Fig. 1(d), closely follow the MATLAB solution.
Maximum forces observed with the Pyomo and Dakota gains
are 2.76% and 4.02% less than the value obtained with the
MATLAB gains.

TABLE I: LQR controller gains obtained with Pyomo,
Dakota, and MATLAB.

Method Ky K, Ky K0 J

Pyomo -6.82 | -12.45 | 92.32 | 28.68 | 60.92
Dakota -6.85 | -12.42 | 91.13 | 28.10 | 60.86
MATLAB | -7.07 | -12.98 | 9494 | 2948 | 61.06

V. PARTIAL FEEDBACK LINEARIZATION OPTIMIZATION
WITH PYOMO AND DAKOTA

In the previous section we synthesized a linear full-
state feedback controller. This was accomplished by directly
optimizing a finite horizon objective with Pyomo and Dakota.
The resulting control law is valid locally near the equilibrium
x% = [0,0,7,0]7, u®? = 0. We now synthesize a nonlinear
controller based on partial feedback linearization [15], which
produces a globally valid control law. The gains of the
controller will be optimized through Pyomo and Dakota. The
goal once again is to stabilize the unstable equilibrium, which
occurs when the pendulum is vertically oriented. We proceed
by solving (1b) for u such that 6 = v where

v 2 kg(0? - 6) + k(07 — 0) (4)



Solving for w gives

1 . : .
u=— p—: vl(me +my sin? 0) + mp£92 cos 6 sin 0+

(me +myp)gsin 9} 5)

This nonlinear control law is valid globally for 8 # {m, —7}.
Assuming a perfect system model, substituting this control
into (1b) produces the closed loop system

_ k‘p + kgs 4
0(s) = $2 + kqs + kp o(s) (©6)
N—_— —

T(s)

Here T'(s) is the closed loop transfer function which is stable
for all values of k,, kg such that Re{s? + kqs + k,} < 0.

In addition to this perfect model assumption, we also
consider a time delay of 7 second on the control signal in
which case u(t — 7) is applied to (1b) at time t. We note
this is not the same as introducing a transport delay in the
forward path transfer function of (6), since the time-delayed
control signal produces imperfect cancellation of the system
dynamics. As a result, the form of the closed loop system
(6) is lost in the time-delayed control case.

We adjust gains kg, k, of (4) to solve the following
optimization problem

minimize J = /T(Hd(t) —0(1))%dt + wik, + Wert,
0
(1), (4),(5)
(N

Here w; is a regularization term weight, limiting the pre-
ferred size of k, (and indirectly, the size of kq). Wgr
is a penalty on the settling time t;, where a larger Wgr
encourages a shorter settling time.

subject to

A. Optimization with Pyomo

We now perform optimization in Pyomo for the two
cases discussed above: control input without and with
time delay. In both cases the initial condition is xy =
[Om Om/s 192rad O rad/s]T. We solve this prob-
lem with a horizon of T' = 5 seconds using backward Euler
collocation with 500 nfe. We set wy = 0.02 and Wgr = 0
in (7). The weight Wgr is set to zero since modeling the
settling time in Pyomo is non-trivial, and is not attempted
in this work. We note that in order to include settling time
in the objective during Pyomo optimization, the settling time
would need to be written in terms of Pyomo variables (states
and control inputs), without any logical rule type expressions
(e.g., if/else statements) since Pyomo does not support such
expressions.

1) No Time Delay: We first consider the case without any
time delay on the control signal. The time to build and solve
the Pyomo model is 1.65 seconds. The gains found through
optimization are k, = 11.17,kq = 3.24. Fig. 2 shows the
Pyomo solution compared to the numerical simulation of
the closed loop system using Simulink [17] under a RK45
numerical differential equation solver scheme.

(a)_ 200

I @ ®
S 3 3

~
S

Pendulum Position (6) [de;

)
S

0 1 2 3 a4 5 0 1 2 3 4 5
ime s Time (t) [s!

Fig. 2: Pyomo Tsol(i)llt]ion compared to RK45 nu(I)I[l]erical simu-

lation. (a) and (b) compare the resulting 6 and x trajectories,

respectively. Blue curves are with no time delay on the

control signal, red curves are with a time delay. Dashed black

curves are the corresponding RK45 numerical simulation.

2) Time Delay: We next consider the case with a 0.1
second time delay on the control signal. We use Pyomo
to produce an adjusted set of gains that are robust to the
delay. To model the delay we use Pyomo’s previous time
step feature, which allows the user to directly implement the
value of a quantity obtained from previous time steps. Since
we are using a 5 second horizon with 500 evenly distributed
discretization points, each point corresponds to a 0.01 second
time step. To model a 0.1 second delay we therefore require
10 delay steps as indicated below in Listing 6. We note that
for the first 0.1 seconds the control input to the system is
ZEero.

Listing 6: Implementing time delay in control signal.

# Define control input

m.u = pe.Var(m. tau)

# Define the number of delay steps

tau_idx_delay = 10

# time step index for time tau

tau_idx = list (m.tau.data()).index(tau) + 1

if tau_idx > tau_idx_delay:
tau_prev = m.tau.prev(tau,
u = m.uf[tau_prev]

else:
u=20

step=tau_idx_delay)

To promote solution stability, we use the previous solution
(without time delay) as a warm-start. The time to build
and solve the Pyomo model is 3.87 seconds (including time
for the previous build and solve). The gains found through
optimization are k, = 13.92, kg = 6.12. We again compare
the Pyomo solution with the numerical simulation of the
closed loop system using Simulink shown in Fig. 2.

3) Cross Validation: We now numerically simulate the
nominal and time-delayed systems in closed loop under
each set of gains (nominal and adjusted). The simulations
are again performed in Simulink under RK45. In these
simulations the pendulum is initially oriented straight down.
The control input is limited to 100 N to prevent infinite
control effort when 6 = +m/2.

Figure 3(b) shows the robustness of the adjusted gains
in the time-delayed system. As expected, the adjusted gains
provide good performance under both the nominal and time-
delayed systems. We also show the sensitivity of the time-
delayed system under the nominal gains in Fig. 3(a), noting
that the nominal gains perform poorly in the presence of time
delay.
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Fig. 3: RK45 numerical simulation for cross validation: (a)
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B. Optimization with Dakota

Dakota was also leveraged to choose the best gains for the
partial feedback linearization input defined in (4) and (5).
Optimization is initially performed with w; = Wgr = 0
in (7). Later, Wgr will be made nonzero to reduce settling
time oscillations. We note that no weighting is required on k,
(w1 can be zero) when Wgr is nonzero. As a result, w; = 0
in the Dakota approach. Several different solutions methods
were used to determine kq and &, for the partial feedback
linearization controller. The resulting gains are provided in
Table II and the resulting pendulum position trajectory is
provided in Fig. 4. The solution methods used alongside the
Dakota black-box interface are:

o COLINY EA: Evolutionary algorithm provided in San-
dia Colin Optimization Library (SCOLIB) non-gradient-
based methods that are part of the Common Optimiza-
tion Library Interface (COLIN)

o SOGA: Single-objective genetic algorithm

e COLINY PS: Derivative free pattern search provided
in SCOLIB collection

¢ CONMIN FRCG (Gradient): Gradient-based opti-
mization approach

where [12] provides additional details for each method.

TABLE II: Partial feedback linearization controller gains
obtained with various Dakota solution methods and corre-
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Fig. 4: Impact of the solution method on the resulting
0 trajectory using the Dakota-generated partial feedback
linearization controller.

EA and SOGA, respectively. All of the solution methods
resulted in similar responses for the pendulum of the system,
which can be observed in Fig. 4. The resulting settling times
(ts), maximum force (w74, ), and overshoot values for the
pendulum component of the system are within 5% of each
other. The cart-pole system in these cases was modeled using
Simulink to allow for simple implementation of the time-
delay on the input, u(t — 7), and additional validation of
the gains generated with Pyomo. The position trajectory of
the pendulum and input signal for the optimized gains with
varying input delays can be observed in Fig. 5(a)-(b).

C. Comparison and Validation

Table III compares the gains obtained with Pyomo ac-
counting for a 0.1 s input delay to the gains obtained with
Dakota with and without accounting for the settling time in
the cost function. Pyomo provides a solution that reduces
the cost function by 91.0% relative to the initial value with
the gains defined as 1. The reduction observed with Pyomo
is slightly less than the reduction of 92.71% observed with
Dakota without accounting for the settling time, but the
Dakota gains result in a 44.3% increase in the settling time.

TABLE III: Partial feedback linearization controller gains
obtained with Pyomo and Dakota with 7 = 0.10 s.

Method kp kd JReduction ts UMazx
spondine computation times (% . . Pyomo 13.92 | 6.12 90.99% 131s | 979N
P g comp (tcomputation) Dakota (Wgp = 0) | 27.92 | 9.08 | 9271% | 1.90 s | 156.6 N
Solution Method | %, fid | JReduction | tComputation Dakota (Wer = 1) | 1122 | 585 | 89.91% | 0765 | 879N
COLINY EA 125.00 | 11.00 91.03% 6.84 min
SOGA 123.66 10.20 90.95% 7.32 min
COLINY PS 125.00 | 11.18 91.03% 0.89 min VI. CONCLUSIONS
GRADIENT 12500 | 1118 | 9103% 0.38 min Pyomo and Dakota are both powerful tools for control

All of the solution methods provide more than 90%
reduction in the cost function defined in (7) when gains
kg and k, are set to 1. For the COLINY EA and SOGA
solution methods, the maximum number of function evalua-
tions allowed was set to 1000 with a population size of 125.
Initial conditions for the system in theses analyses matched
those used in Pyomo. Gains k; and k, were initialized
with an arbitrary value of 1 and kept within a range from
0.1 to 125. Dakota does not require these gain values to
be warm-started. With these parameters, the COLINY PS
and GRADIENT solution methods were able to converge
significantly faster at 0.89 min and 0.38 min, respectively,
compared to the times of 6.84 min and 7.32 min for COLINY

designers to optimize the gains of a controller given various
objective functions and constraints. The primary trade-off
between Pyomo and Dakota is setup time versus optimization
time. Using Dakota leads to shorter setup time since one
can leverage existing plant models, but optimization time
can be significant due to the coupling of the algorithm
and simulation model. Setup of the Pyomo model can take
significant time, but the optimization tends to be much faster.

In this tutorial we have addressed a single-input multi-
output system. Implementing Pyomo and Dakota on multi-
input systems is a straight-forward extension of the methods
described here. An example of using Pyomo on a multi-input
aerospace optimization problem is shown in [9].
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Fig. 5: (a) and (b) show the resulting 6 and input trajectories using the Dakota-generated partial feedback linearization
controller under various input time delays. (c) and (d) show the trajectories using the Dakota-generated partial feedback
linearization controller with settling time cost. (e) and (f) compares the trajectories resulting from Pyomo and Dakota.

In addition to the methods discussed here, novel ap-
proaches based on Bayesian Optimization have been devel-
oped for automated tuning of nonlinear control systems. For
example, Bayesian Optimization is applied to LQR synthesis
for a robotic inverted pole balancing problem in [18]. The
associated () and R matrices are parameterized and then
tuned via Bayesian Optimization. The (expensive to evaluate)
latent objective function is represented as a Gaussian Process
where the evaluation points are determined via Entropy
Search [19]. More recently, the Python package BoTorch [20]
was developed as a framework for Bayesian Optimization.
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