
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

SST-Explorer
Enabling System-level Performance and
Reliability Analysis for Designs with Real-World
IPs

Arun Rodr igues

1

Arun Rodrigues, Amro Awad, Clayton Hughes, Sapan Agarwal,
Michael Skoufis, Gwen Voskuilen, Shubham Nema, Rohin Razdan,
Alan Gardner, Scott Hemmert, and Simon D. Hammond

SAND2021-12176CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SST-Explorer2

◦ SST: Parallel, Open, Multi-scale, Interoperable
◦ SST Core framework: PDES, utilities and interfaces for

simulation components
◦ SST Element libraries: Libraries of components that

perform the actual simulation

◦ C++ Models: functional to cycle-accurate
◦ Wide range of models for network, processor, memory,

etc…

◦ SST-Explorer Goals
◦ Allow mixed-mode simulations that combine RTL-level

components and high-level components
◦ Explore Reliability with fault injection and tracking

ESSENT Output3
◦ ESSENT produces output file (.h) includes…
◦ Headerfile defining basic types (e.g. Uint<T>)
◦ List of signals (in, out, internal)
◦ Eval() function which does the actual simulation
◦ User supplies testbench wrapper code to provide input
stimulus

module Adder(
 input clock,
 input reset,
 input [7:0] io_in0,
 input [7:0] io_in1,
 output [7:0] io_out
);
 assign io_out = io_in0 + io_in1;
endmodule

#include <uint.h>

typedef struct Adder {
 UInt<8> io_in0;
 UInt<8> io_in1;
 UInt<8> io_out;

 void eval() {
 UInt<9> _T = io_in0 + io_in1;
 io_out = _T.tail<1>();
 }
} Adder;

SST/ESSENT: Workflow4

◦ SST-Explorer framework allows a simple
workflow which can transform Chisel or Verilog
code into an SST component

◦ SST-Explorer parser reorganizes the C
simulator created by ESSENT in to an SST
component
◦ (optionally) adds fault injection & tracking

capabilities

◦ ESSENT output + Template + user supplied
code and port maps → SST Components and
Events.
◦ Templates: ‘generic’ components, UART-based,

or AXI interfaces.

◦ Use cases
◦ Fast high-level models + slow detailed

models = improve simulation speed
◦ High-level “placeholder” components + low-

level components early in design cycle

Fault Tracking
◦ SST-Explorer allows fault injection
and tracking

◦ ESSENT Uint<T> and Sint<T>
structures replaced
◦ New structure stores original data,

“faulty” data, and info on inciting upset
◦ Operators overloaded so fault

information is propagated
◦ Faults are tracked and fault corrections

are noted

◦ For each fault
◦ Where it started
◦ What it affected

template <int N>
class Uint {
 Uint_<N> origData; // correct data
 Uint_<N> data; // faulted data

 list<upsetDesc> upsets; // fault track
};

Fault Corrections & Diagnosis6

◦ Other Use Cases
◦ Detect fault corrections
◦ Data struct carries ‘correct’ value, can determine if

math operations restore faulted to correct
◦ Useful for determining where faults squashed

◦ Multi-fault diagnosis
◦ Origin of each fault is tracked
◦ Can determine which upset (of many) caused fault

or error

◦Summary: SST-Explorer
◦RTL models to be integrated with
SST
◦Fault injection & tracking

Fault
Correction

Multi-Fault
Diagnosis

7

