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SST-Explorer2

◦ SST: Parallel, Open, Multi-scale, Interoperable
◦ SST Core framework: PDES, utilities and interfaces for 

simulation components 
◦ SST Element libraries: Libraries of components that 

perform the actual simulation

◦ C++ Models: functional to cycle-accurate
◦ Wide range of models for network, processor, memory, 

etc…

◦ SST-Explorer Goals
◦ Allow mixed-mode simulations that combine RTL-level 

components and high-level components
◦ Explore Reliability with fault injection and tracking



ESSENT Output3
◦ ESSENT produces output file (.h) includes…
◦ Headerfile defining basic types (e.g. Uint<T>) 
◦ List of signals (in, out, internal)
◦ Eval() function which does the actual simulation
◦ User supplies testbench wrapper code to provide input 
stimulus

module Adder(
  input        clock,
  input        reset,
  input  [7:0] io_in0,
  input  [7:0] io_in1,
  output [7:0] io_out
);
  assign io_out = io_in0 + io_in1;
endmodule

#include <uint.h>

typedef struct Adder {
  UInt<8> io_in0;
  UInt<8> io_in1;
  UInt<8> io_out;

  void eval() {
    UInt<9> _T = io_in0 + io_in1;
    io_out = _T.tail<1>();
  }
} Adder;



SST/ESSENT: Workflow4

◦ SST-Explorer framework allows a simple 
workflow which can transform Chisel or Verilog 
code into an SST component

◦ SST-Explorer parser reorganizes the C 
simulator created by ESSENT in to an SST 
component 
◦ (optionally) adds fault injection & tracking 

capabilities

◦ ESSENT output + Template + user supplied 
code and port maps → SST Components and 
Events.  
◦ Templates: ‘generic’ components, UART-based, 

or AXI interfaces.

◦ Use cases
◦ Fast high-level models + slow detailed 

models = improve simulation speed
◦ High-level “placeholder” components + low-

level components early in design cycle



Fault Tracking
◦ SST-Explorer allows fault injection 
and tracking

◦ ESSENT Uint<T> and Sint<T> 
structures replaced 
◦ New structure stores original data, 

“faulty” data,  and info on inciting upset
◦ Operators overloaded so fault 

information is propagated
◦ Faults are tracked and fault corrections 

are noted

◦ For each fault
◦ Where it started
◦ What it affected

template <int N>
class Uint {
  Uint_<N> origData; // correct data
  Uint_<N> data;    // faulted data

  list<upsetDesc> upsets; // fault track
};



Fault Corrections & Diagnosis6

◦ Other Use Cases
◦ Detect fault corrections
◦ Data struct carries ‘correct’ value, can determine if 

math operations restore faulted to correct
◦ Useful for determining where faults squashed

◦ Multi-fault diagnosis
◦ Origin of each fault is tracked
◦ Can determine which upset (of many) caused fault 

or error

◦Summary: SST-Explorer
◦RTL models to be integrated with 
SST
◦Fault injection & tracking

Fault
Correction

Multi-Fault
Diagnosis
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