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Derivation of Analytical Probability Distributions

* Exponential energy-loss model

Numerical Probability Distributions

« Exponential energy-loss model

*  Physics models

« Physics-informed exponential energy-loss models

Possible approaches for analytical models that better represent the physics
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s | Backward Master Equation for Collision-Number Probability

We begin with a backward master equation for the probability that a particle will
experience n collisions in slowing down from energy E to below energy E,.
E

P(E) = ﬁ(E) On,1 JF/ dE' Jo(£ — E!)Rz—l(E’) 0<F<oo, n=01.---

En

with P (E) = 0 for n < 0.

The particle necessarily undergoes at least one interaction. It may undergo only one
collision with the following probability:

~ Ly
fs(E) = /U dE' f(E — E')

This energy-loss distribution is related to the electron-electron differential scattering
Cross section.

YJ(E = E')=X.E) f(E— E
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+ | Discrete Transform to the Probability Generating Function m

We use the discrete transform

G(=,E)=Y_ ="P,(E) 2 < 1

0
to convert the infinite set of coupled integral equations into a single integral equation,
the probability generating function:

E.

_ E
G(z,E) = 2 f,(E) + = / dE' f.(E — E"G(z, E) l
|



s | Analytical solution with exponential energy-loss scattering m

To obtain an analytical solution for the pdf, we model the peaked differential cross
section as an exponential function
20 _(E=E)

S(E=E)=—¢ 7 . 0SE<E

For £, << E, the energy-loss distribution terms are given approximately, to exponentially
small terms, by
1 —@-rE) l

folB = B) = 27
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Collision number distribution is almost Poisson for an
exponential energy-loss distribution.

Since z appears only parametrically in the probability generating function

E
G(z.FE) =z f.(E) + = / dE' f.(E — E"\G(z. E)

Ey

this equation can be solved by converting it to a differential equation.

| z—1 E | z—1
, ch —
G(z,F)==z2 |= =z o
fs(E) eF —1
P.(E) is recovered by expanding this solution for G in a series in z to obtain
n—1

1 1 oL

Pu(E)=— |ln= e "E®, n>1

1
fs(E)

This is almost a Poisson distribution with parameter In
but with index n-1 instead of n.




Summary of the Collision Number Distribution
with Exponential Energy-Loss Scattering
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Again, the solution is

The mean and variance are

1

P

fs(E)

Neglecting exponentially small terms, the model parameters can be related to the
stopping power, S, and energy-loss straggling coefficient, T.

n(E)=1+In

. 1 1 —E-E)
..'3—% fS(E—>E)_Be_, B
_ 282 ~ (E—Eq)
2o = fAE)y=e" 7" |



g | Numerical Results with Exponential Energy Loss

0.12 10"
- Monte Carlo - ———=—— Exact
: @ Exact Gaussian
0.1 . Poisson
0.08
z | >,
E 0.06 3 =10.02 =
S 2
& 53 —=0.01 =
0.04 o
0.02 .
0 1 ] &) | L | | ‘t
150 . 100 150
Interactions

Interactions



Energy-Loss PDF (eV")
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10 | Numerical Results with EEDL Electron Energy-Loss Models m
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| Numerical Results with EEDL Electron Energy-Loss Models
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i3 | EXponential Energy Loss with Energy-Dependent Parameter m
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2 | EXponential Energy Loss with Mixed Parameter Values
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s | Energy-Dependent Exponentials versus Physics Models m
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17 | Conclusions

n—I1
1 1 —1In .lE
P.(E) = T(n) {lu E[E]] fs(E)
Starting from a backward Master equation, the analytical o T e
solution for collision-number probability distribution was a1l
derived based on an exponential energy-loss kernel. oo} l'T" f
= B! = (103
. . = A e
The analytical result was shown to agree with Monte Carlo 2oy LA
simulation results. ook |1 PR
SR EEA
i i i i i U,uz-T| ! s“. :!' p ;‘! k
Comparisons were made with simulation results obtained B FLUE \\
using electron scattering models. %*‘M ' — 1
o DA Ao
Gaussian Fit |
Simulation _
An analytical solution with a power-law energy-loss term or Bl00Mey
multiple exponential energy-loss terms could be more z ]
representative of the true physics of electrons. £
i = —
m-:n“ |;|' o 10 |;:-1 1wt
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