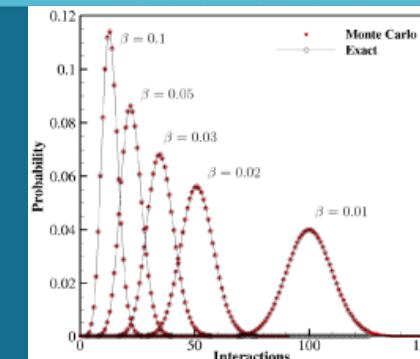


Sandia
National
Laboratories

Probability Distribution Functions of the Number of Scattering Collisions in Electron Slowing Down



Brian C. Franke (Sandia National Laboratories)

Anil K. Prinja (University of New Mexico)

M&C 2021

The International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering

October 3–7, 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

Derivation of Analytical Probability Distributions

- Exponential energy-loss model

Numerical Probability Distributions

- Exponential energy-loss model
- Physics models
- Physics-informed exponential energy-loss models

Possible approaches for analytical models that better represent the physics

Backward Master Equation for Collision-Number Probability

We begin with a backward master equation for the probability that a particle will experience n collisions in slowing down from energy E to below energy E_u .

$$P_n(E) = \tilde{f}_s(E) \delta_{n,1} + \int_{E_u}^E dE' f_s(E \rightarrow E') P_{n-1}(E') \quad 0 < E < \infty, \quad n = 0, 1, \dots$$

with $P_n(E) = 0$ for $n \leq 0$.

The particle necessarily undergoes at least one interaction. It may undergo only one collision with the following probability:

$$\tilde{f}_s(E) = \int_0^{E_u} dE' f_s(E \rightarrow E')$$

This energy-loss distribution is related to the electron-electron differential scattering cross section.

$$\Sigma_s(E \rightarrow E') = \Sigma_s(E) f_s(E \rightarrow E')$$

Discrete Transform to the Probability Generating Function

We use the discrete transform

$$G(z, E) = \sum_0^{\infty} z^n P_n(E) \quad |z| \leq 1$$

to convert the infinite set of coupled integral equations into a single integral equation, the probability generating function:

$$G(z, E) = z \tilde{f}_s(E) + z \int_{E_u}^E dE' f_s(E \rightarrow E') G(z, E')$$

Analytical solution with exponential energy-loss scattering

To obtain an analytical solution for the pdf, we model the peaked differential cross section as an exponential function

$$\Sigma_s(E \rightarrow E') = \frac{\Sigma_0}{\beta} e^{-\frac{(E-E')}{\beta}}, \quad 0 \leq E' \leq E$$

For $E_u \ll E$, the energy-loss distribution terms are given approximately, to exponentially small terms, by

$$f_s(E \rightarrow E') = \frac{1}{\beta} e^{\frac{-(E-E')}{\beta}}$$

$$\tilde{f}_s(E) = e^{-\frac{(E-E_u)}{\beta}}$$

Collision number distribution is almost Poisson for an exponential energy-loss distribution.

Since z appears only parametrically in the probability generating function

$$G(z, E) = z \tilde{f}_s(E) + z \int_{E_u}^E dE' f_s(E \rightarrow E') G(z, E)$$

this equation can be solved by converting it to a differential equation.

$$G(z, E) = z \left[\frac{1}{\tilde{f}_s(E)} \right]^{z-1} = z \left(\frac{e^{\frac{E}{\beta}} - 1}{e^{\frac{E_u}{\beta}} - 1} \right)^{z-1}$$

$P_n(E)$ is recovered by expanding this solution for G in a series in z to obtain

$$P_n(E) = \frac{1}{\Gamma(n)} \left[\ln \frac{1}{\tilde{f}_s(E)} \right]^{n-1} e^{-\ln \frac{1}{\tilde{f}_s(E)}}, \quad n \geq 1$$

This is almost a Poisson distribution with parameter $\ln \frac{1}{\tilde{f}_s(E)}$, but with index $n-1$ instead of n .

Summary of the Collision Number Distribution with Exponential Energy-Loss Scattering

Again, the solution is

$$P_n(E) = \frac{1}{\Gamma(n)} \left[\ln \frac{1}{\tilde{f}_s(E)} \right]^{n-1} e^{-\ln \frac{1}{\tilde{f}_s(E)}}, \quad n \geq 1$$

The mean and variance are

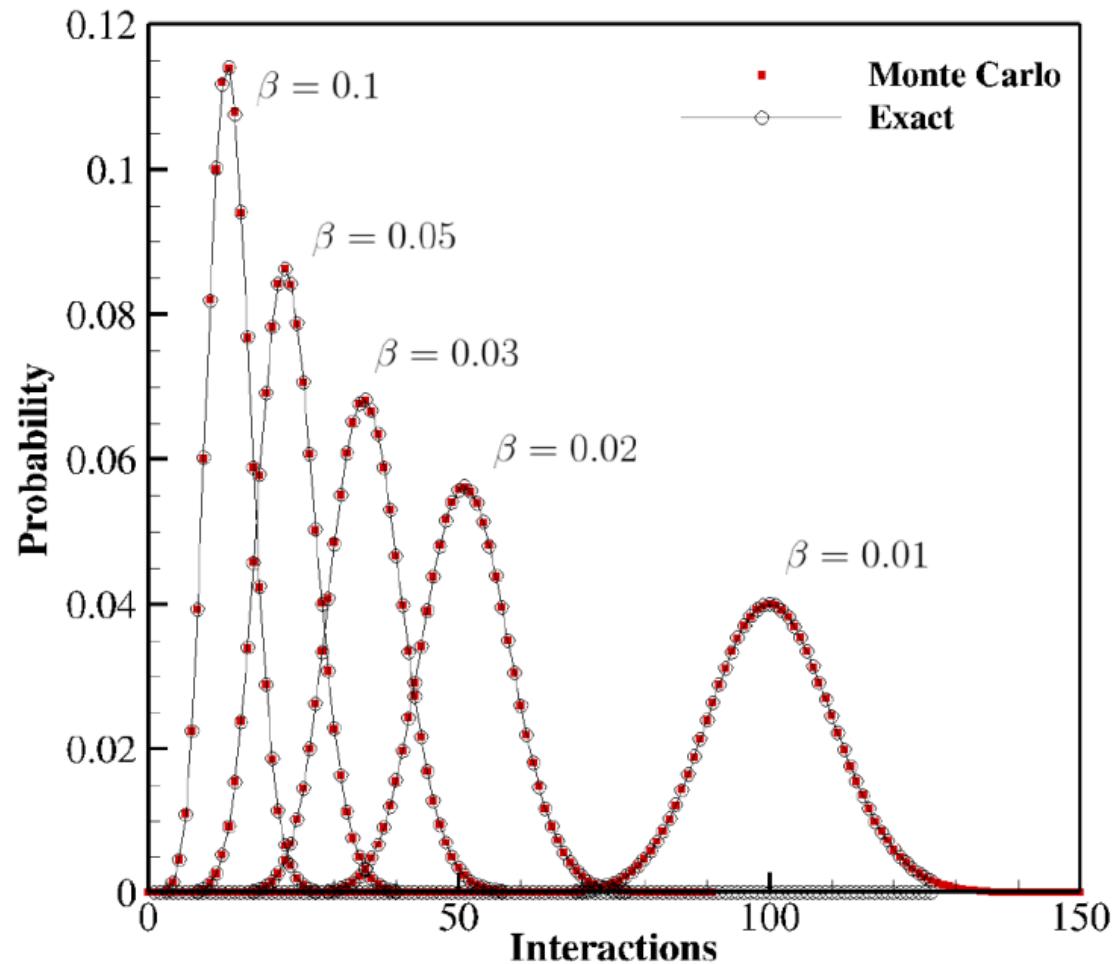
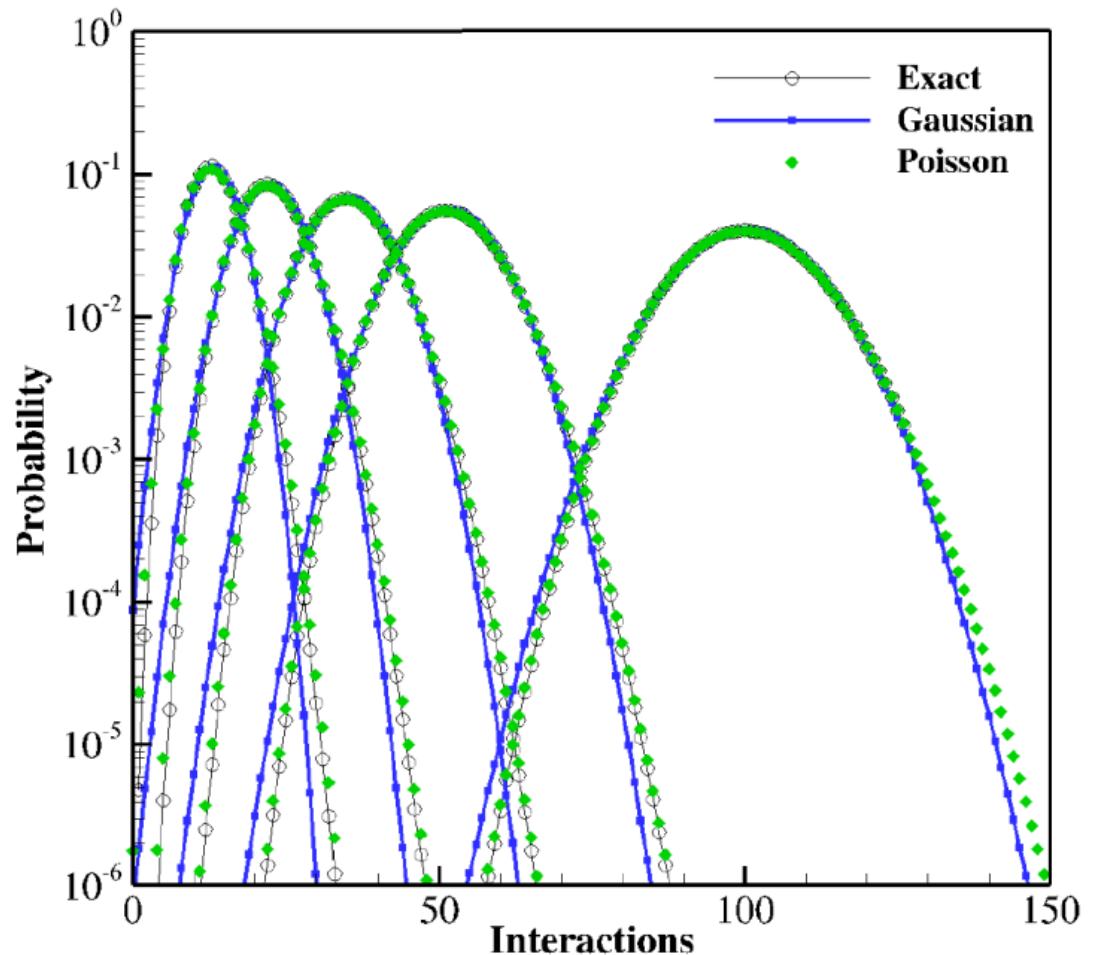
$$\bar{n}(E) = 1 + \ln \left[\frac{1}{\tilde{f}_s(E)} \right] \quad V(E) = \ln \left[\frac{1}{\tilde{f}_s(E)} \right] \approx \bar{n}(E)$$

Neglecting exponentially small terms, the model parameters can be related to the stopping power, S , and energy-loss straggling coefficient, T .

$$\beta = \frac{T}{2S} \quad f_s(E \rightarrow E') = \frac{1}{\beta} e^{\frac{-(E-E')}{\beta}}$$

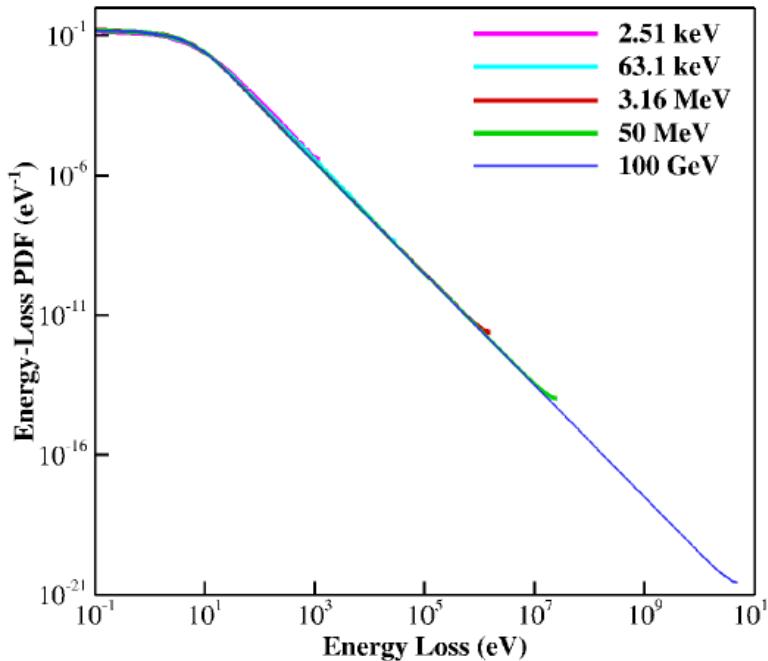
$$\Sigma_0 = \frac{2S^2}{T} \quad \tilde{f}_s(E) = e^{-\frac{(E-E_u)}{\beta}}$$

Numerical Results with Exponential Energy Loss

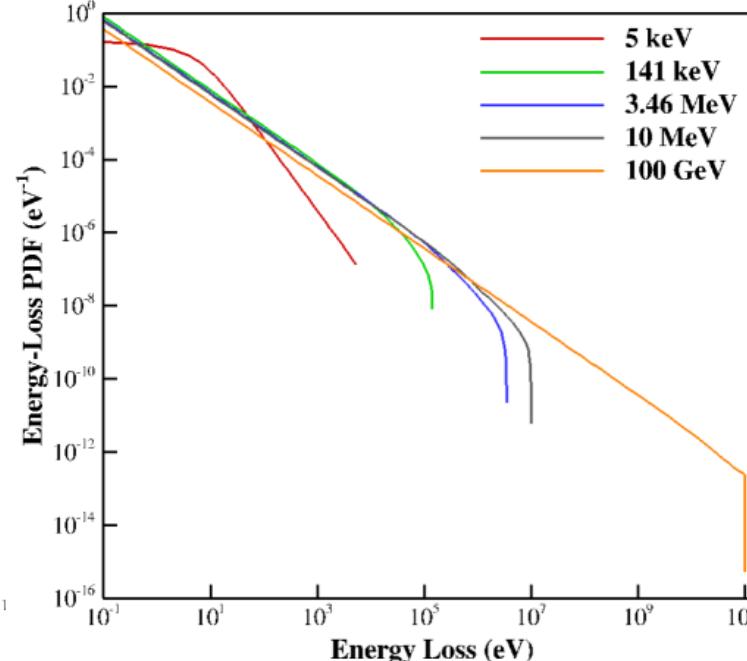


Energy-Loss Distributions

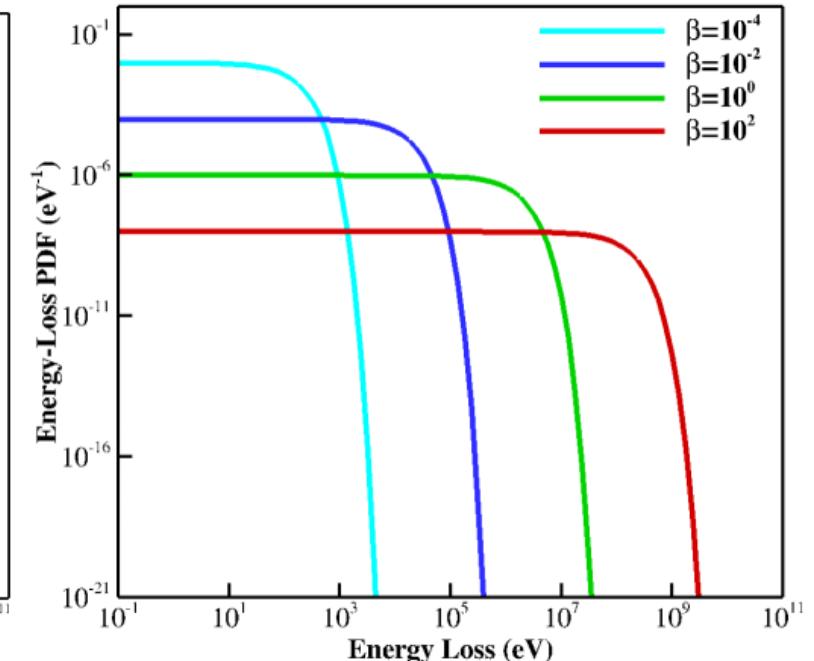
Electro-ionization Energy-Loss



Bremsstrahlung Energy-Loss

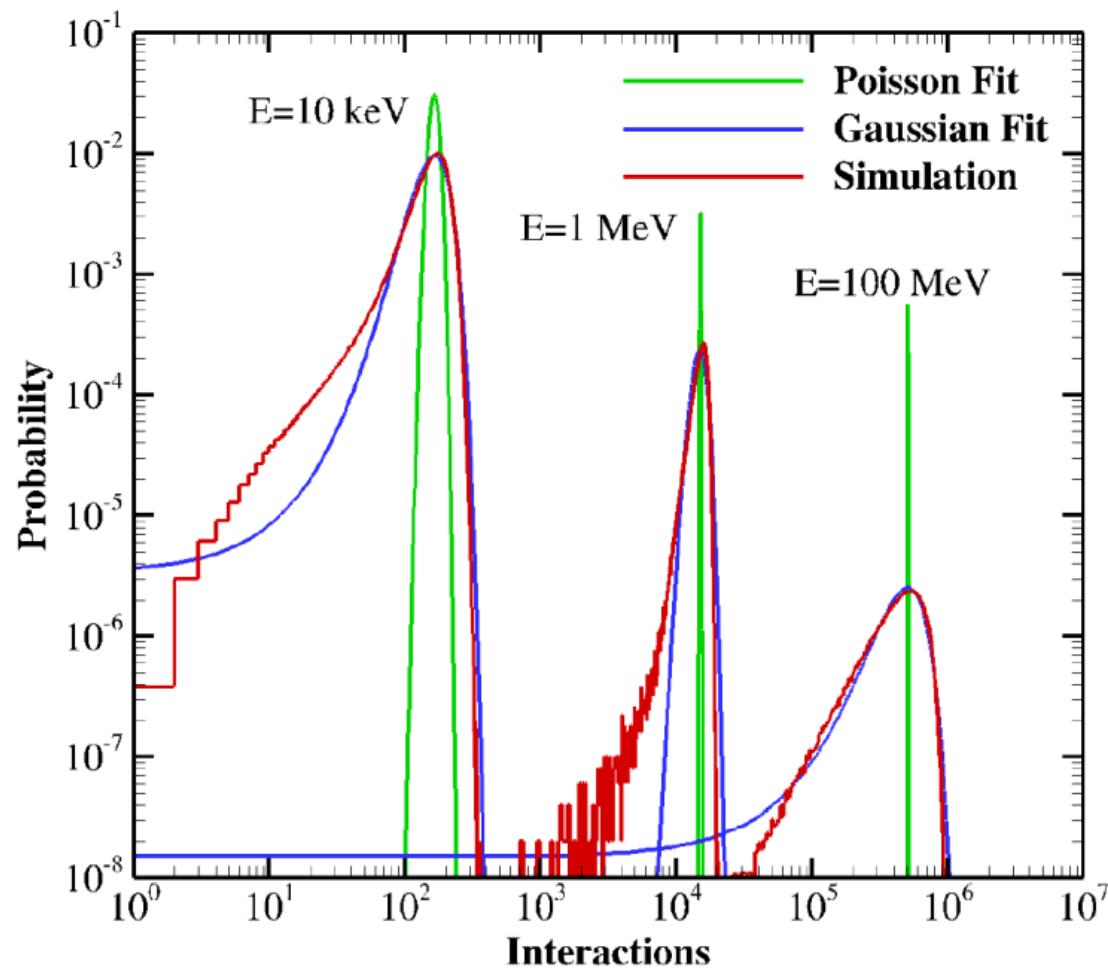


Exponential Energy-Loss

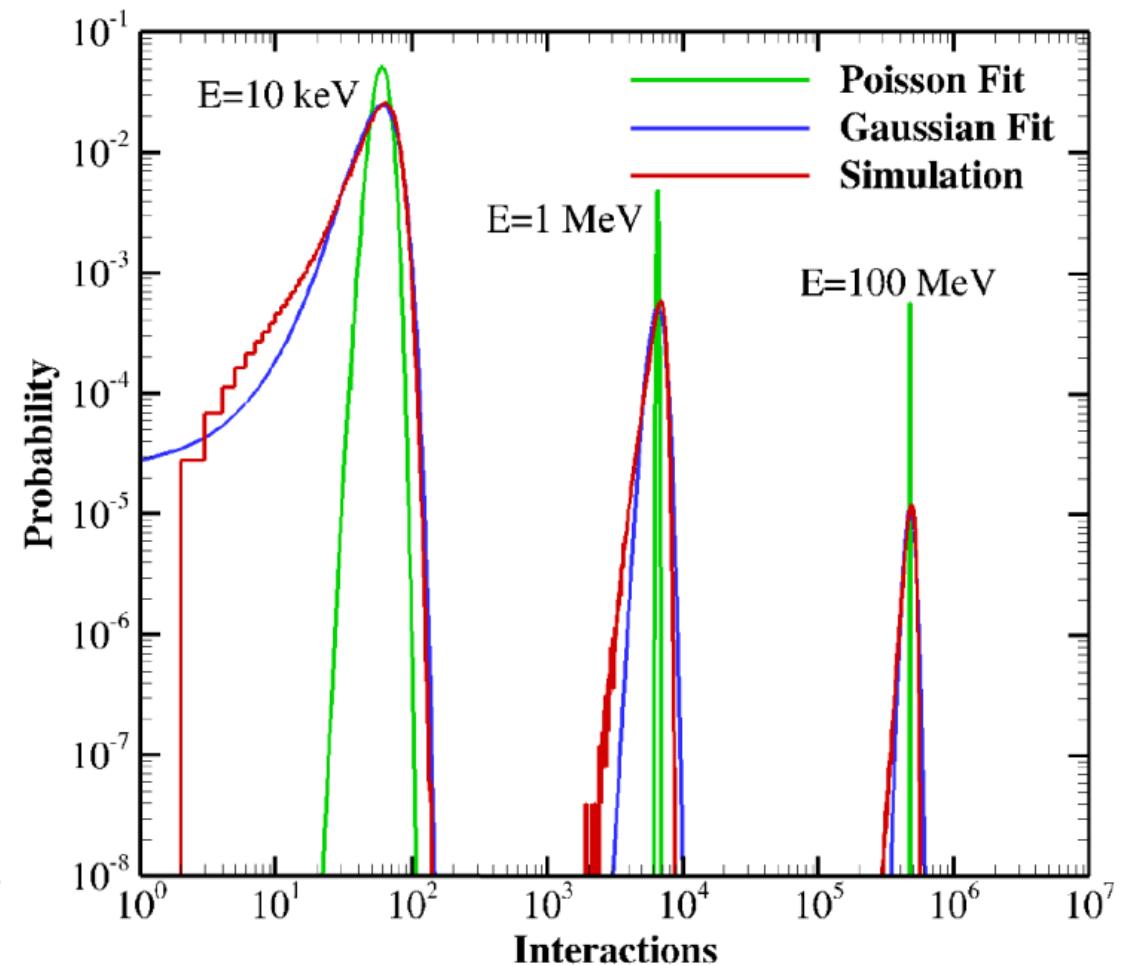


Numerical Results with EEDL Electron Energy-Loss Models

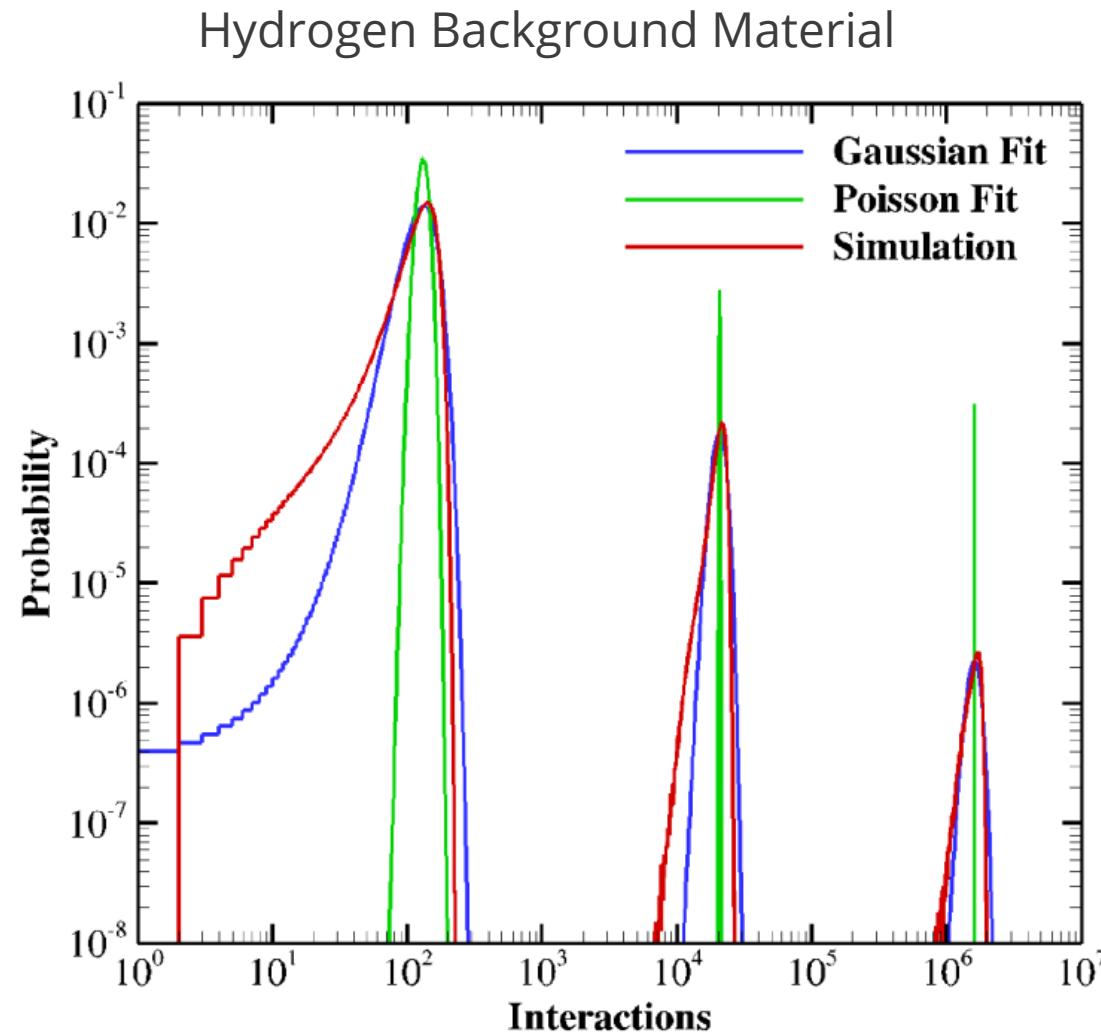
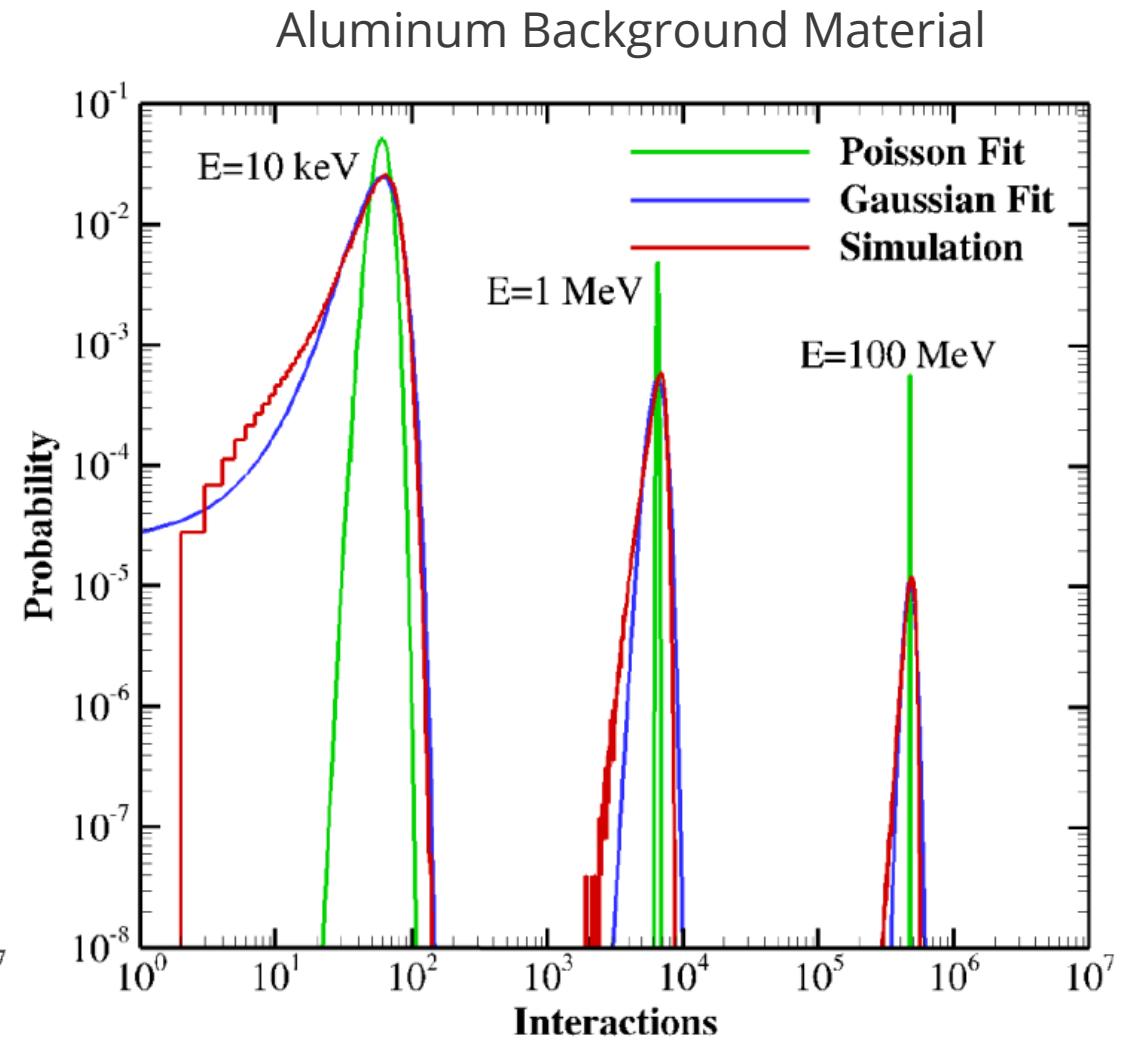
Full Electron Physics



Electro-Ionization Interactions Only

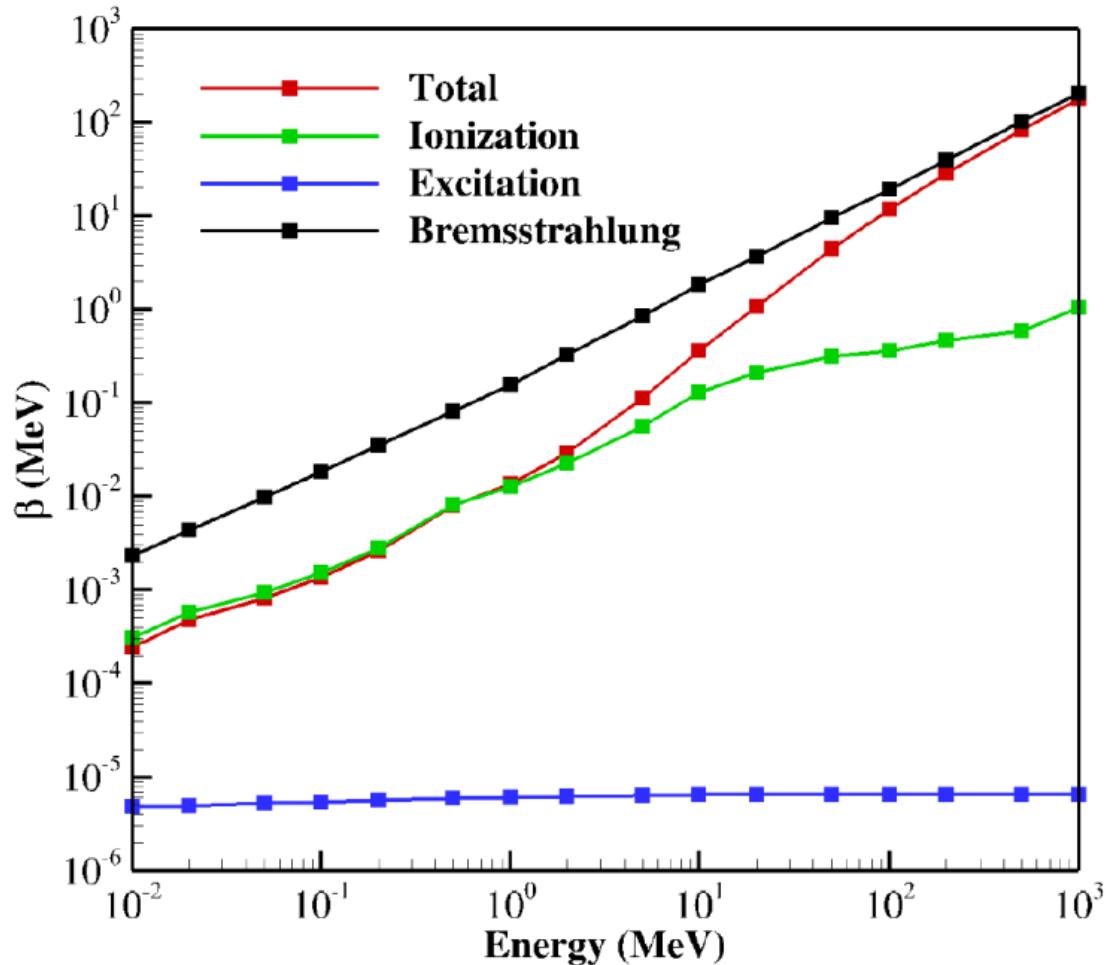
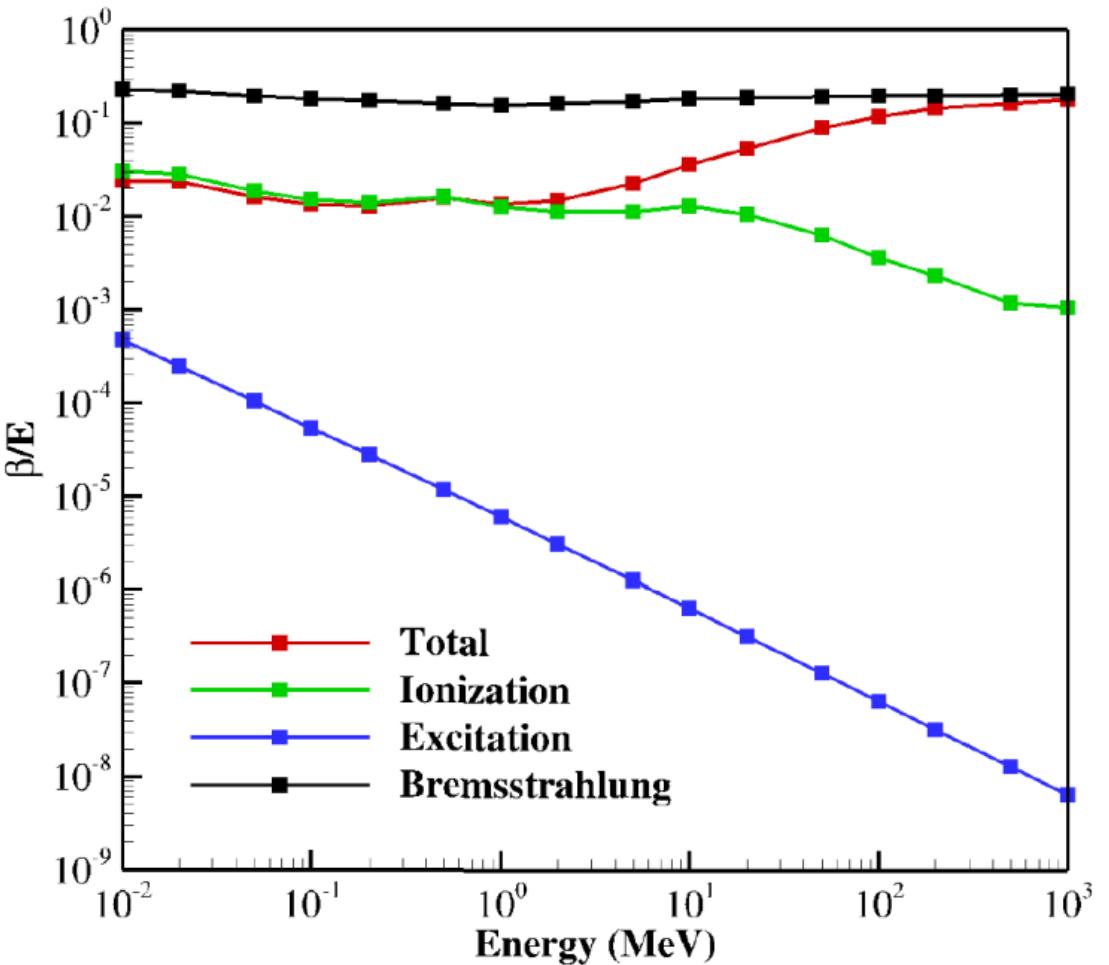


Numerical Results with EEDL Electron Energy-Loss Models



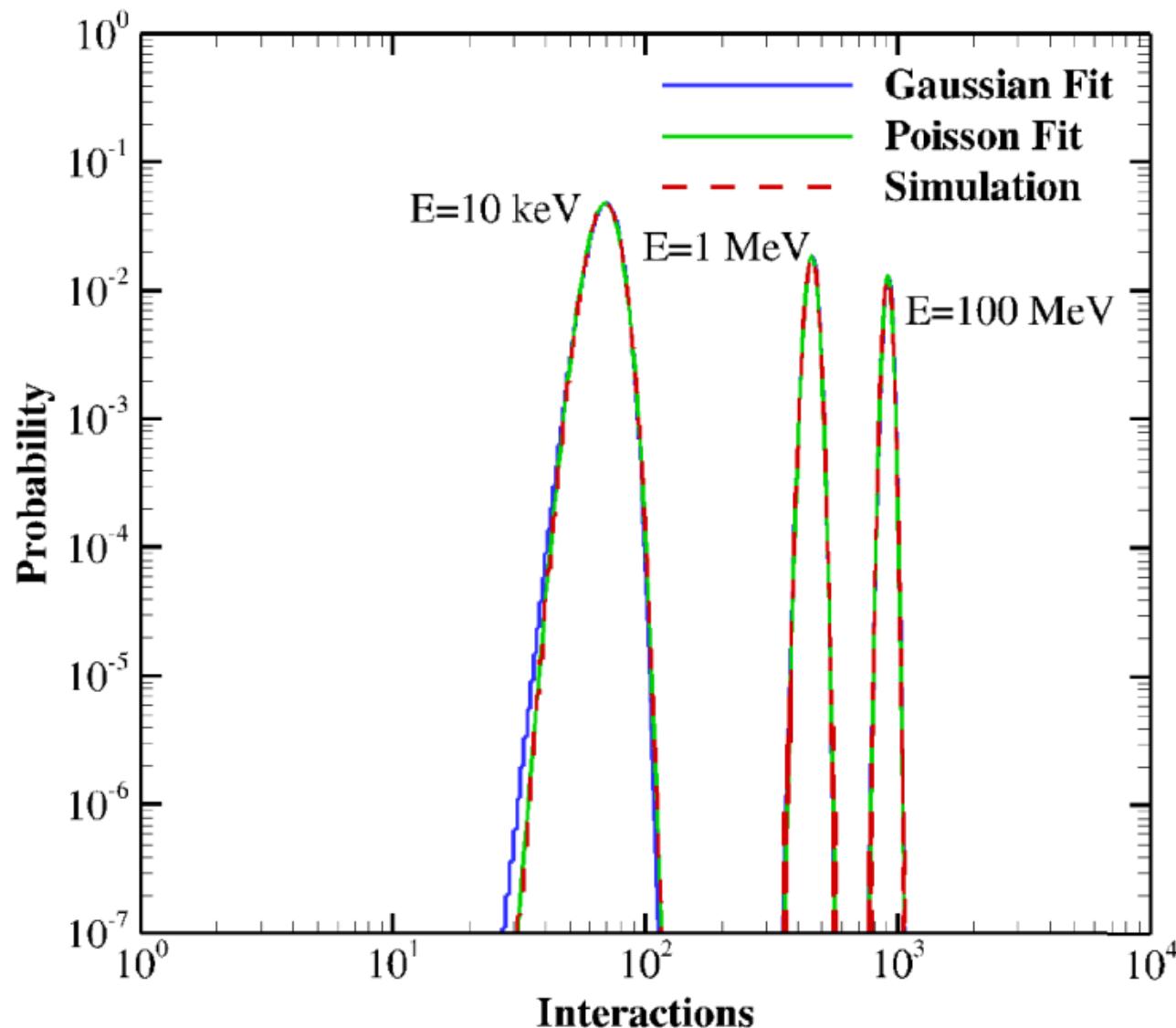
Energy-Loss Parameter from Physics Models

$$\beta = \frac{T}{2S}$$

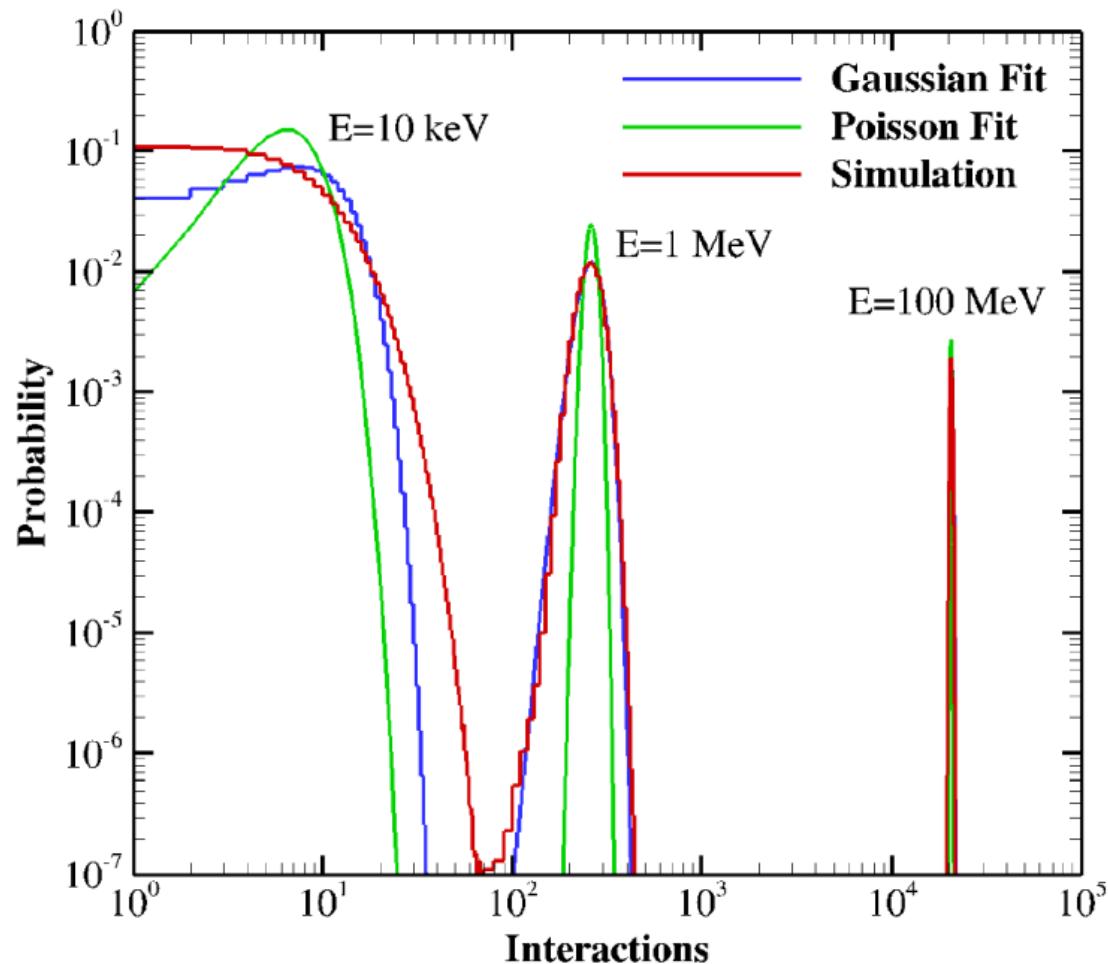


Exponential Energy Loss with Energy-Dependent Parameter

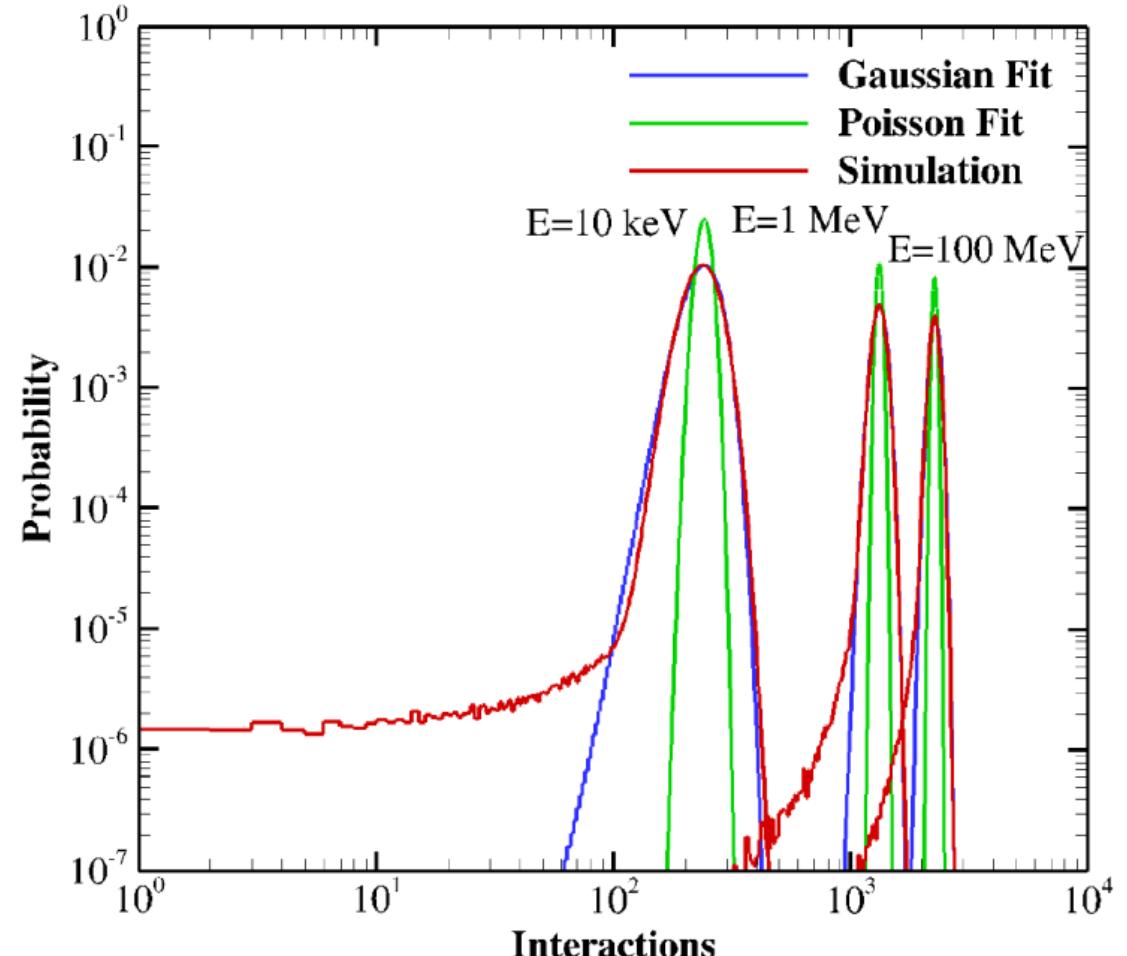
$$\beta = E/100$$



Exponential Energy Loss with Mixed Parameter Values

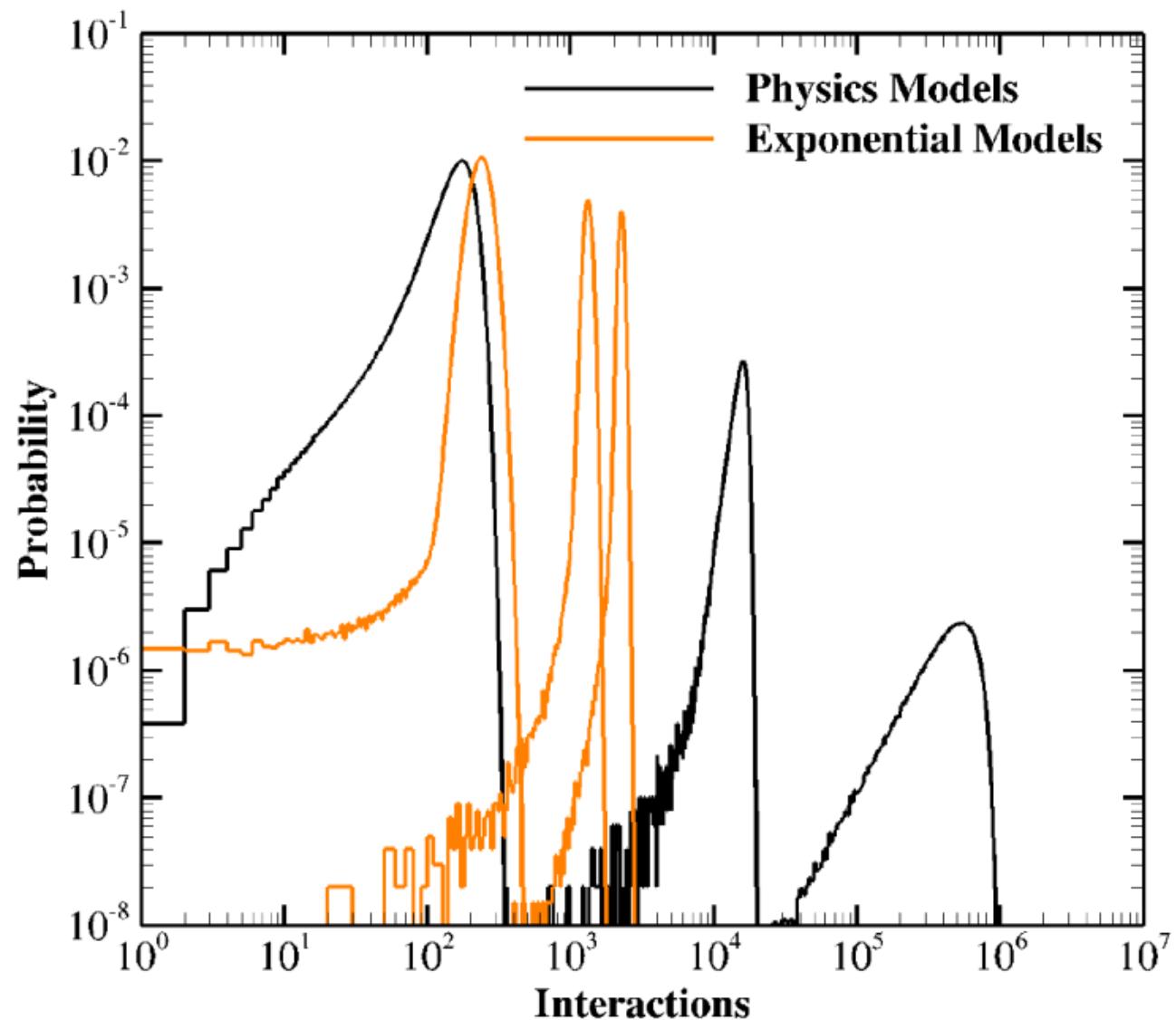


Electron ionization $\beta = 0.01$
 Bremsstrahlung $\beta = 0.1$
 Excitation $\beta = 0.00001$



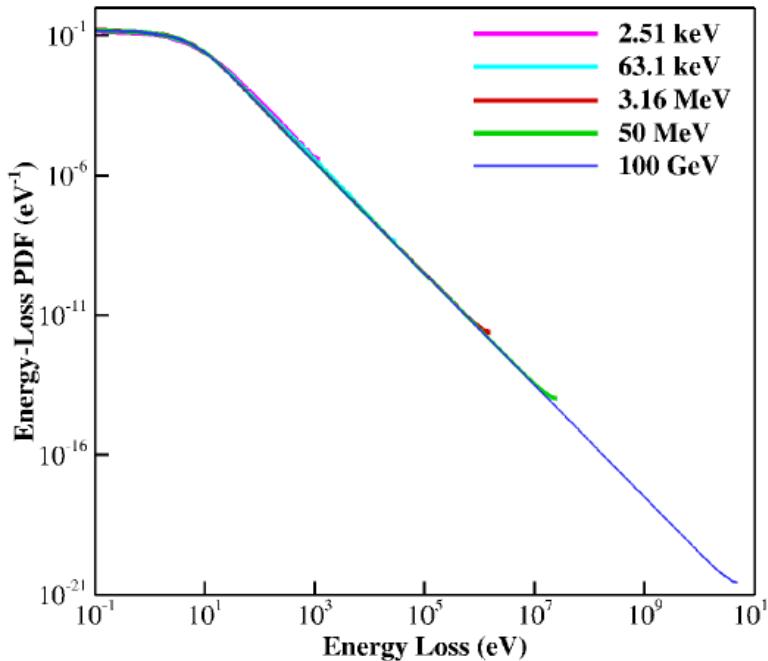
Electron ionization $\beta = E/100$
 Bremsstrahlung $\beta = E/5$
 Excitation $\beta = E/10000$

Energy-Dependent Exponentials versus Physics Models

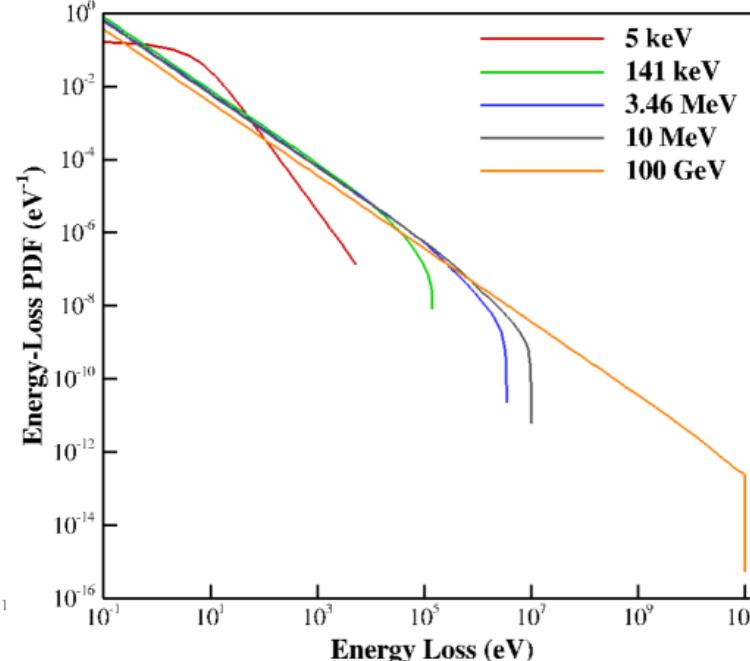


Energy-Loss Distributions

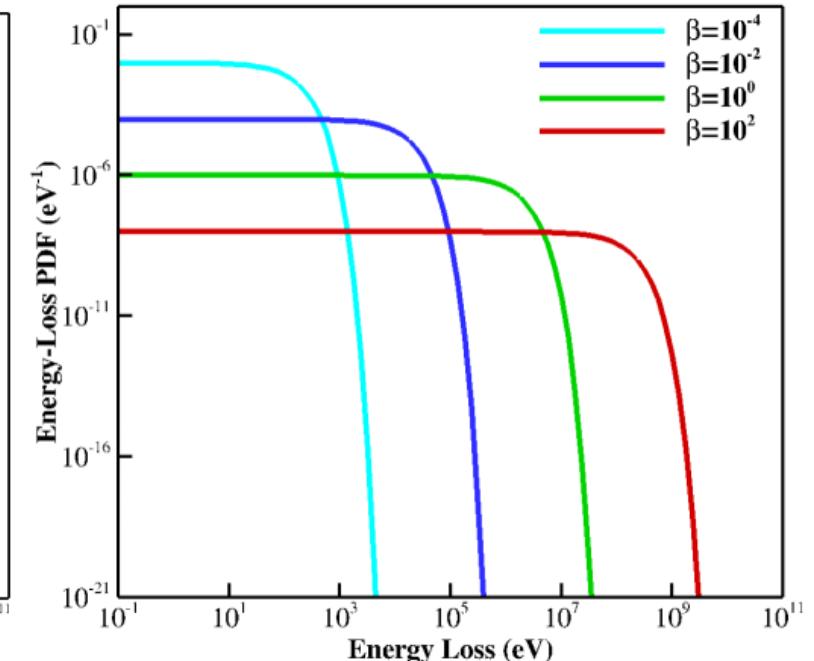
Electro-ionization Energy-Loss



Bremsstrahlung Energy-Loss



Exponential Energy-Loss



Conclusions

Starting from a backward Master equation, the analytical solution for collision-number probability distribution was derived based on an exponential energy-loss kernel.

The analytical result was shown to agree with Monte Carlo simulation results.

Comparisons were made with simulation results obtained using electron scattering models.

An analytical solution with a power-law energy-loss term or multiple exponential energy-loss terms could be more representative of the true physics of electrons.

$$P_n(E) = \frac{1}{\Gamma(n)} \left[\ln \frac{1}{\tilde{f}_s(E)} \right]^{n-1} e^{-\ln \frac{1}{\tilde{f}_s(E)}}$$

