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Outline

Derivation of Analytical Probability Distributions

• Exponential energy-loss model

Numerical Probability Distributions

• Exponential energy-loss model

• Physics models

• Physics-informed exponential energy-loss models

Possible approaches for analytical models that better represent the physics
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Backward Master Equation for Collision-Number Probability

We begin with a backward master equation for the probability that a particle will 
experience n collisions in slowing down from energy E to below energy Eu.  

with Pn(E) = 0 for n ≤ 0.

The particle necessarily undergoes at least one interaction.  It may undergo only one 
collision with the following probability:

This energy-loss distribution is related to the electron-electron differential scattering 
cross section.
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Discrete Transform to the Probability Generating Function

We use the discrete transform

to convert the infinite set of coupled integral equations into a single integral equation, 
the probability generating function:
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Analytical solution with exponential energy-loss scattering

To obtain an analytical solution for the pdf, we model the peaked differential cross 
section as an exponential function

For Eu << E, the energy-loss distribution terms are given approximately, to exponentially 
small terms, by
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Collision number distribution is almost Poisson for an 
exponential energy-loss distribution.

Since z appears only parametrically in the probability generating function

this equation can be solved by converting it to a differential equation.

 

Pn(E) is recovered by expanding this solution for G in a series in z to obtain

This is almost a Poisson distribution with parameter 
but with index n-1 instead of n.
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Summary of the Collision Number Distribution 
with Exponential Energy-Loss Scattering

Again, the solution is

The mean and variance are

Neglecting exponentially small terms, the model parameters can be related to the 
stopping power, S, and energy-loss straggling coefficient, T.
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Numerical Results with Exponential Energy Loss8



Energy-Loss Distributions9

Electro-ionization Energy-Loss Bremsstrahlung Energy-Loss Exponential Energy-Loss



Numerical Results with EEDL Electron Energy-Loss Models10

Electro-Ionization Interactions OnlyFull Electron Physics



Numerical Results with EEDL Electron Energy-Loss Models

Aluminum Background MaterialHydrogen Background Material



Energy-Loss Parameter from Physics Models12



Exponential Energy Loss with Energy-Dependent Parameter13



Exponential Energy Loss with Mixed Parameter Values14

Electron ionization β = 0.01
Bremsstrahlung β = 0.1
Excitation β = 0.00001

Electron ionization β = E/100
Bremsstrahlung β = E/5
Excitation β = E/10000



Energy-Dependent Exponentials versus Physics Models15



Energy-Loss Distributions16

Electro-ionization Energy-Loss Bremsstrahlung Energy-Loss Exponential Energy-Loss



Conclusions

Starting from a backward Master equation, the analytical 
solution for collision-number probability distribution was 
derived based on an exponential energy-loss kernel.

The analytical result was shown to agree with Monte Carlo 
simulation results.

Comparisons were made with simulation results obtained 
using electron scattering models.

An analytical solution with a power-law energy-loss term or 
multiple exponential energy-loss terms could be more 
representative of the true physics of electrons.
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