

IEEE Global Humanitarian Technology Conference (GHTC)

Technology for the Benefit of Humanity | October 19-23, 2022

A Prototype Small Utility-Scale Joint Vertical Axis Wind Turbine and Solar Energy System (VAWT/SES) to Provide Water Pumping in Remote Areas of Uganda

Topic Session FR-EN4: Energy 4: Energy Conversion and Storage for Humanitarian Applications

Presenter: Gabriel Giancarlo Gurulé

Co-Authors: Dr. Jacquelynne Hernández, Samuel Roberts-Baca

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND#:

Gabriel Giancarlo Gurulé

Samuel Roberts-Baca

Dr. Jacquelynne Hernández

A Prototype Small Utility-Scale Joint Vertical Axis Wind Turbine and Solar Energy System (VAWT/SES) to Provide Water Pumping in Remote Areas of Uganda

Dr. Jacquelynne Hernández

Samuel Roberts-Baca

Gabriel Giancarlo Gurulé

Discussion Outline

I. Introduction

II. Literature Review

III. Methodology

IV. Results and Discussion

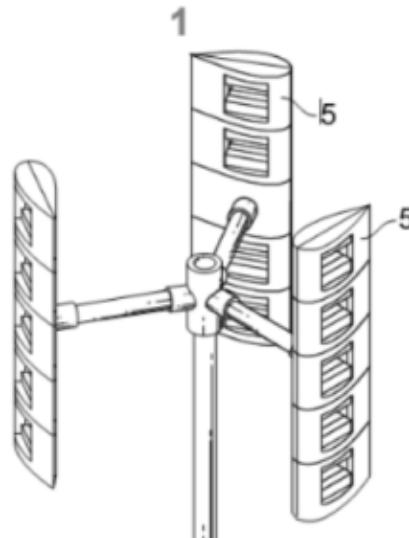
V. Conclusions and Future Work

Introduction

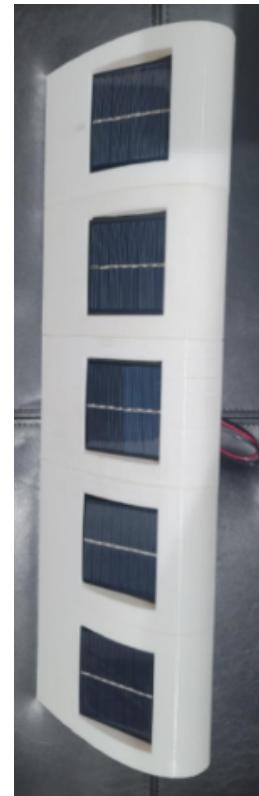
- ▶ Uganda has overcome many internal issues and seeks to move forward to improve the quality of life for its citizens and to develop strong commercial enterprises globally.
- ▶ To have a healthy economy, a country needs clean water, access to energy, and a healthy work force.

https://waterjournalistsafrica.files.wordpress.com/2014/04/dsc_2795.jpg

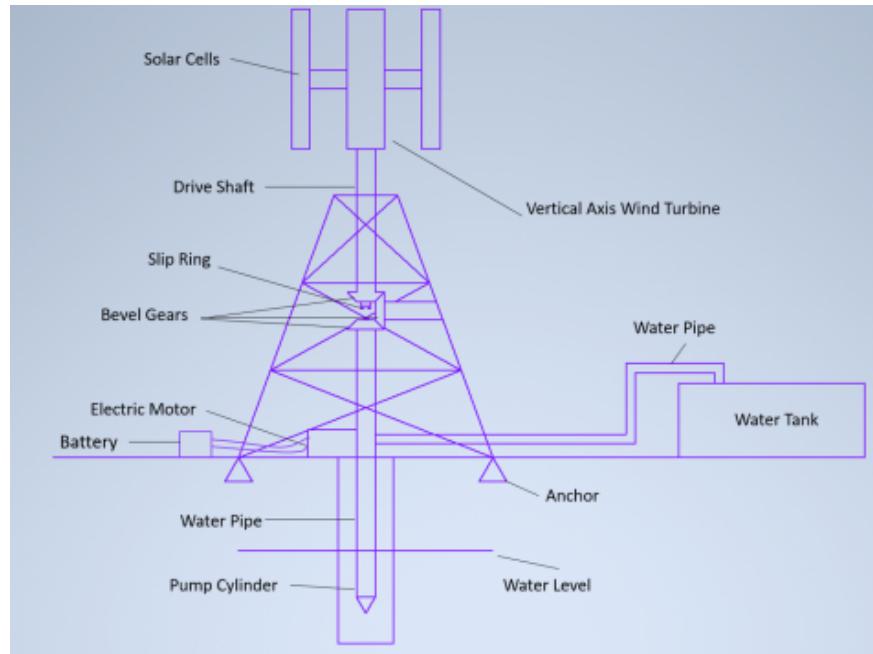
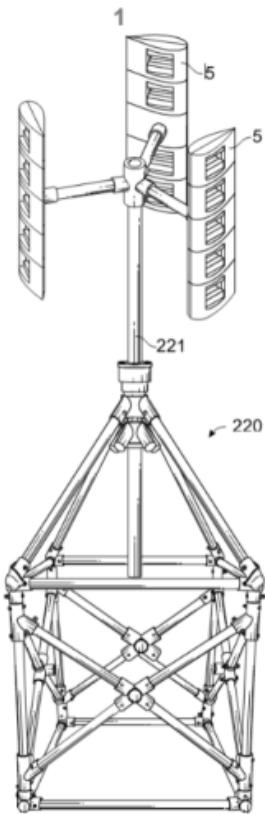
Problem and Thesis Statement


- ▶ In Uganda alone nearly 28 million people lack access to safe and clean drinking water. <https://www.waterschool.com/the-problem/> [Accessed April 2021].
- ▶ The authors of this paper propose a VAWT/SES combined with water pumping capabilities to serve as the basis for building a stronger economy in rural Uganda.

<https://mapio.net/images-p/2303173.jpg>


Description of VAWT/SES

- ▶ Small – Medium Scale Vertical Axis Wind Turbines that serve as kinetic solar structures can reduce space for a solar array and combine the two resource collection devices into one structure.
- ▶ Wind Power is the main driver of the water pump system with energy generated by the solar cells serving as a backup.
- ▶ The solar cells are connected to a slip ring inside a bevel gear system that allows the flow of energy freely through the rotating wires.

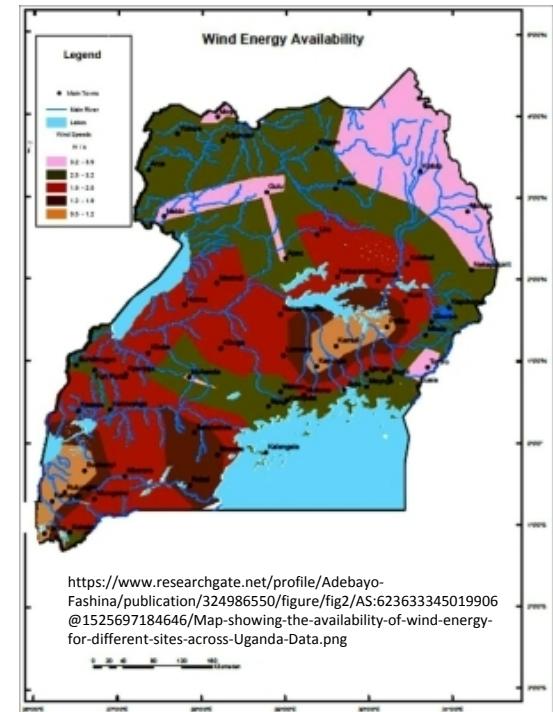
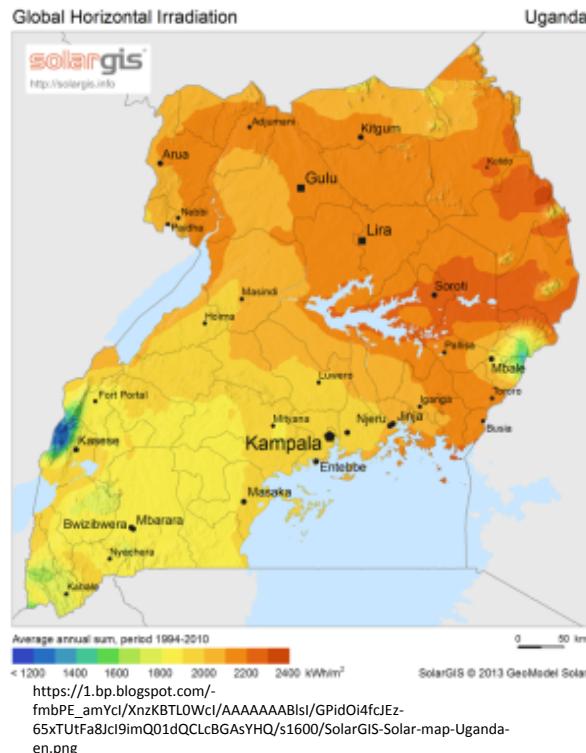



VAWT/SES Construction

- ▶ The current design of the VAWT/SES consists of 10 3d printed parts that are assembled.
- ▶ Each module has channels for wiring and slots for either solar cells or flexible solar panels.

Composite VAWT/SES System

Literature Review



- I. Kumar – outlined wind energy systems, trends, innovations, and global applications
- II. Jamaludin – provided analysis on wind speed and water flow from pumps for VAWT systems in Indonesian agricultural regions (comparable to our proposal for Uganda).
- III. Mohamed – explored performances of a photovoltaic (PV) water pumping system (Intellectual property associated with this project is a more complex system).
- IV. Farah - elaborated on the mechanical and physical properties that affect PLA's stability, processibility, degradation, aging, weatherization, sterilization, etc.
- V. Gurulé - U.S. Patent Application No. 17/103,440 - Power Generator System with Modular Blades (This is the utility patent for the VAWT/SES)

Methodology Background

- I. Uganda Primary Renewable Energy Viability
- II. VAWT/SES Modifications Needed
- III. VAWT/SES Application for Water Pumping

Uganda Primary Renewable Energy Viability

- ▶ Uganda has 12,700 MW of renewable energy potential
- ▶ 4500 MW hydropower
- ▶ 1500 MW geothermal
- ▶ 1700 biomass
- ▶ 5000 MW solar

VAWT/SES Calculations

1. Sweep area of the turbine

$$\text{For HAWT: } A = \pi L^2$$

$$\text{For VAWT: } A = D * H$$

2. Calculate the available wind power

$$P_{wind} = 0.5 * \rho * v * A$$

3. Find the Efficiency of the turbine

$$\mu = (1 - km) * (1 - ke) * (1 - ke,t) * (1 - kt) * (1 - kw) * Cp$$

4. Calculate the output power

$$P_{output} = \mu * P_{wind}$$

$$\tau = (P_{output}/RPM) * (30/\pi)$$

$$\text{For HAWT: } RPM = 60 * v * T_{SR} / (\tau * 2 * L)$$

$$\text{For VAWT: } RPM = 60 * v * T_{SR} / (\tau * D)$$

VAWT/SES Application for Water Pumping

- ▶ $325,851 \text{ gallons} * 8.345 \text{ (lbs/gallons)} = 2.7M \text{ lbs}$
- ▶ $2,719,226(\text{ft} - \text{lb})/2,655,220(\text{ft} - \text{lb})/\text{kW h}$
- ▶ Several studies have been conducted to calculate the output of wind water-pumping systems. Measurements of windmill rotation, wind speed, and the amount of water produced show the average windmill of speed 5.6 RPM, wind velocity of 3.6 m/s and water volume of 2034.7 cm³ for one minute (or 2.0347 liters/minute) with 89% efficiency [22].

The Data

- ▶ The data analyzed includes the averaged values from 2009-2019 of both Gulu and Soroti's monthly temperatures, irradiance, and wind speed.
- ▶ These predictor variables were used in conjunction with the VAWT performance equations to determine how much water would be theoretically extracted in ft-lbs/hour, as well how much solar and wind power in kWh would be required to deliver that hourly output.

The Analytical Approach

- ▶ In order to evaluate the effectiveness of the pump, a sample of averaged monthly temperatures, irradiance, and wind speeds were used as predictor variables in a multiple linear regression (MLR) equation analysis.
- ▶ The output variable was the amount of water that could be extracted in ft-lbs/hour, assuming 40% efficiency of the VAWT system.
- ▶ The multiple linear regression analysis was conducted in Rscript.
- ▶ For the MLR, we assumed a normal distribution and homoskedasticity of the data.
- ▶ The result of this approach was to retrieve descriptive statistics for the relationship between variables, especially co-variance.

Results and Discussion

- I. Calculations of Output Power, Torque and RPM's according to Wind Speed
- II. Energy and Cost Requirements to Lift or Pressurize Water
- III. Multiple Linear Regression Equation Results
- IV. Multiple Linear Regression Equation Q-Q Plot
- V. Multiple Linear Regression Equation Fit

Calculations of Output Power, Torque and RPM's according to Wind Speed

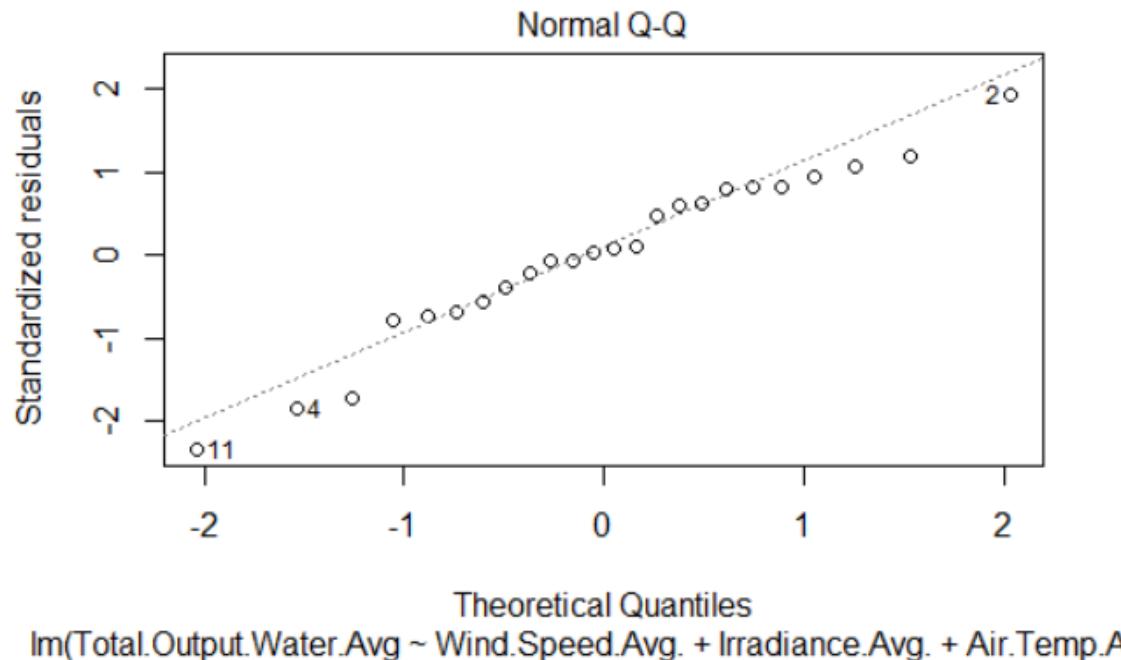
- ▶ The table indicates results of improving output power, torque, and RPMs, where the fixed parameters for the VAWT/SES include turbine efficiency, mechanical loss, and the swept area.
- ▶ However, the winds were varied according to the speed in northwest Uganda from the calm to the windiest conditions.
- ▶ There is a linear relationship between the output power, the wind, and the RPMs for the VAWT/SES.

Parameter	Calmest	Average	Windiest
VAWT			
Diameter	3 ft	3 ft	3 ft
Height	5ft	5ft	5ft
Windspeed	4.3 mph	5.6 mph	6.8 mph
Available Wind Power	0.006 kW	0.013 kW	0.024 kW
Turbine Efficiency	30%	30%	30%
Wake Losses	5%	5%	5%
Output Power (Before Loss)	0.002kW	0.004 kW	0.007 kW
LOSSES			
Mechanical	0.20%	0.20%	0.20%
Electrical Losses on Turbine	1.50%	1.50%	1.50%
Electrical Losses - Transmission	5%	5%	5%
Time out of Order	3%	3%	3%
EXPECTED OUTPUT POWER			
Real Efficiency	25.82%	25.82%	25.82%
Output Power with Losses	0.00%	0.00%	0.0065
TORQUE			
Tip Speed Ratio	6	6	6
Revolutions per Minute	240.9 RPM	313.7 RPM	380.95 RPM
Torque	0.0605 Nm	0.1052 Nm	0.1552 Nm

Energy and Cost Requirements to Lift or Pressurize Water

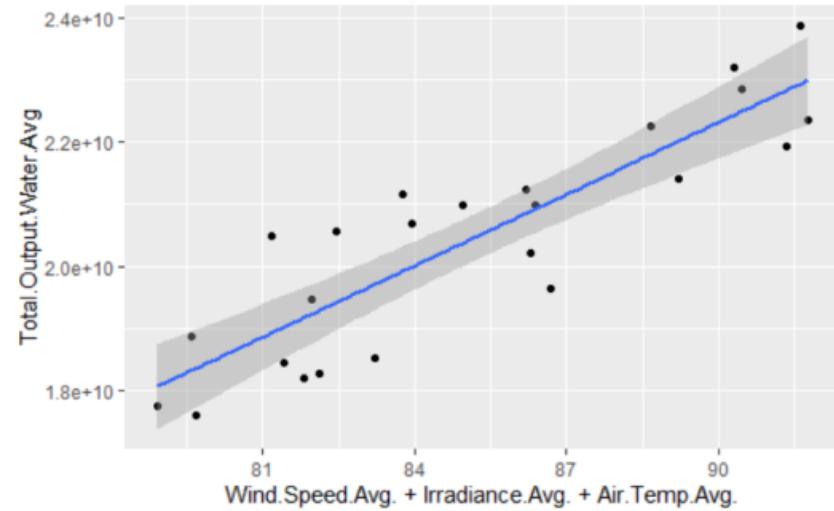
- ▶ The table shows the energy and cost requirements to lift or depressurize water. It includes efficiency, acre-foot energy conversion, and cost.
- ▶ We used calculations that would indicate an overall 100% efficiency of the plant, that is an ideal condition and not something to anticipate in a real system.
- ▶ The maximum efficiency one can anticipate from VAWT is 55.9%, which is roughly \$0.17/kWh.
- ▶ In our system we will assume the lowest overall plant efficiency is \$0.25/kWh.

Overall Plant Efficiency (%)	Energy to lift one acre-foot one foot in elevation (kWh)	Cost to lift one acre-foot one foot in elevation (\$0.10/kWh)
100	1.02	\$0.10
75	1.37	0.137
70	1.46	0.146
65	1.58	0.158
60	1.71	0.171
55	1.86	0.186
50	2.05	0.205
45	2.28	0.228
40	2.56	0.256


Multiple Linear Regression Equation Results

- ▶ The results of the multiple linear regression analysis were as follows: β_0 was -9.95e+02, β_1 was 2.059e+04, β_2 3.385e+09, β_3 was -3.160e+02.
- ▶ The associated p-values were as follows: 0.961, 4.17e-13, < 2e-16, and 0.311 respectively.

Coefficients:


	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-9.295e+02	1.861e+04	-0.05	0.961	
Wind.Speed.Avg.	2.059e+04	1.249e+03	16.48	4.17e-13	***
Irradiance.Avg.	3.385e+09	1.504e+03	2250913.86	< 2e-16	***
Air.Temp.Avg.	-3.160e+02	3.039e+02	-1.04	0.311	

Multiple Linear Regression Equation Q-Q Plot

Multiple Linear Regression Equation Fit

- ▶ The correlation between the average temperature and irradiance for the North and Eastern region was 82.866%.

Discussion

- ▶ The current prototype we propose for rural areas is untried in the field, but we have made the following observations which are consistent with other in-field tests.
- ▶ Using a vertical axis wind turbine resolves the redirection of the turbine torque from the horizontal to the vertical axis that creates large inefficiencies in the HAWT.
- ▶ The result is that a VAWT set up creates a basic shaft connection between the turbine and the pump.
- ▶ Combining the VAWT water pump system with a high-pressure (HP-VAWP) drip irrigation system can lead, with proper optimization, to two to three times higher efficiency than traditional windpumps.

Discussion Continued

- ▶ The strong correlation between temperature and irradiance of 82.866% show that the North and Eastern region of Uganda have the proper solar regime so that the VAWT has redundancy to work properly.
- ▶ The wind and the irradiance is effective in influencing the output of ft-lb/hour output.
- ▶ The results are consistent with the following solar output variation of 20% (from 4.5 to 5.5 W/m²); 3.7 m/s to 6m/sec require to operate the turbine; and water pumped at the rate of 3748.54 ft-lbs to 42314.72 ft-lbs per hour.

Conclusion and Future Work

- ▶ The driving force for the use of a windmill water pump is the need for safe and drinkable water in developing countries and in areas where there is a lack of electricity and an electrical grid.
- ▶ The prototype windmill with the blades spinning in a brisk breeze of 15 to 20 MPH will pump on average three gallons per minute or 1500 gallons per day whenever the wind blows for 35% of the day.
- ▶ Future studies can be focused on the rigidity of the 3D printed turbine and installation methods.
- ▶ Additionally, energy storage capability can be added to store excess power generated for later or other uses.