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3 | Stokes Equations

~V*i+Vp=f
—V-u=0

Simplification of Navier-Stokes when advective forces are negligible (or viscosities are large)

HH - mmmun
Dirichlet BCs §+ :::;:**‘%
velocities = 0 BEE
on exterior boundary -~
tangent velocity of 1 - - il
HHH S 7if"77 . .
on circle - i}\ e i computed horizontal velocity




4 I Stokes Equations & mixed finite elements

V2 + Vp = f Stable Mixed FE Assembly

— using Taylor-Hood elements
—V-u=0 g ay

Ax = [B 0

P>/ Py

Bases
» quadratic for velocity

e Biguadratic for velocity
 Bilinear for pressure * linear for pressure




s | Sandia interest: MHD (magnetohydrodynamics)

*Fluids & electro-magnetics (Navier-Stokes & Maxwell)

e.g.,
ou 1 1
2 wvu —|7-v|7u+|7p+|7-(——B®B+—||B||21) — 0
ot Ho 2Mg
V-u=20
0B n
— -VX(uXB)+VX —VXB+Vr=0
ot Ho
V-B=0
u: velocity,  p: pressure,
M @ Viscosity, i BT 7 I
B : magnetic induction, é “ Su ou
n : resistivity, “op T op| _ rhs
Mp: magnetic permeability of Y Ji By ||6b
free space - B, Srllor

Sandia often uses standard equal order FEs, but is also interested in mixed FE.

Time = 4.624 -



¢ I Advantages of mixed finite elements

» preserve a property of discrete system (e.g., edge elements to represent cutl operators)

» when greater accuracy needed for some components ‘
i
» satisfy inf-sup or LBB (I.adyzhenskaya—Babuska—Brezzi) condition & avoid stability issues arising in some PDE systems‘

= unique solution to saddle point system that depends continuously on input without artifacts such as

spurious oscillations

Unstable Example

BBTg =0
U, = with periodic BCs ([ —BT) (Uh) _ (}9 )
B 0 Up h

reformulated as 1% order system here o
Schur complement is BB’ q=

stencil B is -1 01

. - )
& discretize with linear nodal FE stencil. 557151 0 2 0 -1 = unstable



Geometric Multigrid

Solve
@ L L L L L L L L L L L L L L L L AO uo — fo
P
R, Approximate PDE on (user supplied) grid
hierarchy
® @ @ @ @ @ L L A u — f‘
R2 })2 1 1 1
® @ @ L A2 u2 — fZ
R, £
’ ’ A; uz3 =1

Develop relaxation methods (approximate solve on a level)
Jacobi, Gauss-Seidel, CG, etc.

Develop grid transfers (e.g. linear interpolation)

Use coarse A;’s to accelerate convergence for A,



Algebraic Multigrid (AMG)

Solve A, uy=f,

e Determine P; & R’s coefs

« Project: A; = R; A P,

Relax AOU0=fo. Set f1 = R1r0
Relax A1U1=f1. Set f2=R2r1
Solve Au,=f, directly.

Set Ug = Ug + P1U1. Relax A0U0=f0

Set u; = uq + P,u;. Relax A1U1=f1



Algebraic MG behavior

* High & low frequencies not available algebraically.

These notions are replaced with || . || 4, or || . || 42

| e lla, of |l ex ”Ai small = low frequency

| ex 14, of Il ex “Ai large = high frequency

Properties of AMG methods

° relaxation smooths errors with high energy (|| ey || 4, large).

° P, must accurately interpolate low energy errors (small || ey [[ 4, ).

— P, must interpolate errors not damped by smoothing;

Note:

[ vl =v" 4v



10
uu uv up

AMG for “co-located” PDE systems

uu uv up
vu v vp
u
uv up u uv up uu uv up uu uv up
W vp N vu W vp vu wovp

pu pv pp pu pv pp amgu pv pp pu pv pp *

o

uu uv up uu uv up

vu W vp vu W vp \
\ pu pv pp pu pv pp /

» Most AMG software is setup in this block way & most PDE systems

> Transform point matrix graph to block matrix graph
» Coarsen block matrix graph
> Determine orid transfer sparsity pattern based on block matrix graph

> Grid transfer coefficients based on point matrix information

*

employing AMG are solved 1in this block way




11 I AMG challenges specific to mixed finite elements

» Cannot apply “co-located” approach to mixed FE system

» Inf-sup stability on coarse level 4;’s ?

» Most AMG methods don’t /7&e¢ 0’s on matrix diagonal

e.g., * smoothed aggregation AMG performs a [diag( A;) ] A; step,
which is not defined when diag( A;) has zeros

e classical AMG theory based on M-matrices, which we are far from

» AMG methods #end to generate interpolation reseznbling linear basis functions

» AMG methods #end to more aggressively coarsen dense rows

= velocities coarsen more rapidly than pressure



12 I Auxiliary matrix & defect correction

Since AMG prefers matrices based on low order discretizations,

consider an auxiliary matrix approach ...

Auxiliary Methods

1) Devise preconditioner for 4, by applying AMG to auxiliary operator 4,

2) Devise preconditioner for 4, by generating AMG components (e.g., &;
or 7;) via algorithms applied to auxiliary operator 4,

Premise: Auxiliary operator is more amenable to AMG ideas than 4,

Not a new idea, e.g. high order discretizations (via defect correction
methods), shifted Laplacians for Helmholtz & H-curl/H-div solvers

[Xu, The Auxiliary space method ..., Computing 56 (1996)]

. Primary or projected matrix

. Special grid transfers: primary <«=p auxiliary

. Auxiliary or projected auxiliary matrix,
grid transfer derived from auxiliary



discretize via Q,/Q;

discretize via «@1




15t Step: investigate idea via GMG

14

discretize via Q,/Q;

discretize via Q,7is0Q,/Q,

GMG hierarchy <<

p-coarsening h-coarsening

': @ & &

modal MG spatial MG
i
h h 2h

Ro =1/ P PO :], A] — Q11:S'0 QZ/@l Stokes discretization # ROA0 Po
P, based on linear interpolation for >0, R, =P, )1 & Ay, ;=R AP, for k>0



5 | Q,/Q, preconditioned via Q,7i5s0Q,/Q,; + GMG

Need MG relaxation procedures

o Inexact Braess-Sarazin

o Additive Vanka

Special saddle point incompressible flow relaxation procedures that employ damping parameters

= Fourier analysis to obtain damping parameters



16 I Inexact Braess-Sarazin Relaxation

Abx = Lg - S‘ [I G_;BTl {gﬂ B [:Z‘

Solve
1 introduces
S0, =BD "rg—o-rp == Solved via weighted Jacobi iteration Jacobi damping
1 factor,
0 :Caj)_l('rﬁ — BTép) Solved via direct computation

where

D = diag(()

S=BD'B*

correction damped via@(i. e, X «x+ wox)



17 ‘ Additive Vanka Relaxation

G BT 5@' Tz
a02=[5 o |57 =17

Np
bz = (VIW; A7 'Vi)r,
1=1
where
Ai=V;AV!

V; = {Global DoF to i*" patch restriction}
W; = {diagonal weighting matrix}

w; = 1/(# patches containing DoF 7))

correction damped via@(i. e, X «x+ wox)

1[pland 2 x 25[u]DoFs




18 I MG parameters

E=(I—-woMyA40)" (I-7(I—Z])A7 Ao) (I — woMo™* 4g)”
Zi=(I—wiM ' A)I - PA;'RA)I —wi M, 41)

Pre/Post relaxation (v1,1v2) Qu/Qi, Ao 2

h-GMG cycles: ~

Solution updates: T, wo and wy h Qyis0Q,/Q1, A

Relaxation for Q,/Q; and Q;250Q5/Q1

— Braess-Sarazin: «,
2h Q1i50Q5/Q1, A2

Use Local Fourier Analysis to find optimal parameters for 2-grid convergence

level / =0 §

level ¢ =1 |

i
level £ =2 |



19 ‘ Q,/Q, preconditioned via Q1750 Q,/Q; + multilevel GMG

Measured GMG w/ FGMRES
. _ _ Uy, Vs, Cycle | pP Pl mP m mP m
Lid Driven Cavity _ 1, 72:7) AArn y [1)7 p20 5 14 12 12
Velocity field, i ' :
? elocity field, U Pressure fleldl, l? o o (1,0,1) 18 W 17 17 13 13 12 12
N\= (1.1.1) V |25 55| 13 33 9 11
T .09 W .08 .08 9 10 8 9
Vv 19 .20 14 14 10 11
~ (1,0,2) .21 W 19 .20 14 14 10 10
\Y (1,1,1) \" 99 63 | 100+ 30 24 17
- Y .29 W 33 .30 18 17 15 15
o FGMRES iterations for Method, (v1,v9,7)
I — BS, (1,1,1) V, (1,0,2)
e \\ DoFs GMG levels V-cycle W-cycle V-cycle W-cycle
7777777777 : | 515 2 10 10 11 11
: 1891 3 10 10 11 11
Backward Facing Step \ N 995 4 1 10 1 1
N 28291 5 12 10 11 11
Q§ 111875 6 13 9 12 11
— 444931 7 14 9 12 11

velocity field stream-plot




20 | Toward AMG for Q750 Q,/Q, preconditioners to Q,/Q;

» Cannot apply “co-located” approach to mixed FE system

» Inf-sup stability on coarse level 4;’s ?

» Most AMG methods don’t /7&¢ 0’s on matrix diagonal

v AMG methods /end to generate interpolation resembling linear basis functions

v Velocities coarsen more rapidly than pressure

wrap smoothers within GMRES to choose

» Fourier analysis not directly applicable to AMG damping parameters (at least good for Vanka).

Could use Chebyshev smoothing;



21 | AMG for Q750 Q,/Q, preconditioner to Q,/Q;

» Cannotapply “co-located” approach to-mixed FF-system

» Inf-sup stability on coarse level 4;,’s ?

» Most AMG-methods-dor’t—/4e—0 s-onmatrix-diagonat

Recall 274 auxiliary approach ...

Devise preconditioner for 4, by generating AMG component (e.g., R, or 7;) via algorithms applied to aux. op. 4,

For only the purpose of generating grid transfer operators apply AMG to

(W)

w
G is (1,1) block of A;  (Q discretization of velocities on refined mesh)
W=BB" or W=A,(pressure Laplacian)

where




2 I GMRES + AMG applied to lid driven cavity Stokes on Quad mesh
Q750 Q,/Q;4

\_\“\.\“3(\)
(€

BG™'B"q = 1Q,q

level A1
0 ~1/5
1 157
2 .003
3 ~0

Algo. Details

pressure: aggregation uses 4, interp coefficients via Emin-AMG(5 57) 19-10|
velocity: aggregation uses G , interp coefficients via SA-AMG (G )

/1max

1.
.95
.69
.38

-

-64,

Q2/Q;

\\\_\—_-§—\~_‘—————————_
\

)

NE.. ],

NEx=25.

NEx=512,
NEx=600,

30 40 50 60
tv./#p = [4.0, 2.1]
ty /#p = [4.0, 2.1, 0.7]
ty./#p = [4.0, 2.2, 0.7]
ty /#p = [4.0, 2.2, 0.7]
o JHp = [4.0,22,0.7, 3]
tv. /o = [4.0,2.2,0.7, 3]

10—1_

10—3_

10—5_

10—7_

10—9_

10—11_

100_

10—2_

10—4_

10—6_

10—8_

V(2,2) cycle, 2 its of GMRES(Vanka with w = .77 (left) or .35 (right) )

0 5 10 15 20 25 30
|
Different
aggregation
scheme for
coarsening
0 5 10 15 20 25



FGMRES(AMG(PP,iso P,/P;) ): Triangular Element

e
e\\“\\

Q(

1072 -
1074 -
1076 -
1078 -

10—10_

standard aggregates

0 10
NEx=32,
NEx=64,

Algo. Details

pressure: aggregation uses 4,, interp coefficients via Emin-AMG(5 57)

velocity: aggregation uses G , interp coefficients via SA-AMG (G )

NEx=128,
NEx=256,
NEx=512,
NEx=600,

20 30
Hv/Hp =
Hv, /Hp =
Hv /Hp =
Hv /Hp =
Hv/Hp =
Hv/Hp =

40 50 60
(4.0, 3.5]

[4.0, 3.8, 3.0]
4.0, 3.9, 3.3]
4.0, 4.0, 3.3, 2.3]
4.0, 4.0, 3.3, 2.3]
[4.0, 4.0, 3.3, 2.4]

V(2,2) cycle, Vanka relaxation

10—1_

different aggregation
schemes

N

10—3_

10—5_

10—7-

10—9_

10—11_

ideal aggregates

0
NEx=32,
NEx=64,

NEx=128,
NEx=256,
NEx=512,

10
Hv/Hp =
Hv/Hp =
Hv /Hp =
Hv /Hp =
Hv /Hp =

Hv / Hp =

20

(4.0, 4.0]

4.0, 3.8, 3.5]

4.0, 4.0, 3.7]

4.0, 4.0, 3.9, 3.6]
[4.0, 4.0, 4.0, 4.0, 3.4]
[4.0, 4.0, 4.0, 3.8, 3.5]



24 | FGMRES(AMG(P,iso IP,/P,): best unstructured aggregation results

e((‘! 100
e

-2
50(20\"36 ?
A\ 1041

residual

10—10 i

10—12 i

0 10 20 30
iteration
—— DoFs=4442,mg(lvls=2) —— DoFs=132469,mg(lvls=3)
— DoFs=12655,mg(lvls=2) —_— DoFs=214256,mg(lvls=3) Sample aggregates
—— DoFs=26720,mg(lvls=2) —— DoFs=418577,mg(lvls=3)
—— DoFs=105637,mg(lvls=3) —— DoFs=1164451,mg(lvls=4)

Algo. Details
pressure: aggregation uses 4,, interp coefficients via SA-AMG(5 B7), evolution strength measure (tuned)

velocity: aggregation uses G , interp coefficients via Emin-AMG (G ) , sym. evolution strength measure (tuned)
V(2,2) cycle, Vanka with w = .29




5 | Conclusion

» Direct application of AMG to Q,/Q; is problematic

" Loss of mesh independent convergence

» Use of Q1i50Q,/Q; system to precondition Q,/Q; formulation facilitates AMG use

" Not perfect, but much closer to mesh independence

» Some issues remain with applying AMG to Q750 Q,/Q; system

» Careful examination of aggregation algorithms may help improve scalability

= Should aggregation of pressure dofs & velocity dofs be correlated?

> Inf-sup guarantees would be nice on coarse grids ...



