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• Stokes Equations & mixed finite elements
• Inf-sup stability

• AMG: scalar PDEs → PDE systems

• AMG challenges for mixed FE discretizations

• Defect correction & auxiliary preconditioning methods

• A geometric MG preconditioner for ℚ2/ℚ1 Stokes
• ℚ1iso ℚ2/ℚ1 discretization 

• AMG for ℚ2/ℚ1 QStokes
• aggregation & inf-sup stability?
• guarantees?

• Conclusions
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Stokes Equations3

Simplification of Navier-Stokes when advective forces are negligible (or viscosities are large) 

Dirichlet BCs

velocities = 0
on exterior boundary

tangent velocity of 1
on circle computed horizontal velocity 



Stokes Equations & mixed finite elements4
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Sandia interest: MHD (magnetohydrodynamics)

•Fluids & electro-magnetics (Navier-Stokes & Maxwell)

e.g., 
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Sandia often uses standard equal order FEs, but is also interested in mixed FE. 

+-
u



Advantages of mixed finite elements

Øwhen greater accuracy needed for some components

Ø preserve a property of  discrete system (e.g., edge  elements to represent curl operators)

Ø satisfy inf-sup or LBB (Ladyzhenskaya–Babuška–Brezzi) condition & avoid stability issues arising in some PDE systems

⇒ unique solution to saddle point system  that depends continuously on input without artifacts such as 
spurious oscillations

uxx =	f			with periodic BCs

reformulated as 1st order system

ux =	v				&. vx =	f

& discretize with linear nodal FE

6

𝐼 −𝐵"
𝐵 0

𝑣(
𝑢( = 0

𝑓(

Schur complement is  BBT

stencil  B is       -1  0  1  
stencil  B	BT is -1  0  2  0  -1

BBT	q	=	0

where q	=

⇒ unstable 

Unstable Example



Geometric Multigrid

A1 u1 = f1 

A2 u2 = f2
A3 u3 = f3

A0 u0 = f0  

Solve

Approximate PDE on (user supplied) grid 
hierarchy

Use coarse Ak’s to accelerate convergence for A0

Develop relaxation methods (approximate solve on a level)
Jacobi, Gauss-Seidel, CG, etc.

R1

R2

R3

P1

P2

P3

Develop grid transfers (e.g. linear interpolation)
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Algebraic Multigrid (AMG)

• Determine Pi & Ri’s coefs

• Project: Ai = Ri Ai-1 Pi

• Construct Graph & Coarsen

Solve A0 u0=f0

Solve A2u2=f2 directly.

Relax  A0u0=f0. Set f1 = R1r0

Relax  A1u1=f1. Set f2=R2r1 Set u1 = u1 + P2u2.  Relax  A1u1=f1 

Set u0 = u0 + P1u1.  Relax  A0u0=f0

P1 R1

P2 R2

• Determine Pi & Ri sparsity pattern 

8



Algebraic MG behavior
• High & low frequencies not available algebraically.

These notions are replaced with . ") or . ")
*

𝑒! "# or 𝑒! "#
$ small Þ low frequency

𝑒! "# or 𝑒! "#
$ large Þ high frequency

Properties of  AMG methods

◦ relaxation smooths errors with high energy ( 𝑒! "# large).
◦ Pk must accurately interpolate low energy errors  (small 𝑒! "# ).
– Pkmust interpolate errors not damped by smoothing.

Note: 

vAvv T
A=||||
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AMG for “co-located” PDE systems

consecutive dofs within nodes  
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ØMost AMG software is setup in this block way & most PDE systems employing AMG are solved in this block way

Ø Transform point matrix graph to block matrix graph
Ø Coarsen block matrix graph
Ø Determine grid transfer sparsity pattern based on block matrix graph
Ø Grid transfer coefficients based on point matrix information

𝑢+ 𝑣+ 𝑝+ 𝑢, 𝑣, 𝑝, … 𝑢- 𝑣- 𝑝-
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AMG challenges specific to mixed finite elements 

Ø Cannot apply “co-located” approach to mixed FE system

Ø Inf-sup stability on coarse level Ai ’s ?

Ø Most AMG methods don’t  like 0	’s on matrix diagonal

e.g., • smoothed aggregation AMG performs a  [	diag(	Ai	)	]	-1 Ai step, 
which is not defined when diag(	Ai	)		has zeros

• classical AMG theory based on M-matrices, which we are far from

Ø AMG methods tend to generate interpolation resembling linear basis functions

Ø AMG methods tend to more aggressively coarsen dense rows

⇒ velocities coarsen more rapidly than pressure 
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Auxiliary matrix & defect correction

Since AMG prefers matrices based on low order discretizations,
consider an auxiliary matrix approach …
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Auxiliary Methods

1) Devise preconditioner for A0 by applying AMG to  auxiliary operator A1

2) Devise preconditioner for A0 by generating AMG components (e.g., Ri
or Pi	) via algorithms applied to auxiliary operator A0

Premise: Auxiliary operator is more amenable to AMG ideas than A0

Not a new idea, e.g.  high order discretizations (via defect correction 
methods),  shifted Laplacians for Helmholtz & H-curl/H-div solvers 

[Xu, The Auxiliary space method …, Computing 56 (1996)] 



Precondition via low-order FE discretization

What does a  ℚ1isoℚ2 /ℚ1 discretization look like ?
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discretize via  ℚ2/ℚ1

discretize via ℚ1/ℚ1 ℚ1iso ℚ2/ℚ1

MG hierarchy via coarsening 
of ℚ1iso ℚ2/ℚ1 (aka. A1 )

Bases
Bilinear for velocity
Bilinear for pressure

ü inf-sup stable
ü only linear bases
ü sparser velocity block

A1			via ℚ1iso ℚ2/ℚ1

= +



1st Step: investigate idea via GMG

R0=	I		,	P0=	I	,		A1=		ℚ1isoℚ2/ℚ1 Stokes discretization  ≠ R0 A0 P0
Pk based on linear interpolation  for  k	>	0	,			Rk=	(Pk )T &					Ak+1=	Rk Ak Pk for   k		≥ 0
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discretize via  ℚ2/ℚ1

discretize via ℚ1iso ℚ2/ℚ1

GMG hierarchy

A A A



ℚ2 /ℚ1 preconditioned via ℚ1iso ℚ2 /ℚ1 + GMG

Need MG relaxation procedures

o Inexact Braess-Sarazin

o Additive Vanka

Special saddle point incompressible flow relaxation procedures that employ damping parameters 

⇒ Fourier analysis to obtain damping parameters
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Inexact Braess-Sarazin Relaxation16

correction damped via  𝜔 𝑖. 𝑒., 𝑥 ← 𝑥 + 𝜔 𝛿𝑥

introduces
Jacobi damping 
factor, 𝛽

A

G

GG



Additive Vanka Relaxation17

correction damped via  𝜔 𝑖. 𝑒., 𝑥 ← 𝑥 + 𝜔 𝛿𝑥

A G

A

AA

wi = 1/(# patches containing DoF i )



MG parameters18

<latexit sha1_base64="XqGG/5TrSMTUAS2sUkLixykELxs="></latexit>

Q2/Q1- K0 H2p2H ` = 0

h Q1isoQ2/Q1- K1 H2p2H ` = 1

2h Q1isoQ2/Q1- K2 H2p2H ` = 2

� = 2

Use Local Fourier Analysis to find optimal parameters for 2-grid convergence
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Solution updates



ℚ2 /ℚ1 preconditioned via ℚ1iso ℚ2 /ℚ1 + multilevel GMG

Lid Driven Cavity

Backward Facing Step
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velocity field stream-plot 
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Toward AMG for ℚ1iso ℚ2 /ℚ1 preconditioners to ℚ2 /ℚ1

Ø Cannot apply “co-located” approach to mixed FE system

Ø Inf-sup stability on coarse level Ai ’s ?

Ø Most AMG methods don’t  like 0	’s on matrix diagonal

ü AMG methods tend to generate interpolation resembling linear basis functions

ü Velocities coarsen more rapidly than pressure

Ø Fourier analysis not directly applicable to AMG
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wrap smoothers within GMRES to choose 
damping parameters (at least good for Vanka). 
Could use Chebyshev smoothing.



AMG for ℚ1iso ℚ2 /ℚ1 preconditioner to ℚ2 /ℚ1

Ø Cannot apply “co-located” approach to mixed FE system

Ø Inf-sup stability on coarse level Ai ’s ?

Ø Most AMG methods don’t  like 0	’s on matrix diagonal

Recall 2nd auxiliary approach … 

For only the purpose of  generating grid transfer operators apply AMG to
𝐺̅

𝑊
where

𝐺̅ is (1,1) block of  A1 (ℚ1 discretization of  velocities on refined mesh)
W	=	B	BT or W	=	Ap (pressure Laplacian)
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Devise preconditioner for A0 by generating AMG component (e.g., Ri or Pi	) via algorithms applied to aux. op.  Ai



GMRES + AMG applied to lid driven cavity Stokes on Quad mesh22

ℚ2 /ℚ1 ℚ1iso ℚ2 /ℚ1

#vx/#p = [4.0, 3.6]
#vx/#p = [4.0, 3.8, 3.5]
#vx/#p = [4.0, 3.9, 3.9]
#vx/#p = [4.0, 4.0, 3.9, 3.6]
#vx/#p = [4.0, 4.0, 4.0, 3.8]
#vx/#p = [4.0, 4.0, 4.0, 3.9]

#vx/#p = [4.0, 2.1]
#vx/#p = [4.0, 2.1, 0.7]
#vx/#p = [4.0, 2.2, 0.7]
#vx/#p = [4.0, 2.2, 0.7]
#vx/#p = [4.0, 2.2, 0.7, .3]
#vx/#p = [4.0, 2.2, 0.7, .3]

𝐵𝐺4+𝐵"𝑞 = 𝜆𝑄%𝑞

level       𝜆1 𝜆max

0      ≈1/5       1.
1       .157      .95
2       .003      .69
3      ≈ 0     .38

Different 
aggregation 
scheme for 
coarsening

prelim
inary

Algo. Details 
pressure: aggregation uses Ap	, interp coefficients via Emin-AMG(B	BT	) 
velocity:  aggregation uses 𝐺̅ , interp coefficients via SA-AMG (𝐺̅ )
V(2,2) cycle,  2 its of GMRES(Vanka with 𝜔 = .77 𝑙𝑒𝑓𝑡 or .35 𝑟𝑖𝑔ℎ𝑡 )



FGMRES(AMG(ℙ1iso	ℙ2/ℙ1 ) ): Triangular Element
23

#vx/#p = [4.0, 3.5]
#vx/#p = [4.0, 3.8, 3.0]
#vx/#p = [4.0, 3.9, 3.3]
#vx/#p = [4.0, 4.0, 3.3, 2.3]
#vx/#p = [4.0, 4.0, 3.3, 2.3]
#vx/#p = [4.0, 4.0, 3.3, 2.4]

#vx/#p = [4.0, 4.0]
#vx/#p = [4.0, 3.8, 3.5]
#vx/#p = [4.0, 4.0, 3.7]
#vx/#p = [4.0, 4.0, 3.9, 3.6]
#vx/#p = [4.0, 4.0, 4.0, 4.0, 3.4]
#vx/#p = [4.0, 4.0, 4.0, 3.8, 3.5]

Algo. Details 
pressure: aggregation uses Ap	, interp coefficients via Emin-AMG(B	BT	) 
velocity:  aggregation uses 𝐺̅ , interp coefficients via SA-AMG (𝐺̅ )
V(2,2) cycle, Vanka relaxation

different aggregation 
schemes 

prelim
inary

standard aggregates ideal aggregates



FGMRES(AMG(ℙ1iso	ℙ2/ℙ1): best unstructured aggregation results

Aggregation on A1 Aggregation on A2

24

Algo. Details 
pressure: aggregation uses Ap	, interp coefficients via SA-AMG(B	BT	), evolution strength measure (tuned)
velocity:  aggregation uses 𝐺̅ , interp coefficients via Emin-AMG (𝐺̅ ) , sym. evolution strength measure (tuned)
V(2,2) cycle,  Vanka with 𝜔 = .29

sample aggregates

some cherry 
picking 

involved



Conclusion
Ø Direct application of  AMG to ℚ2/ℚ1 is problematic

§ Loss of  mesh independent convergence

Ø Use of  ℚ1isoℚ2/ℚ1 system to precondition ℚ2/ℚ1 formulation facilitates AMG use

§ Not perfect, but much closer to mesh independence

Ø Some issues remain with applying AMG to ℚ1isoℚ2/ℚ1 system

Ø Careful examination of  aggregation algorithms may help improve scalability

§ Should aggregation of  pressure dofs & velocity dofs be correlated?

Ø Inf-sup guarantees would be nice on coarse grids …

25


