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Abstract—Diesel hybrid power systems including inverter-
based generation have faster and more stochastic dynamics
than traditional systems. It is necessary to develop accurate
models of the system components to ensure the stability of
these systems and proper controller design. The parameters
of the diesel generators in hybrid power systems, such as the
inertia constant, are time-varying, requiring online parameter
estimation techniques. This paper presents a simplified linear
model developed to represent the frequency dynamics of the
detailed diesel generator system and validated the model using
a moving horizon estimation (MHE) approach. The proposed
optimization-based MHE algorithm is employed to accurately
provide an estimation of multiple parameters of a simplified diesel
generator model. The proposed method extracts the parameters
minimizing a cost function with a given set of constraints on
the parameters. A non-intrusive square wave excitation signal
generated by step changes in load is used to perturb the system
with minimal impacts on power system operation. MHE estimates
the parameters based on the power and frequency from the
diesel generator system measured using the phase-locked loop
(PLL) and provides reasonable estimates of unknown parameters.
The estimated parameters are further verified by using them
back in the simplified model and comparing them with the PLL
measurements to represent the frequency dynamics of the diesel
genset system.

Index Terms—diesel generator, measurements, noise, system
dynamics, parameter estimation, moving horizon estimation.

I. INTRODUCTION

In remote communities, distributed diesel generators (DGs)
are usually the primary source of electric energy due to
their low investment cost [1] (e.g., more than 300 remote
communities in Canada [2] and Alaska [3]). Diesel generators
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can be integrated with renewable inverter-based generation,
such as photovoltaic and wind, in such remote microgrids to
reduce the reliance on imported diesel fuel and energy price.
Inverter-based generation introduces faster and more stochastic
dynamics compared to synchronous generation [4]. Thus, it
becomes crucial to understand the dynamic response of diesel-
backed microgrids for the accurate modeling of power system
components. The parameters in these microgrids are time-
varying; it becomes equally important to implement an online
estimation technique for ensuring system stability and proper
controller design.

A number of model parameter estimation techniques for
generator plant model validation have been proposed for power
system dynamic studies. The parameters of a generic large
hydro generator have been derived from offline data based
on the transient response field tests of the generator [5]. A
practical approach in model selection and parameter estimation
of a dynamic model representing gas power plants was devel-
oped via system identification methods based on field data that
are further tuned using an iterative Cuckoo algorithm in [6].
However, these heuristic techniques are mainly applicable for
extracting the non-time-varying parameters [7]. Offline tests
are also costly due to time not-in-service, and are therefore
less feasible due to cost and applicability for a small-scale
DG operating as the primary or backup source of power in
isolated microgrids.

An online approach has been developed for inertia and
damping constant estimation of power plants based on the fre-
quency measurements from phasor measurement units (PMUs)
using the swing equation [8]. However, PMU measurements
may not be readily available in microgrids. Extended and
ensemble Kalman filters were used for parameter estimation
in [9], where parameters are included in the state vector.
However, the extended Kalman filter approaches are reliable
only on linear systems and less accurate in case of non-linear
dynamical systems as they use a first-order approximation of
non-linear dynamic equations. Unscented Kalman filters have
been used to estimate the states and parameters of a non-linear
system with reasonable accuracy [10]. However, these Kalman
filters assume that the noise is Gaussian which means Kalman
filters may fail for non-Gaussian noise [11]. Moving horizon
estimation (MHE) is likely to outperform Kalman filters for
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similar computational cost [12].

MHE is an online optimization-based algorithm that is
appropriate for estimating the parameters in microgrids to
provide adaptive system protection and control. In [13], in-
ertia and damping constants of synchronous machine were
estimated using the MHE approach. The models used inside
MHE in [13], [14] have partial knowledge of the parameters,
where MHE provided the estimates of unknown parameters
based on the knowledge of system input, system equations,
and known parameters.

In this paper, a simplified state-space model is developed to
simulate the frequency dynamics of detailed diesel generator
system. MHE is employed to provide online estimations of
an unknown set of parameters of the simplified DG and
governor model based on frequency and electrical power. The
frequency response is observed with obtained set of parameter
estimates in the simplified linear model which was found to
be very close to the detailed DG system. State and parameter
estimation using the proposed method will have a wide range
of applications in fast frequency control, stability analysis, and
controller design purpose.

The paper is organized as follows: Section II introduces
the system dynamics of the given diesel genset Simulink
model. Section III describes the MHE approach employed
for the parameter identification process followed by MHE
formulation and implementation. The detailed simulation setup
is described in Section IV. The estimates of MHE along
with the validation results of the approach are presented
and analyzed in Section V, and the paper is concluded in
Section VI

II. SIMPLIFIED DYNAMICS OF GOVERNOR-GENERATOR

SYSTEM

The simplified block diagram of the DG system under study
is shown in Fig. 1. The system contains a synchronous genera-
tor and an isochronous governor that provides an approximate
model to represent the frequency dynamics of detailed diesel
plant. Exciters and voltage regulators have significantly faster
response than the frequency dynamics [15], thus the excitation
system dynamics are neglected in this work. The simplified
governor is represented by a single time-constant (7}), which
is shown to be adequately equivalent to the detailed governor
response. With the assumptions made on deriving the approxi-
mated model used inside MHE, the estimator reduces the com-
putational cost and provides quick convergence. Additionally,
it is important to note that this simplified model is only used as
the state equation for the MHE, whereas the actual simulations
are carried out in a detailed model of the diesel genset as
described in Section IV. The dynamics of the system are
modeled using the swing equation and a differential equation
representing engine-governor dynamics. Generator dynamics
are represented by the following differential equation:

MAw+ DAw = AP,, — AP, (1)

where M and D represent the inertia constant and damping
coefficient of the generator, respectively. Aw is the change in

system frequency, Aw represents the rate of change of fre-
quency (ROCOF), AP, is the change in the total mechanical
power, and AP, is the change in the total electrical power of
the diesel genset system.
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Fig. 1. Block diagram of the simplified model of the engine-
governor-generator frequency dynamics.

In this paper the engine-governor dynamics are represented
by the following differential equations:

AP,, = —KAw — KT,A )
As = —KAw 3)

where Az = AP, + KTyAw, and K and T, represents the
governor gain and equivalent time constant, respectively. We
chose Az as one of the states to simplify the state equations.
Because we will only measure Aw, we are free to choose other
states. Equations (1) and (3) can be combined and written in

state-space form as:
d {Az] {0 -K } {Az] [ 0 }
— = KT, + AP, (4)
dt |Aw ﬁ _(% + 5] [Aw _ﬁ

Equation (4) contains four parameters. However, to represent

the dynamics, we need to estimate the coefficients of the state-
space model. Thus, Equation (4) can be written as:

d Azl _ [0 —az| [Az 0
i lac] = Lo o] (23] L] an @

where ajs = K, ay = 1/M and agy = (% + KA?")
Equation (5) has only three coefficients which shows the same
dynamics as represented by (4). Equation (4) is in the form of

i = Az + Bu (6)

where 2 = [Azy, Awy] " is the state and u = AP, is the
system input. The set of parameters {aio,as1,a20} will be
estimated using MHE.

III. MHE FORMULATION AND IMPLEMENTATION

Equation (5) can be converted to discrete-time, and the
resulting output equation can be represented as:

Tpq1 = Agxr + Bauy, (7a)
Y = Caz + vg (7b)
where 73, = [Azp, Awg]' represents the state, yr, = Awy

represents the measurement, and u;, = AP, represents the
input to the system at discrete time instant k. Matrices Ay
and B, are state and input matrices, respectively. Because we
are only measuring Awy, the output matrix can be written as
Cy = [0 1]. The measurement noise vy, at a particular instant
is unknown; however, information about the noise statistics



is known. MHE is able to give an estimate for different
measurement noise distribution (both Gaussian [14] and non
Gaussian). In this work, we are performing the simulation
assuming non-Gaussian noise with zero mean and known co-
variance R.

Let H represent the set of discrete-time instant {g—L+1, ¢—
L+2,...,q} where L is the backward horizon length, and ¢
represent the current discrete instant. Let P = [a12, a21, QQQ]T
represent the vector of parameters to be estimated. Then, the
MHE problem can be formulated as [16]:

q

~min_Jy = Z llyr, — Cadr| |3+
Ik,u),;,P
k=q—L+1
q—1
ok — awlfy (82)
k=q—L+1
subject to

i‘k+1 = AgZr + Bgtp, VkeH — {Q}
P’min S P S Pmaw

(8b)
(80

where ||a||4= a' Aa is the norm of vector a with respect to
matrix A, and Py, and Pp,q, represent vectors of minimum
and maximum possible value of parameters, respectively. Jg
in (8a) represents the cost function. The first term in the cost
function is the measurement term that represents the difference
between measured and estimated y. The weight of the first
term is V = R~! [17], which depends upon noise covariance.
Higher measurement noise corresponds to higher noise co-
variance and lower measurement weights, and vice-versa. The
second term represents the actuation error as the difference
between measured and estimated input. This difference arises
because of the random disturbance. The effective value of
the input signal would be the applied excitation signal with
added random disturbance. Additionally, the system generating
the excitation signal could contain error. The second term
corresponds to this error and is termed process noise. The
weight for the second term W is the inverse of process noise
covariance. We are not considering process noise, thus we
will choose a value of W >> V. The first constraint (8b)
represents the discrete-time state equation, and the second
constraint (8c) limits the parameters to reasonable limits based
on domain knowledge. Based on the domain knowledge from
[15], the constraint limit on the parameters have been set to
a maximum of 100 and a minimum of O in the given system.
It provides the parameter estimates within realistic range of
values. Although the state equation is linear with respect to the
states, the above optimization problem is non-linear because
matrices Ay and By contains parameters that are decision
variables.

The MHE is implemented using CasADi — an open-source
optimization package for MATLAB [18]. When new estimates
are required, the system is excited by a square wave excitation
signal generated by step changes in load. A square wave was
selected because our preliminary analyses related to frequency
dynamics showed a smaller estimation error compared to

other signals [14]. The selection of sample time comes from
the smallest time constant of the system calculated using
eigenvalues of the state matrix A. At every sampling instant,
new measurements are taken and appended to the data set,
while the oldest measurement data are discarded. The above-
formulated optimization problem is then solved online at every
sampling instant giving the estimation of parameters and states
over the horizon length. The solution from the previous sample
instant is used as an initial guess for the solver, which reduces
the number of iterations and, hence, computation time. The
state differential equations are discretized using Runge-Kutta
method of order 4.

IV. SIMULATION SETUP

MHE was used to estimate the parameters (ai2,a21, a22)
of the detailed simulation setup of the diesel genset shown
in Fig. 2. The estimation process was conducted on a lin-
earized model with an unknown set of parameters to test the
validity of the MHE approach. The detailed DG models of
the governor and synchronous machine were used from the
standard library in MATLAB/Simulink. The MATLAB model
was simulated with a 400 kVA, 480 V diesel-genset using
the standard synchronous generator model for a 406 kVA,
460 V, 60 Hz machine [19], the DEGOV model for the
governor [20] based on implementation in [21], and the DC4B
model for the exciter [22] as described in [23]. This work has
compiled parameter values for the governor and exciter from
several sources to create parameter values for the benchmark
governor [7], [20] and exciter [22], [24]. The parameter values
implemented in the benchmark models are outlined in Table I.
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Fig. 2. Simulation setup for parameter estimation of diesel
genset model.

A resistive load of 50% of the generator capacity (Loadl)
is always connected as a base load. The generator is excited
with different perturbation power of around 10% of total



TABLE 1
SYNCHRONOUS MACHINE, DEGOV, AND DC4B MODEL
PARAMETERS

Governor Parameters
Controller Constants (77, T, T3) [s]
Governor Time Constants (T4, 15, Tg) [s]

Value(s)
le—4, 0, 0.2242
0.25, 0, 5.74e—3

Gain (K) 50
Engine Time Delay (73) [s] 1.67e—2
Exciter Parameters Value(s)
Low-pass Filter Time Constant (77.) [s] 0.002
Voltage Regulator Gain and Time Constant (K, T, | 1, 0.02
[sD

Voltage Regulator Output Limits (Vi .., Vi 0.) |0, 8
Damping Filter (K¢, T [s]) 0,1
Exciter Gain and Time Constant (K¢, Te [s]) 1, 0.02

PID Settings (Kp, K;, K4, Ng, K3 ) 20, 100, 1, 10000, 5

generator capacity (Load2). The perturbation signal is a square
wave signal that gives various step changes in active power.
Thus, two loads of 200 kW (Load 1) and 40 kW (Load 2)
are connected to the given system. The resulting frequency
changes are measured through a phase-locked-loop (PLL).
Because the online measurements of frequency are more likely
to contain noise in a real system, additional noise is added to
input measurements to make it realistic. The performance of
MHE is tested and evaluated with non-Gaussian noise in the
frequency and power measurements. PLL. measurements have
typical noise covariance of 107 [25], thus an signal-to-noise
(SNR) ratio of 65 dB is added to the frequency measurements
in the model. The skewness and kurtosis values for the non-
Gaussian noise are set to 0.5 and 7.0. The typical values
of skewness and kurtosis have been chosen based on [26].
The change in electrical power is computed by measuring the
generator terminal voltage v,p. and the output current ¢4p.
The noisy measurements of frequency and electrical power
are fed to the inputs of MHE as mentioned in Section III.

At each sampling instant, the MHE uses frequency mea-
surements to estimate the multiple parameters (a12, a21, G22)
of the linearized diesel genset model. The convergence time,
(T.) is the product of horizon length (L) and sampling time
(Ts) of MHE given by: T. = L x Tk.

We are taking L = 700 and T, = 0.003 s to capture the
2.1 s period of the excitation signal. Smaller values of L
created larger deviations and did not provide ample estimates
[12]. A larger horizon length was chosen because of the noisy
measurements and completely unknown set of parameters. The
sampling time of MHE was selected based on the larger real
part of eigenvalue from the system matrix. The sampling time
will be at least 10-20 times smaller than the calculated time
constant from the eigenvalue [27]. More details regarding the
MHE algorithm and implementation are available in [13].

V. RESULTS AND ANALYSIS

The estimator performance is analysed based on the non-
Gaussian noisy measurements and varying the inertial range of
values in the given DG system. Initially, inertia in the detailed

Simulink model was set to 0.388 s. However, the inertial
value along with all other parameters of the simplified model
inside MHE is assumed to be unknown while performing the
estimation. MHE takes the minimum value of the constraint
limit, O as the initial guess of each parameter. It collects 700
data points to converge and provide the first estimate of the
state variable and parameters for the given linear model. In this
paper, we focus on investigating the accuracy of the developed
simplified frequency dynamics model using the parameters
estimated by MHE. For M = 0.388 s, the estimation results
are shown in Fig. 3.

A. State and Input Power Estimation

MHE estimates the frequency as shown in Figure 3(d) for
the case. Additionally, MHE estimates the input power sup-
plied by the generator at the same time shown in Figure 3(e).
Even in the presence of non-Gaussian noisy measurements,
MHE converges within a short time period of 2.1 s. The
accuracy in the estimation is illustrated by calculating the
normalized root mean square error (NRMSE) between MHE
estimates and the true values (without noise). The root mean
square error (RMSE) for the frequency and input measure-
ments were normalized by taking the difference between the
maximum and minimum value of the observations to calculate
NRMSE given by (9) below:

iz (o-a)

max(z;) — min(x;)

NRMSE =

(€))

where, n represents the total number of data points, x; repre-
sents the true values of inputs (w and P.) and «; represents
the estimated values of w and P,.. Once the MHE converges,
the NRMSE calculation is performed. MHE performance was
tested for different inertia values varying from M; to 5M;.
For all the cases, the estimator tracks the input measurements
very accurately as illustrated in Table II. The estimation of
frequency and input power is performed with an NRMSE
value less than 5% which is an acceptable range for the
power system dynamic studies and controller design (MHE
also performed well under the Gaussian noise distribution, but
the results are not shown due to space limitations).

TABLE 11

PERFORMANCE METRIC ANALYSIS

Inertia NRMSE (%) CoV (%)
(M1 =0.388 s) w P, a2 a21 a29
My 0.665 | 3.159 | 0.678 | 1.997 | 2.240
2My 0.581 | 3.106 | 0.521 | 0.873 | 1.047
3M;y 0.576 | 3.115 | 0972 | 0.928 | 0.944
4M; 0.557 | 3.103 0.98 1.056 | 1.005
5My 0.514 | 3.093 | 0906 | 1.198 1.04

B. Estimation of Parameters

MHE estimates the parameters of the linear model sufficient
enough to represent the frequency dynamics based on the input
measurements from PLL and generator. The average estimates
of the parameters aj2, a1, and ase were found to be 48.67,
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Fig. 3. Estimation of parameters and input measurements. a) estimate of a;2 (mean = 48.67), b) estimate of ag; (mean =

2.84), c¢) estimate of asy (mean = 34.63), d) estimation of frequency, e) estimation of electrical power, and f) plot of the cost
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of the noise.

2.84, and 34.63 which are represented by the yellow dashed
line in Figures 3(a) — (c). The estimated parametric results are
analyzed by plotting a histogram and kernel density estimate
(KDE) for each of the parameters. The non-Gaussian noisy
measurement distribution may not give an exactly normally
distributed estimates as seen from the KDE plots. However,
the data points in each of the estimates in the KDE plots
are concentrated around the same range of values. For a
small change in frequency and input power, the parameters do
not change significantly which means the parameters’ values
should remain in a constant range. This is clearly seen in the
histogram and KDE plots as well. The percentage coefficient
of variation (CoV) is calculated for the estimated parameters
by dividing the standard deviation (o) with the mean value
(p) i.e. CoV = % The CoV values show the extent of the
variability in the estimated data.

The calculated CoV values of the estimates for varying M
values (from M; to 5M;) presented in Table II which are less
than 10% showing a low variance in the estimation. Thus,
MHE is able to extract all the parameters efficiently in the
presence of non-Gaussian noise and without the knowledge of
any parameter values in the linearized system model for wide
range of inertial variation. Figure 3 (f) shows the optimization
cost function plot to calculate optimum parameters along with
the state variable. MHE tries to achieve a minimum cost
function defined over a finite horizon length. Initially, the cost
function is seen to be reaching a higher value. However, once
the measurements are collected over the finite horizon length,
the cost function gets to a minimum value as shown in the
magnified portion of the plot shown in Figure 3 (f). The cost
function does not completely hit zero due to the noise in the
measurements.

C. Validation of Parameter Estimates

MHE works well in estimating the state and parameters with
significantly small error. However, validating the estimated
parameter is an important step to check how accurately it cap-
tures the frequency response in comparison with the detailed
model. It can be achieved by using the estimated parameters
back in the simplified model. During this process, we used
the electrical power P. as an input to the model with the
varying loading conditions as shown in Figure 4 (a). Initially,
the base load was set to 80 kW and then loads were increased
by 0.2 pu at every 2 s and started decreasing by same amount
after ¢ = 8 s. If the frequency response from the simplified
model and detailed simulation setup match, it can be said that
the derived model is accurate enough for future application in
predictive controller design. In this experiment, the results of
frequency we obtained from the simplified model using MHE
estimates and from PLL are shown in Fig. 4 (b) which shows
that both of the responses are quite close. The NRMSE was
calculated and found to be 3.17% which reflects a very high
accuracy.

VI. CONCLUSIONS

The objective of this paper was to develop a simplified
frequency dynamics model of a diesel genset based on a
detailed Simulink diesel genset system and simultaneously
estimate all unknown parameters of the simplified model using
an optimization-based MHE algorithm for dynamic microgrid
simulation. A non-intrusive square wave signal was used to
perturb the system frequency dynamics while avoiding system
imbalance. The proposed approach provided the online esti-
mation of all parameters for the given non-linear problem with
constraints on the model estimates. Even under typical noisy
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Fig. 4. Parameters verification (a) Electrical power input
measured from V. and I, of DG (b) Plot of frequency
from PLL measurements and simplified model using estimated
parameters.

PLL measurements, MHE accurately estimated the parameters
and states which was verified by the comparing PLL frequency
with the frequency response from simplified model whose
parameters are the estimates of MHE. The proposed state-
of-the-art algorithm quickly converges and the parameters
of the model were validated with a minimum NRMSE of
3.17% . The developed simplified model with the proposed
estimation technique will be conducive for accurate modeling
and proper controller design of renewable integrated diesel
generator system with time-varying parameters.
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