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ABSTRACT 

Power spectrum analysis (PSA) is a fast, non-destructive, sensitive method for examining 
commercial off-the-shelf (COTS) electronic components. These features make PSA attractive for 
both component screening and surveillance in support of component reliability efforts. Current 
analysis methods limit the utility of PSA due to the need to manually examine the results of analysis 
to identify anomalous parts. This study demonstrates the development and application of a 
workflow to automate the screening of COTS electronic components. Further, this study 
demonstrates the use of multivariate algorithms to assess aging of Zener diodes. These workflows 
can be readily extended to other components, combining the benefits of PSA and multivariate 
analysis to screen and evaluate COTS electronic components. 
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1. INTRODUCTION 

1.1. Motivation 

Surveillance of nuclear weapons is critically important to the nuclear deterrence mission to provide 
test data as evidence of the state-of-health of the stockpile. The majority of age-related degradation 
occurrences are caused by the presence of manufacturing defects (e.g., a contaminant) and/or the 
existence of localized micro-environments (e.g., humidity) that can be difficult to detect using 
conventional methods.  

Commercial off-the-shelf (COTS) electronic components are utilized throughout the stockpile, and 
their use requires the assurance of reliability prior to insertion and continued surveillance throughout 
the components’ lifetimes to establish state-of-health. Current methods to evaluate COTS electronic 
devices include univariate voltage and current methods, and reliability sampling by destructive 
analysis. Destructive analysis inherently cannot be used as a screening tool, and current analysis 
methods of conventional data are not sensitive to more subtle variability of interest in these parts, 
particularly changes related to device age.  

Power spectrum analysis (PSA) has been demonstrated to be a powerful technique to detect a range 
of features in electronic devices, including identifying signs of aging related to underlying physical 
phenomena and detecting anomalous or counterfeit devices.[1, 2] Current analysis methods limit the 
utility of PSA data as they are primarily performed by visual inspection of the data. To deploy PSA as 
part of a large screening effort, the analysis methods and decision making need to be more capable of 
detecting features/differences that are not obvious to humans conducting visual assessment. Further, 
better methods for aging analysis need to be developed to enable detection of possible precursors of 
future failure. 

1.2. Power Spectrum Analysis 

PSA uses a unique, off-normal biasing scheme to generate distinct power spectra that can be used to 
detect differences between electronic devices.[2] A test device is normally pulsed with a square-
waveform voltage; the device responds to these pulses by loading on the square-waveform voltage. 
The amount of loading depends on the device’s dynamic impedance. The frequency of the square-
waveform voltage depends on the device and ranges from 1 kHz to 1 MHz. 

The time-domain signal (the square-waveform voltage) is then transformed via Fourier transform to 
a frequency-domain signal (the power spectrum) that is characteristic of that device. Since PSA is a 
comparative technique, the power spectrum is further normalized to an appropriate reference 
spectrum prior to analysis. The primary reason for normalization is to account for any drift in the 
instrument set-up or other changes in measurement environment over time. In addition, differences 
between devices are more easily discernable in normalized spectra compared to raw (un-normalized) 
spectra. [1, 2]  

Each PSA spectrum is 1×801 (amplitude vs frequency). Due to the high dimensionality of the data 
and large amount of correlation within a sample spectrum, these data are well-suited to 
dimensionality reduction techniques, such as principal components analysis (PCA). For a given data 
set, PCA decomposes the data matrix X into a set of vectors such that X = TPT + E, where T are 
scores (analogous to concentrations), P are weights (analogous to spectra), and E is error.[3] The 
scores in T are then visualized in 2-D or 3-D plots and manually assessed to make in- and out-of- 
group determinations.  
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1.3. Goals 

The need to visually assess the scores from PCA limits the utility of PSA as a larger scale screening 
tool in a few ways. First, visually assessing the data can be time-consuming, and the data is limited to 
only three PCs (principal components). For complex data, three PCs might not be enough to fully 
describe the data variance to separate features of interest. Second, decision making based on visual 
inspection could lead to operator bias, which could influence the results. A less biased method uses 
quantitative metrics to assess similarity so that decisions are made consistently. 

The primary goal of this study is to create an approach for 100% screening of COTS electronic 
devices using PSA in tandem with multivariate analysis tools. Three general approaches were taken 
in service of this goal.  

1. Evaluate the variability of PSA data across sampling events to understand the best 
practices to develop models of PSA data that are robust over time. 

2. Demonstrate an automated method to identify anomalous units from only baseline 
pristine units that are more readily available. 

3. Develop models of PSA and conventional data to estimate COTS device age after 
accelerated aging, which can be used to support both reliability and surveillance 
efforts. 

Details of the multivariate analysis tools used to achieve these goals are contained in the report 
below. Recommendations for data workflows to implement larger scale PSA screening of COTS 
electronics are also discussed.  
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2. EXPLORING VARIABILITY OF PSA DATA 

PSA data are known to demonstrate changes related to instrument variability and measurement 
environment. To account for this variability, PSA spectra are typically normalized to a reference 
spectrum. The efficacy of this normalization can be evaluated by examining the PSA spectra 
collected from samples that are nominally unchanged over several collection events, referred to as 
control samples. In this section, PSA data of control samples are examined to investigate the 
potential influence of PSA instrument variability on future model performance, as well as to assess 
the power of normalization to control variability.  

2.1. Sample Structure of ASIC Control Data 

PSA data were collected for different lots of application-specific integrated circuit (ASIC) devices 
manufactured at Microsystems Engineering Science and Applications (MESA) Silicon Fab at Sandia 
National Laboratories, New Mexico. These data were collected over 32 collection events across four 
years, from October 2016–June 2020 (see Table 1). During each collection event, ten control 
samples were measured alongside the samples of interest. These ten samples had the identifiers: 166, 
167, 172, 173, 174, 175, 178, 182, 183, and 185. These samples are nominally unchanged during the 
four years. One control sample (Sample 166) was used as the reference spectrum against which all 
PSA spectra during the collection were normalized. This device was repeatedly measured during the 
course of the collection event, after every ~20 spectra. All sample spectra are 801 points in the 
frequency space. The mean PSA spectrum of each control sample before and after normalization are 
shown in Figure 1 and Figure 2.  

 

Figure 1. Mean PSA spectra of control samples before normalization to the reference spectrum, 
collected at 3V (Sample 166) 
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Figure 2. Mean PSA spectra of control samples after normalization to the reference spectrum, 
collected at 3V (Sample 166) 

 
Table 1. Details of ASIC PSA data 

ASIC Lot Aging Cycles Collection Date Reference Replicates No. Samples 

EC Lot 

0 14-Feb-2018 6 80 

Radiation 21-Feb-2018 6 80 

Radiation + 1 2-Apr-2018 6 80 

Radiation + 2 18-May-2018 6 80 

Radiation + 3 17-Jul-2018 6 80 

Lot 03 

0 12-Oct-2016 9 117 

1 4-Apr-2017 9 100 

2 4-Apr-2017 9 99 

3 4-Apr-2017 9 98 

Lot 04 

0 3-Apr-2017 7 99 

1 4-Apr-2017 7 99 

2 4-Apr-2017 7 98 

3 4-Apr-2017 7 98 

Lot 05 

0 8-Dec-2016 6 96 

1 4-Apr-2017 7 96 

2 16-May-2017 7 95 

Lot 07 

0 3-May-2017 6 96 

1 1-Jun-2017 6 96 

2 10-Aug-2017 6 96 
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ASIC Lot Aging Cycles Collection Date Reference Replicates No. Samples 

Lot 08 

0 16-May-2017 7 116 

1 20-Jun-2017 7 116 

2 18-Sep-2017 7 113 

Lot 09-12 

0 12-Oct-2017 6 80 

1 4-Dec-2017 6 80 

2 5-Mar-2018 6 80 

Lot 10-11 

0 10-Oct-2017 6 84 

1 4-Dec-2017 6 79 

2 25-Jan-2018 6 79 

Lot 14 

0 14-Jun-2018 6 96 

1 16-Jul-2018 6 94 

2 24-Aug-2018 6 93 

Lot 15 0 12-Jun-2020 6 94 

 

2.2. Reference Variability 

During each sample collection event, PSA spectra of the reference sample (Sample 166) were 
collected after every 20 spectra, resulting in 6–9 replicate reference spectra for each collection. These 
replicate spectra help define the variability of one sample—both between PSA collection events and 
within one collection.  

The variability of the reference PSA spectra was visualized using t-SNE (t-distributed stochastic 
neighbor embedding), a method of visualizing high-dimensional data on a two-dimensional plane 
while preserving relative distances between points.[4] The visualizations presented here are based on 
Euclidean distance metrics. The t-SNE results for the raw (unnormalized) data are shown in the left 
panel of Figure 3, with the data colored by collection event. The spread of the data show that the 
PSA data vary with collection date, and the variability between dates can change dramatically with 
collection date.  

The same data after normalization to the reference spectrum (one of the replicate spectra collected 
during the event) are shown in the right panel of Figure 3. The spread in the t-SNE map now 
appears very different; replicate spectra from each collection event (typically ~5 spectra) are 
clustered tightly together, and the individual collection events are fairly evenly distributed across the 
t-SNE map. This demonstrates that the PSA collection is stable over a collection event, and 
instrument variability primarily occurs between different collection events. While reference 
normalization appears to greatly reduce the variability across collection events, the separation of 
collections in the map suggests it is not a complete solution.  
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Figure 3. t-SNE results for replicate reference measurements (Left) Unnormalized (raw) PSA 
spectra (Right) Reference-normalized PSA spectra 

2.3. Control Sample Variability 

Similar analysis can be performed on the PSA data collected from ten control samples at each 
collection event. These samples are nominally unchanged between collection events, so are useful to 
explore how the PSA data vary in time. If normalization to the reference spectrum is effective in 
removing instrument variability, the control samples should show no changes related to sample date 
after normalization.  

The t-SNE map of the control data before and after normalization are shown in Figure 4 and Figure 
5. This time, the data were first decomposed by PCA (five components) prior to visualization using 
t-SNE. Prior to normalization, the t-SNE map shows strong clustering by collection date. After 
normalization, the data appear to cluster primarily by the control sample number. The normalization 
shows that a few of the control samples appear to be distinct from the others, particularly control 
sample 182 (Figure 5, right panel). 
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Figure 4. t-SNE results for control measurements (Left) Colored by sample date (Right) Colored by 

control sample 

 
Figure 5. t-SNE results for control measurements after normalization (Left) Colored by sample 

date (Right) Colored by control sample 

The variability of the control samples can be further investigated using PCA. All control data were 
modeled together using five PCs, selected by looking at the variance explained by each PC (Figure 
6). Two model metrics were used to assess the variability of the control data over all data collection 
times: Q-residuals and Hotelling’s T2. These two metrics are commonly used in process control 
models to assess model performance over time.[3, 5-7]  

Q-residuals reflect the variability in a data set that is not captured in a PC model, and is calculated as 

𝑄𝑖 =∑𝑒𝑖𝑗
2

𝐽

𝑗=1

 

where eij is the residual of the ith sample after modeling with a PC model built with J components.[3] 
The Q-residuals can be thought of as a measure of how far the data are from the model.  
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The Hotelling’s T2 value reflects the distance between a given sample i and the class centroid, and is 
calculated as 

𝑇𝑖
2 = 𝑡̂𝑖(

𝑇𝑔
′𝑇𝑔

𝑁 − 1
)−1𝑡̂𝑖

′ 

where N is the number of samples and T is a NxJ matrix of centered sample scores from the PC 
model.[5] Hotelling’s T2 can be thought of as a measure of how far the data are from other data 
within the model space. Combined, these two metrics give an idea of the in-model (Hotelling’s T2) 
and out-of-model (Q-Residual) variability of each sample. 

 
Figure 6. Explained variance in PC model of control samples 

The metrics for the control samples are show in Figure 7 and Figure 8. Both figures show the 
reduced values, meaning the value normalized to the 95% confidence limit for the metrics. Values 
above one in each figure correspond to outlier samples. Notably, the samples do not show a clear 
trend with collection date, pointing to the stability of the control samples over time.  

The Q-residuals of all samples are within the 95% confidence limit. This makes intuitive sense as all 
samples were used to build the model, so it is expected to be appropriate to model the data. Of 
more interest are the Hotelling’s T2 values, which show in-model variability. All points above the 
limit come from a few dates: 2018-05-18, 2017-04-04, and 2017-08-10. Because those dates show 
consistently higher variability across control samples, it appears that instrument changes are driving 
the sample variability. While most of the spread appears related to sample date, the mean Hotelling’s 
T2 value shows differences across control samples, showing that individual samples behave 
differently within the model space. These differences are consistent with those seen in the t-SNE 
analysis in Figure 5.  
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Figure 7. Control sample Q-residuals, normalized to 95% confidence limit 

 
Figure 8. Control sample Hotelling's T2, normalized to 95% confidence limit 

Understanding potential influence of individual samples or instrument changes on model 
performance is critical to assess model performance as a screening tool that will likely be used to 
assess data collected over a long period of time. One way to estimate this using relatively limited data 
is to perform cross-validation, in which the overall model performance is compared to that achieved 
by using only a subset of the data. Here, the models are assessed first by leaving out individual 
control samples, and then by leaving out individual collection dates. 

The results of leaving out individual sample dates are shown in Figure 9. The open black circles are 
the values obtained using the full data model. The colored circles are the results of each date when 
that date is removed from the model. For example, the blue Xs at 2018-05-18 are the reduced Q-
residuals and reduced Hotelling’s T2 values from a model built on all data except the 2018-05-18 data. 
In that case, the Hotelling’s T2 values are much lower than they are with the full model, and the Q-
residuals are higher. This shows that these data are now further from the modeled distribution 
(contain variability not adequately modeled) when they are not included in the model. This is also 
true of the 2017-04-04 and 2017-08-10 data, all dates that behave dissimilarly from the others in the 
original models. 

The change in model performance after these samples were removed shows that models of the PSA 
data will be susceptible to variability with instrument changes. To reduce this influence, it is 
recommended that control samples be collected with each PSA collection (as they were here) and 
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that these data be compared to a representative distribution before additional data are collected to 
ensure consistent PSA data.  

In cases where this is not possible, a correction method for instrument variability was assessed. This 
correction was performed by subtracting the mean PSA spectrum of the control samples at each 
date from every PSA spectrum collected on that date. The results are shown in Figure 10. This time, 
the results of each model were more consistent with the results of the overall model, showing 
increased robustness to instrument variability. The application of this correction will be discussed in 
the application examples below. The utility of such an approach relies on the assumption that the 
primary form of instrument drift will be additive, so performing a corrective shift will be adequate. 
This will not be true if the instrument changes include a multiplicative component; in that case, 
further corrections might be required. It also relies on the collection of data that are expected to 
remain unchanged across collection events, such as the control samples included in this study.  

 
Figure 9. Model performance when leaving out individual dates 

 
Figure 10. Model performance when leaving out individual dates after centering by the mean of 

control samples on each date 

Similar analysis was performed by leaving out individual control samples across all collection events 
(Figure 11). Unlike analysis by date, removing individual samples from the models did not appear to 
significantly affect the model performance on those withheld samples. 
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Figure 11. Model performance when leaving out individual samples 

To understand the number of samples that might be needed to adequately define the sample 
distribution, models were developed using 1–9 control samples, employing different combinations 
of the original 10 control samples. Importantly, each sample included the 32 spectra from across the 
collection events, as collection dates appear to be the greater driver in modeling. 

Results of these models are shown in the boxplots in Figure 12–Figure 13. The data shown in the 
right plot of Figure 12 are identical to those in the bottom panel of Figure 11. In each plot, the Q-
Residuals included in each box are for all PSA spectra of that sample in all models where that sample 
was withheld. In the left plot of Figure 12, all 10 models were built using only one control sample, 
and so demonstrate the worst case for modeling additional data. The reduced Q-Residuals across all 
withheld data are consistently above one, showing that the model is unable to recognize similar 
samples. The data shown in the right plot of Figure 12 are the best case for these data, using nine of 
the ten control samples. Here, withheld sample spectra consistently show reduced Q-Residuals <1, 
and so are correctly identified as in-group. All combinations between these two extremes were 
evaluated (not shown), and the first number of samples that show consistently acceptable 
performance are six-sample models (Figure 13), suggesting that at least six independent units 
evaluated at multiple time points are needed to model the distribution of a similar data set 
(preferably with multiple spectra collected at each time). 

 
Figure 12. Reduced Q-Residuals (Left) Models built with one control sample (Right) Models built 

with 9 control samples 
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Figure 13. Reduced Q-Residuals of models built with 6 samples 

2.4. Recommendations to control variability 

Implementation of PSA as a larger scale screening tool requires good control of data variability over 
the course of continued collection. The data presented here demonstrate that spectra collected from 
a single unit within one collection event are consistent (Figure 3), meaning that the PSA test set-up 
does not exhibit significant short-term drift, and changes in sample placement between replicate 
measurements are not significant. Changes in the PSA experimental set-up between collection events 
are a much stronger source of variability. While this effect is partially compensated for by 
normalization to a reference sample from that collection, the variability persists through modeling 
and can be expected to affect future model performance (Figure 9). Further, individual sample units 
from a given device lot can also exhibit variability that affects model performance on new, unseen 
units (Figure 5).  

From this analysis, a few recommendations can be made for future use of PSA to enable reliable 
modeling of the data: 

1. Baseline models should include data collected across multiple collection events. 

It is best practice to represent any source of variability in the data expected in future data. In 
this case, variability of the PSA data appears to be dominated by variability between 
collection events, or variability in the instrument set-up. Therefore, models that encompass 
several collection events are expected to be more robust to variability of future collection 
events. 

2. Collect control samples with each collection event and compare these control samples to 
expected performance prior to collecting any further data. 

Control samples (unaged, known good parts) are typically collected alongside test samples 
of interest; this practice provides a good understanding of any potential changes in the 
instrumental set-up that might influence model performance. This practice can also be 
improved by maintaining a control model that can be used to perform a quality check prior 
to collection of any sample data. As long as the control samples behave as expected in this 
quality model, it can be reasonably expected that any sample data collected would be 
representative of true changes in sample units, rather than changes in the experimental set-
up. 

3. Multiple independent samples need to be used to develop the baseline model.  

The data presented in Figure 12 and Figure 13 show that the data collected from only one 
unique sample is not representative of other sample units. At least six units (each with 
spectra across 32 collection events) were needed to build a PCA model that was reliably 
representative of the other four units with data across those same collection events. The 
number of units needed to develop an initial model will be dependent on the variability of 
the units under examination, but these data point to a minimum of six units needed.  
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3. AGING OF ZENER DIODES 

3.1. Experimental 

Three groups of Zener diodes were subjected to accelerated aging conditions (recorded in Table 2). 
After each aging cycle, select units were chosen for destructive physical analysis. PSA data were 
collected for each data set at 0.08 V (forward-biased), 1V (forward-biased), and 3V (reversed-biased). 
Conventional current-voltage (IV) data were also collected for each device. Each group of diodes 
included equal samples from two different date codes. Along with the data of aged devices, PSA 
spectra and conventional data were collected from ten control (unaged) samples at each collection 
event. These controls are Zener diodes from the same date codes and were not subjected to any 
aging conditions. 

Table 2. Aging information for Zener diodes 

Group Aging Conditions 
Aging Cycle 

(weeks) 
Samples 

Measured 

1 110oC, 85 %RH 

0 100 

1 98 

2 98 

3 98 

4 96 

2 140oC 

0 100 

1 95 

2 94 

3 95 

4 95 

3 150oC, 65 %RH 

0 90 

1 90 

2 89 

3.2. Partial Least Squares Regression Overview 

Partial least squares (PLS) regression (PLSR) is a multivariate analysis technique that decomposes a 
data matrix into factors that maximize the explained covariance between the data set and a known 
metric. In this case, the data matrix is either PSA or conventional data, and the known metric is the 
sample age, in weeks or cycles. This technique is particularly powerful when the data matrix has a 
large number of correlated variables. The resulting factors, or latent variables (LV), of the PLS 
model identify the correlated data features most closely related to the sample age. 

The details of PLSR are thoroughly covered in the references. [8-11] Briefly, score and loading 
matrices are estimated for both X (variable matrix) and Y (response matrix) data. The loadings, 
analogous to spectra, describe the relative contribution of each variable within the LV, while the 
scores describe the relative contribution of each LV to the overall data signature. During the 
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estimation of these scores and loading, a matrix of weights is also obtained that aids in defining the 
relationship between the X and Y data. Ultimately, a regression vector b is obtained such that 

𝑌 = 𝑋𝑏 + 𝐸. 

Values of y for new samples can then be estimated as 

𝑦̂𝑖 = 𝑥𝑖𝑏. 

The regression vector is a weighted, linear combination of the loading vectors that weights the 

contribution of each variable to estimate 𝑦̂. The values of 𝑦̂ will be the age estimate in Section 3.4.1, 
or they can be compared to a metric to make a group/age determination, as in 3.3.  

3.3. Multivariate Analysis of Conventional Data 

Using multivariate modeling methods successfully developed and demonstrated in a previous LDRD 
[12] and detailed in the open literature articles,[13-20] conventional data collected on the COTS 
components throughout the course of the study were investigated to determine if automated 
algorithms could be developed to detect part aging. The PLSR modeling in this section was 
performed using the commercially available software, The Unscrambler®X by Camo Analytics (now 
owned by Aspen Tech).  

Voltage data collected from the Zener diodes as a function of current were assembled into a 1×1089 
matrix for each part tested to create a “signature” of the unit being tested (see Figure 14, Figure 15, 
and Figure 16 for plots of the conventional data). Each stress condition was analyzed by a separate 
algorithm (Table 2). 
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Figure 14. Plots of conventional data analyzed for Group 1 

 
 

 
No Aging 1 week 

3 weeks 
6 weeks 

9 weeks 
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The primary assumption in creating each model is that any variation observed in the IV curves 
(1×M data, where M is the number of variables) can be attributed to information in the data set. 
Each model is developed using PLS, which transforms the data to new orthogonal axes centered on 
the mean data set of the data groups with axes oriented along the directions of maximum variation 

 
Figure 16. Plots of conventional data analyzed for Group 3 

No Aging 1 week

3 weeks

 
Figure 15. Plots of conventional data analyzed for Group 2 

No Aging
1 week

3 weeks
6 weeks
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of the groups (latent variable space). This transformation is applied to both the observations and 
responses in the data sets simultaneously, resulting in separation between the groups.  

To develop algorithms to detect aging, the following process was used: 

1. Data collected for each unit tested were arranged in a 1×M matrix to create a signature of 
the measurement for modeling as discussed above. 

2. All measurement signatures were grouped by type and arranged into a matrix for regression 
analysis. 

3. LVs were calculated for the analysis matrix by modeling both the X and Y matrices 
(variables and responses) simultaneously using known data via PLSR. 

4. The optimal number of LVs was selected to best separate the groups in the modeling. These 
LVs were used to estimate a regression vector b as described in Section 3.2. This vector has a 
characteristic linear equation to relate variables to the response 

𝑦̂ = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 +⋯+ 𝑏𝑀𝑥𝑀. 

5. The value of 𝑦̂ can then be used to indicate how well-matched new input data are to one of 
the response groups in the modeling.  

6. Multiple models were combined to create a programmed flow to differentiate new data 

based on 𝑦̂ values determined by each model.  

The algorithms developed following this methodology are outlined in Table 3. Figure 17, Figure 18, 
and Figure 19 show the results for Group 1, Group 2, and Group 3 algorithms respectively when 
tested on new input data not included in the modeling. 

Table 3. Models of Conventional Data 

Group 
Calibration 

Data 
Validation 

Data 
Results on Validation Data Notes 

Group 1 59 597 

6 
Weeks 

95% Correct (82/86 
parts) Note: Conventional 

data from the no-aging 
units collected after 
10/2021 could not be 
differentiated from the 
aged units in the Group 
1 algorithm that were 
created and tested using 
all data. This indicates 
that it is different from 
data collected prior to 
10/2021. 

9 
Weeks 

91% Correct ID 
(82/90 parts) 

0–3 
Weeks 

Poor differentiation 

63% of no-aging units 
correctly identified 

(122/193) 

92% of 3 week units 
correctly identified 

(166/179) 

Group 2 66 517 
6 

Weeks 
96.6% Correct ID 

(85/88 parts) 
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Group 
Calibration 

Data 
Validation 

Data 
Results on Validation Data Notes 

1 
Week 

100% Correct ID 
(87/87 parts) 22.6% of no-aging parts 

were misidentified as 3 
weeks (56/248 parts) 3 

Week 
91.1% Correct ID 

(72/79 parts) 

Group 3 28 415 

1 
Week 

85.1% Correct ID 
(74/87 parts) 

 
3 

Week 
89.7% Correct ID 

(78/87 parts) 

0 
Week 

85.9% Correct ID 
(207/241 parts) 

 

 

 

 
Figure 17. Results for the Group 1 Algorithm to identify aged parts when tested on new input data 
not included in the modeling. Note: No-aging part data collected post 10/2021 presents as aged. 

9 weeks?

6 weeks?

1 or 3 
weeks?

Age 9 weeks

Age 6 weeks

Age 1 or 3 weeks

No Aging

> 5

< 5

> 5

< 5

> 5

< 5

92.7% (166/179) 1 or 3 week measurements correctly identified
36.8% (71/193) other measurements mis-identify as 1 or 3 weeks
8 of the 9 week & 4 of the 6 week measurements bin low

95.3% (82/86) 6 week measurements correctly identified
6.1% (24/396) other measurements mis-identify as 6 weeks
4 of the 6 week measurements go to the next model

91.1% (82/90) 9 week measurements correctly identified
4.9% (25/507) other measurements mis-identify as 9 weeks
8 of the 9 week measurements go to the next model
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The modeling of Group 1 data shows that the data collected after 10/21 differ substantially from 
data collected before that date. This is likely related to instrumentation or other test-set up changes, 
causing difficulty in creating predictive models. To investigate the effects of these changes, a second 
Group 1 model was created using only data collected after 10/2021. This model demonstrated that 

 
Figure 18. Results for the Group 2 Algorithm to identify aged parts when tested on new input 

data not included in the modeling. 

96.6% (85/88) 6 week measurements correctly identified
0% other measurements mis-identify as 6 weeks
3 of the 6 week measurements go to the next model

100% (87/87) 1 week measurements correctly identified
4.0% (10/251) No Aging measurements mis-identify as 1 week

91.1% (72/79) No Aging measurements correctly identified
22.6% (56/248) No Aging measurements mis-identify as 3 week

< 5

6 weeks?

1 week?

Age 6 weeks

Age 1 week

No Aging

> 5

< 5

> 5

< 5

3 weeks? Age 3  weeks
> 5

74.4% (66/258) No Aging measurements correctly identified
3.4% (3/88) 6 weeks measurements mis-identify as No Aging

 
Figure 19. Results for the Group 3 Algorithm to identify aged parts when tested on new input 

data not included in the modeling. 

100% (174/174) 1 and 3 week measurements correctly identified
10% (34/241) No Aging measurements mis-identify as 1 or 3 weeks

85.9% (207/241) No Aging measurements correctly identified

1 or 3 
weeks?

3 weeks?

Age 1 or 3 weeks

No Aging

> 5

< 5

> 5

< 5

3 weeks

1 weeks

85.1% (74/87) correctly identified

89.7% (78/87) correctly identified
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data collected after nine and six weeks of aging were differentiable from no-aging data (Table 4, 
Figure 20). 

Table 4. Second Model of Group 1 Conventional Data 

Group 
Calibration 

Data 
Validation 

Data 
Results on Validation Data Notes 

Group 1: 
Model of 
data after 
10/2021 

25 228 

9 
Weeks 

89.9% Correct ID 
(80/90 parts) 4.8% (11/228) 0 and 6 

week samples identified 
as 9 weeks 

7.5% (17/228) 0 and 9 
week samples were 
identified as 6 weeks 

6 
Weeks 

90.9% Correct ID 
(80/88 parts) 

0–3 
Weeks 

Not differentiable 

 

The algorithm’s ability to differentiate nine- and six-week data from no-aging data validates that 
conventional data and multivariate analysis can recognize aging parts. 

Conventional data from the no-aging units collected after 10/2021 could not be differentiated from 
the aged units in the Group 1 algorithm that were created and tested using all data. This indicates 
that it is different from data collected prior to 10/2021. 

 

Figure 20. Results for the models created using Group 1 data collected 10/21 or later to identify 
aged parts when tested on new input data not included in the modeling. 

In summary, conventional data combined with multivariate analysis can be used to create algorithms 
to screen COTS parts for aging with ~90% or better correct ID, depending on the stress condition 
for 9-, 6-, 3-, and 1-week-aged parts. In addition, from the behavior of the Group 1 data, something 
changed in the conventional data set-up or units for parts in this group tested 10/2021 and later. 

89.9% correct ID (80/90 parts) as 9 weeks 
4.8% (11/228) mis-ID as 9 weeks 

90.9% correct ID (80/88 parts) as 6 weeks 
7.5% (17/228) mis-ID as 6 weeks 
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3.4. Models to Estimate Age from PSA Spectra 

3.4.1. Method 1: Partial Least Squares Regression Model of All Aging Data 

Partial least squares regression (PLSR) was used to model the PSA data from Group 1 Zener diodes. 
Prior to building the PLSR model, outliers were identified and removed from the data set, based on 
the 98% confidence limits of the Q-residuals and Hotelling’s T2 values of an initial PLS model built 
with all of the data. 58 spectra (~10%) were identified as outliers. Of the remaining data, 30% were 
withheld as validation samples (130 samples) and 70% were used for calibration (303 samples). In 
addition, the control samples collected at each time were used as validation. The rank of the model 
was identified using venetian blind cross-validation with five sample splits, resulting in ~20% of 
calibration withheld in each cross-validation iteration. The PSA data were mean-centered and the 
aging cycle data were auto-scaled prior to calibration. 

An initial visualization of the Group 1 Zener diode data is shown in Figure 21. The plot of PC1 and 
PC2 shows two large clusters in the data; these clusters correspond to the two date codes of the 
samples. The unaged data appear to have a slight separation from the aged data. In this space, it 
would be expected that the control data (black diamonds) would appear near one another, and near 
the unaged data. Instead, the control samples appear close to the aging samples that were collected 
in the same collection event. 

 

Figure 21. PCA of Zener Diode Group 1 PSA Data 

This behavior is also seen in initial PLS models of the data. The model errors used to select the five 
LV used in the model are shown in the left panel of Figure 22. The model errors include the root-
mean-squared error of calibration (RMSEC), root-mean-squared error of prediction (RMSEP), and 
root-mean-squared error of cross-validation (RMSECV). These errors assess model performance of 
the modeled data, the withheld validation data, and a set of iteratively withheld data (or cross-
validation samples), respectively. The model predictions are plotted against the actual aging cycle in 
the right panel. The dashed line on that plot is the 1:1 line to visually show where a perfect 
prediction model would follow. While the calibration and validation data show good prediction of 
the aging cycle from the PSA data, the similar prediction of the control data clearly show that the 
model is reflective of sample collection date rather than aging cycle. If the model were truly 
reflecting aging cycle, the control samples would predict at roughly the same value across the entire 
model space. 



 

32 

 
Figure 22. PLS Model (Left) Errors (Right) Prediction 

To correct for the influence of collection date on the data, the mean of the control samples collected 
on each date was subtracted from the PSA data collected on that date. Now, the PC plot of the 
centered data shows the same separation of date codes, but less separation of the control samples 
(Figure 23). 

 
Figure 23. PCA of Centered Zener Diode Data 

The PLS model of the centered data is shown in Figure 24, now modeled with six latent variables. 
The control samples now appear at a consistent value across the model space, showing that the 
model is no longer simply modeling the change in instrument set-up over time. This model shows 
prediction of the aging cycle from the PSA data. The data scores at each aging cycle contain a large 
spread in the model space, resulting in uncertainty in model predictions. This might be improved by 
incorporating additional data in the model.  
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Figure 24. PLS Model of Centered Data (Left) Error (Right) Prediction 

3.4.2. Method 2: Sequential Partial Least Squares Classification Algorithms 

Using the methods of algorithm building described in Section 3.3, Group 3 PSA data were analyzed 
to determine if an algorithm could be created to predict aging cycle. The PSA data for each 
measurement were mean centered and scaled by the spectrum standard deviation prior to analysis 
(Figure 25). By applying the previously described algorithm building methods, it was possible to 
build an algorithm to correctly predict aging cycle by modeling on 79 (Cycle 1 and 0) or 111 (Cycle 
2, 1, and 0) randomly selected measurements. The algorithm was tested on 1,476 other 
measurements not included in the modeling and it was found that Cycle 2 measurements could be 
differentiated from Cycle 1 and Cycle 0 measurements to 91.7% (289/315) accuracy with 8.3% 
(26/315) mis-ID; Cycle 1 measurements could be differentiated from Cycle 0 measurements with 
96.5% (307/318) accuracy and 3.5% (11/318) mis-ID; and 97.5% (930/954) Cycle 0 measurements 
could be correctly identified with 2.5% (24/954) mis-ID. See Figure 26 for the algorithm flow and 
analysis results. 

Table 5. Models of Group 3 PSA Data 

Group 
Calibration 

Data 
Validation 

Data 
Results on Validation Data 

Group 3 
79 Cycle 2 

111Cycle 1, 0 
1476 

Cycle 2 
91.7% (289/315) Correct ID 

8.3% (26/315) mis-ID 

Cycle 1 
96.5% (307/318) Correct ID 

 3.5% (11/318) mis-ID 

Cycle 0 

97.5% (930/954) Correct ID 

 2.5% (24/954) mis-ID  
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Figure 25. Plots of centered and scaled PSA data analyzed for Group 3 

 

Cycle 0

Cycle 1

Cycle 2
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Figure 26. Results for the Group 3 PSA Algorithm to identify aged parts when tested on new 
input data not included in the modeling. 

Cycle 2?

Cycle 1?

Cycle 2

Cycle 1

Cycle 0

> 5

< 5

> 5

< 5

91.7% Correct ID (289/315)
8.3% mis-ID (26/315)

96.5% Correct ID (307/318)
3.5% mis-ID (11/318)

97.5% Correct ID (930/954)
2.5% mis-ID (24/954)
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4. CLASSIFICATION MODELS  

4.1. General Approach 

To deploy PSA as an acceptance screening tool, data analysis must be paired with an automated 
decision-making algorithm to determine accepted/rejected units. Automation allows fast decision 
making and reduces operator bias in making determinations. One-class classification tools are useful 
in situations such as acceptance screening and anomaly detection, where the interest is in identifying 
“good” or in-class samples while the possible range of “bad” or out-of-class states are varied and 
largely unknown. In the face of this uncertainty, one-class classifiers depend only on correctly 
defining the in-group, and new samples are assessed for membership of that class.  

One such approach is based on quadratic discriminant analysis (QDA), extended for application 
after PCA.[3, 5, 6] For PSA data, PCA is first employed to reduce the dimensionality of the highly 
correlated data. In this case, disjoint PCA is employed: separate PCA models are developed for each 
class. Specifically, data of only one class—acceptable units—are used to create the original PCA 
model. Extending this model to additional classes would require first creating a separate PCA model 
of the new class, making this method easily adapted to new data.  

Once the baseline PCA model is developed, the Q-residuals and Hotelling’s T2 values are used to 
assess class membership (discussed in Section 2.3). These metrics can be used separately to identify 
anomalous units, or they can be combined into another metric as 

𝐺𝑖 = √
𝑄𝑖
𝑄𝑙𝑖𝑚

+
𝑇𝑖
2

𝑇𝑙𝑖𝑚
2  

where Qlim and T2
lim are the confidence limits for each metric.[3, 5, 6] Normalizing each metric by the 

confidence limit brings them to a comparable scale and creates a baseline threshold for class 

membership at √2.  

4.2. SNL ASIC Radiation 

PCA models were developed for the EC Lot data from Table 1. Baseline PSA data were collected 
for all samples at 0.65, 1, and 3 V. Samples were then exposed to varying levels of radiation and 
subjected to subsequent aging cycles. PSA data were collected at baseline, after radiation, and after 
each of three aging cycles. Control samples were collected alongside the sample data at each 
collection event; these control samples were from another lot, so were not expected to model with 
the baseline data, but were still useful to understanding variability in the PSA experimental set-up. 
Following the approach in Section 3.4, the data at each aging time were centered by the control data 
at that date prior to PCA. 

Independent models were first developed for each voltage, then the separate PSA spectra for each 
voltage were concatenated to form a joint model. The results for each model are shown in Figure 
27–Figure 30. Summary performances are shown in the confusion matrices in Table 7, which report 
the number of true/false positives/negatives for each model. Better performing models will have 
higher rates of true positives/negatives, and lower rates of false positives/negatives. The location of 
each number is shown in Table 6, and throughout this report the false positive/negative entries are 
shaded in pale gray.  
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Table 6. Example Confusion Matrix 

 Predicted 
Pristine 

Predicted 
Anomalous 

Example 
Model 

Actual 
Pristine 

True 
Negative 

False 
Positive 

Actual 
Anomalous 

False 
Negative 

True 
Positive 

For all models, the samples exposed to radiation are readily identified by G at a threshold of √2. 
The cleanest separation is seen in the 0.65V data set. During PSA analysis, the voltage level used to 
probe the sample targets different parts of the component. For these devices, 0.65V targets the 
package level (e.g., the filtering capacitors of the package), while 1V and 3V target the die level (e.g., 
the diodes, transistors and interconnects of the die). The larger G value obtained using the 0.65V 
data demonstrates that the capacitors of ASIC packages are the most susceptible to radiation 
damage.  

In each model, the G values of irradiated samples appear to decrease with increasing aging cycle, 
with the maximum value occurring immediately after radiation exposure. This trend contrasts with 
the expected behavior of increased distance from baseline samples with aging. The value of G is 
based on a distance metric, suggesting that samples are returning to a normal state after several aging 
cycles. This is substantiated by the physics of these devices. It is known that exposing irradiated 
ASIC devices to temperatures after radiation can anneal some of the damage from radiation; this 
shows that PSA data are able to track those underlying physical phenomena in the ASIC devices.  

None of the four models were able to reliably differentiate units that had undergone accelerated 
aging from pristine units using the G metric. However, the aged units can be visually identified using 
the Q-residuals alone, suggesting that combining the Q-residuals and Hotelling’s T2 value might 
reduce the strength of the metric in cases where the PSA spectra are more similar. This will be 
discussed further in the next section. These data again show the difficulty in separating variability of 
interest from variability related to the instrument set-up; in all bias models, the samples that were 
not aged or irradiated (“validation” samples, red circles with blue outline) appear separately from the 
baseline units collected on another date. This separation remains even after correcting by the mean 
of the control data, suggesting the correction is incomplete.  
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Table 7. Confusion Matrices for EC Lot PSA Data, Test Samples 

 Predicted 
Pristine 

Predicted 
Irradiated 

  Predicted 
Pristine 

Predicted 
Aged 

3V Data 

Actual 
Pristine 

77/80 3/80  
Actual 

Pristine 
18/20 2/20 

Actual 
Irradiated 

0/240 240/240  
Actual 
Aged 

59/60 1/60 

        

  Predicted 
Pristine 

Predicted 
Irradiated 

  Predicted 
Pristine 

Predicted 
Aged 

1V Data 

Actual 
Pristine 

72/80 8/80  
Actual 

Pristine 
20/20 0/20 

Actual 
Irradiated 

0/240 240/240  
Actual 
Aged 

52/60 8/60 

        

  Predicted 
Pristine 

Predicted 
Irradiated 

  Predicted 
Pristine 

Predicted 
Aged 

0.65V 
Data 

Actual 
Pristine 

76/80 4/80  
Actual 

Pristine 
17/20 3/20 

Actual 
Irradiated 

0/240 240/240  
Actual 
Aged 

59/60 1/60 

        

  Predicted 
Pristine 

Predicted 
Irradiated 

  Predicted 
Pristine 

Predicted 
Aged 

0.65, 1, 
and 3V 

data 

Actual 
Pristine 

78/80 2/80  
Actual 

Pristine 
20/20 0/20 

Actual 
Irradiated 

0/240 240/240  
Actual 
Aged 

58/60 2/60 
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Figure 27. Classification model using 3V data (A) % Variance Explained with model rank marked 
(red “x”) (B) G metric (C) Q-Residuals and Hotelling's T2 (D) G metric, expanded view. Samples 
that have undergone aging but were not exposed to radiation are marked with a blue outline. 



 

41 

 
Figure 28. Classification model using 1V data (A) % Variance Explained with model rank marked 
(red “x”) (B) G metric (C) Q-Residuals and Hotelling's T2 (D) G metric, expanded view. Samples 
that have undergone aging but were not exposed to radiation are marked with a blue outline. 
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Figure 29. Classification model using 0.65V data (A) % Variance Explained with model rank 

marked (red “x”) (B) G metric (C) Q-Residuals and Hotelling's T2 (D) G metric, expanded view. 
Samples that have undergone aging but were not exposed to radiation are marked with a blue 

outline. 
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Figure 30. Classification model using 0.65, 1, and 3V data (A) % Variance Explained with model 

rank marked (red “x”) (B) G metric (C) Q-Residuals and Hotelling's T2 (D) G metric, expanded view. 
Samples that have undergone aging but were not exposed to radiation are marked with a blue 

outline. 

4.3. SNL ASIC Aging 

Similar to the analysis of the EC lot, data from several other SNL-manufactured ASIC lots were 
modeled to identify units that had been subjected to accelerated aging. These aged units are stand-
ins for the anomalous units that would be identified during screening. Results of analysis for Lot 03 
are discussed here.  

Sample units from Lot 03 were aged for one to three cycles, and PSA data were collected after each 
aging cycle for comparison with data collected prior to aging. PC models were created for each 
biasing condition (0.65V, 1V, and 3V) as well as for different combinations of those voltages. The 
number of factors used in each model was identified using the % variance explained and cross-
validation error (left column of Figure 31). Looking at the results in Figure 31, it is immediately 
apparent that the G metric is not appropriate for classification of these data. Despite seeing 
separation between aged and unaged data by the Q-Residual (center column), very few aged units are 
identified as “not pristine” by the G metric. As briefly mentioned above, the combination of Q-
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Residuals and Hotelling’s T2 values into a single metric reduces the discriminatory power of the 
model in cases where only one metric appears to strongly indicate class membership.  

In this case, focus can be turned to using the Q-Residual as the primary method of determining 
whether an unknown sample belongs in the “pristine” class. For these data, the models combining 
multiple bias conditions better separate aged from unaged data. Figure 32 shows the Q-Residuals 
and Hotelling’s T2 values for the model incorporating all three voltage conditions. This model 
visually shows a relatively clear separation between aged and unaged PSA data. However, the 95% 
confidence limit drawn for the Q-Residuals (marked in red) results in several false negatives (aged 
samples identified as unaged). If the limit is set to the lower 90% confidence limit (black line), many 
of these false negatives are avoided. This is seen in the confusion matrices shown in Table 8, where 
changing the confidence limit from 95% to 90% reduces false negatives from 24 samples to one 
sample.  

In applications such as acceptance screening, high priority is placed on identifying any potential 
anomalous units. In exchange for this, it is often acceptable to risk higher levels of false positives 
(unaged units identified as aged) to reduce the rate of false negatives by lowering the detection limits 
(lowering the confidence limit in this case). These trade-offs are situationally dependent, and can 
guide the selection of decision boundaries for classification.  

Using Q-Residuals alone might present a risk of missing some anomalies that present as more subtle 
changes in the device under study. To reduce that risk, the Hotelling’s T2 value, expected to detect 
those changes, can be incorporated into the model as a separate criterion. Rather than combining 
the Q-Residual and Hotelling’s T2 value in the same metric, devices can be assessed by the two 
metrics separately to ensure that anomalous units are likely to be detected. 
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Figure 31. PC Models of Lot 03 ASIC Data 
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Figure 32. Q-Residuals and Hotelling's T2 Values for 0.65, 1, and 3 V Model 

 
Table 8. Confusion Matrices for ASIC Lot 03 

95% Confidence Limit  90% Confidence Limit 

 Predicted 
Pristine 

Predicted 
Aged 

  Predicted 
Pristine 

Predicted 
Aged 

Actual 
Pristine 

117/117 0/117  Actual 
Pristine 

117/117 0/117 

Actual Aged 24/292 268/292  Actual Aged 1/292 291/292 

4.4. Classification of Differential Line Drivers ESD Data  

A classification model for AM26C31M Differential Line Drivers was developed following the 
methods laid out in the previous section. These data were previously investigated in the MDA report 
by P. Tangyunyong,[21] and the work here explores the utilization of an automated screening metric 
applied to the same data.  

The data set consists of 100 AM26C31M Differential Line Drivers procured by MSWC Crane in 
two batches (85 units in batch 1, 15 units in batch 2). There are also 25 AM26C31IN and 25 
AM26C31CN drivers procured from Digikey. The IN/CN model packaging is plastic, in contrast to 
the ceramic packaging of the M model. The PSA data were measured across several biasing 
conditions to interrogate different levels of the devices, identified here as Bias 1–4. The 85 
AM26C1M Batch 1 devices were used to develop the baseline PCA model and detection thresholds. 
Prior to modeling, outlier data were removed. The same model was then used to screen the 
remaining PSA data for packaging differences or electrostatic discharge (ESD) insult. 

All biasing conditions were easily able to identify AM26C31CN and AM26C31IN devices (Figure 
33), with Bias 3 demonstrating the cleanest separation between the three groups. Data collected at 
Bias 1 show the greatest spread; this resulted in removing more outliers from the Bias 1 data, and a 
higher number of good units were rejected during the screening. PSA is well-suited to identifying 
these differences in the devices. 
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Figure 33. AM26C31M Model: Identification of AM26C31IN and AM26C31CN 

Results are more varied for the devices exposed to ESD insults (Figure 34). The samples labeled 
“Validation” in Figure 34 were collected at the same time as the ESD samples but were not exposed 
to ESD, so they serve as controls here. For all four bias conditions, a few samples show consistently 
high values: 21, 22, and 23. As shown in Table 9, these units were subjected to the most extreme 
voltages, and all failed subsequent continuity testing. PSA was able to successfully identify these 
failed units at all bias conditions.  

 
Figure 34. AM26C31M Model: Identification of ESD exposed samples 

PSA data collected at Bias 1 showed a strong relationship to collection date, despite the centering 
performed to reduce the influence of instrument variability. This issue is readily apparent as both the 
validation and ESD-exposed samples scored above the detection threshold, resulting in a high rate 
of false positives. For that reason, results from the Bias 1 model are excluded from Table 9. PSA 
data collected at Bias 4 generally showed the least sensitivity to ESD exposure. Only the most 
extreme samples were identified as different from the baseline data.  

PSA data collected under Bias 1, Bias 2, and Bias 3 show a set of intermediate data that score 
between the baseline values (or control values, in the case of Bias 1) and the extreme outliers noted 
above. This separation shows that some amount of ESD-induced damage can be identified in units 
prior to failure, and the nature of that identified damage might vary across biasing conditions, 
resulting in changes in effective sensitivity across the PSA data. In this case, it appears that Bias 3 is 
best suited for identifying the lower levels of ESD damage, correctly identifying 22 of 33 ESD-
exposed units, and misidentifying 5 of 19 control samples. Though not all units exposed to ESD 
were identified, PSA appears sensitive enough to detect damage or device changes induced by 
exposure to ESD. Combination with multivariate analysis tools enables quick, automated screening 
of these changes.  

PSA data from multiple biasing conditions (Bias 2–4) were also combined into a single model to 
explore if any increases in sensitivity could be achieved rather than using individual biasing 
conditions. Those results, shown in Figure 35, are overall quite similar to those for Bias 3, though 
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the visual spread in the data is smaller, suggesting that the combined model might be more robust to 
instrument variability.  

 
Figure 35. Classification of AM26C31M devices using multiple biasing voltages 
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Table 9. Classification Results for ESD Tested AM26C31 Devices 

Sample Voltage Test Condition 
Continuity 
after ESD 

Bias 2, 
3, or 4 

Bias 2 Bias 3 Bias 4 Bias 2-4 

21 4-8 KV All Pins to GND FAIL Y Y Y Y Y 

22 4-8 KV All Pins to GND FAIL Y Y Y Y Y 

23 4-8 KV All Pins to GND FAIL Y Y Y Y Y 

24 3500 V 1A to GND PASS N N N N N 

25 4500 V 1A to GND PASS Y N Y Y Y 

26 5000 V 1A to GND PASS Y Y Y N Y 

27 5250 V 1A to GND PASS N N N N N 

28 6000 V 1A to GND PASS Y N Y N Y 

29 3500 V 1A to Vcc PASS N N N N N 

30 4500 V 1A to Vcc PASS Y Y Y N Y 

31 5000 V 1A to Vcc PASS Y N Y N N 

32 5250 V 1A to Vcc PASS Y N Y N Y 

33 6000 V 1A to Vcc PASS N N N N N 

34 3500 V 1A to I/O PASS N N N N N 

35 4500 V 1A to I/O PASS Y N Y N Y 

36 5000 V 1A to I/O PASS Y N Y N Y 

37 5250 V 1A to I/O PASS N N N N N 

38 6000 V 1A to I/O PASS N N N N N 

39 3500 V 1Y to GND PASS Y N Y N Y 

40 4500 V 1Y to GND PASS N N N N N 

41 5000 V 1Y to GND PASS Y N Y N Y 

42 5250 V 1Y to GND PASS N N N N N 

43 6000 V 1Y to GND FAIL Y Y Y N Y 

44 3500 V 1Y to Vcc PASS Y N Y N Y 

45 4500 V 1Y to Vcc PASS Y Y Y N Y 

46 5000 V 1Y to Vcc PASS Y N Y N N 

47 5250 V 1Y to Vcc PASS Y N Y N N 

48 6000 V 1Y to Vcc PASS N N N N N 

49 3500 V 1Y to I/O PASS Y N Y N Y 

50 4500 V 1Y to I/O PASS N N N N N 

51 5000V 1Y to I/O PASS Y N Y N N 

52 5250 V 1Y to I/O PASS Y N Y N N 

53 6000 V 1Y to I/O PASS Y Y Y N Y 

“Y” denotes identified as anomalous by the classification model. “N” denotes identified as baseline. 
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5. PROPOSED WORKFLOWS FOR FUTURE APPLICATIONS 

Based on the data investigated in this report, several recommendations can be made to develop and 
employ PSA models for both COTS electronics screening and surveillance evaluation. The general 
procedure for developing data models will be consistent across applications, though details will vary. 
This section lays out basic steps to building the models that could be used in a larger scale 
implementation of PSA. These activities will need to be implemented for every unique device, and 
use of the models across device lots and date codes will likely require model updating or 
recalibration to incorporate the additional variability, as PSA is sensitive to those changes. 

5.1. Using PSA to Screen COTS Electronic Devices 

The workflow to apply classification models to screening of COTS electronic devices is summarized 
in Figure 36.  

 

Figure 36. Screening Workflow 

The detailed workflow is as follows:  

1. Select control samples 

These samples will be used throughout data collection to monitor PSA instrument health and 
ensure that any changes in PSA signals are reflective of device change, rather than instrument 
set-up. The control samples should be similar to the devices under investigation, though they do 
not need to be identical (e.g., can be from another lot of similar devices). The samples should 
not be exposed to large environmental changes or other testing throughout the study duration to 
ensure that the assumption of unchanged status is not violated. 

2. Create control sample model 

PSA data of the control samples collected at the beginning of the study can be used to form a 
control sample PCA model, similar to classification models of samples demonstrated in Section 
4. At the start of new collection events, the control samples will be measured and compared to 
this initial model using the Q-Residuals and Hotelling’s T2 values to assess the PSA instrument 
set-up.  
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3. Select baseline units to develop PC model 

Baseline sample devices will be used to create the in-class boundaries using a PCA model of the 
device PSA data. These samples are preferably of the same lot as the target screening devices. If 
they are not of the same lot, further investigation will need to be undertaken to ensure that the 
model will be fully transferrable to PSA data of devices from a separate lot. All of the baseline 
samples should be known healthy units, while known bad units can be employed to test the 
developed model. PSA data collected from the baseline units should be collected over a few 
collection events to reduce the influence of changing experimental set-ups on the model. Any 
outlier PSA data of the baseline sample set should be identified and removed prior to PCA. The 
final PCA model of the PSA data can be used with the appropriate number of PCs to screen test 
samples. 

4. Establish decision boundaries 

After the PC model of the baseline samples has been established, the decision boundaries can be 
determined. These boundaries will be used to make the determination of whether an unknown 
test article is acceptable or shows signs of anomalous behavior and should be rejected. The exact 
placement of these boundaries is based on acceptable levels of risk for false positives (rejecting 
good units) and false negatives (rejecting bad units). Generally, screening applications favor 
conservative thresholds. This means that the limits will ensure detection of any true negatives, 
with the tradeoff of rejecting some number of good parts. In the models demonstrated in this 
report, the threshold is determined as the confidence intervals for the Q-residuals and the 
Hotelling’s T2 values. When appropriate, these two metrics can be combined in a single metric: 
G.  

PSA data from any known anomalous units (accelerated aging, visually defective) can be used to 
test this metric. The decision boundaries can be adjusted based on the results of that test.  

5. Employ model 

At the beginning of each collection event, PSA data of the control samples should be collected 
and compared against the control model. If the control samples are not consistent with the 
model, adjustments to the PSA experimental set-up can be made to reduce changes in the PSA 
data. If the changes in the control model persist, a correction factor can be determined for the 
data in this collection based on the control data. Performing this data quality check will prevent 
collection of uninformative sample PSA data and improve model performance. 

Sample PSA data will then be compared to the baseline model using the decision boundaries 
established in Step 4. Units will be accepted or rejected based on the PSA data model.  

6. Update models 

If models are used for many more units, additional known good parts can be incorporated to 
increase the variability included in the initial model. This will make the model more robust in its 
continued application.  

5.2. Using PSA to Monitor Aging of Electronic Devices 

A summary workflow for monitoring aging of test devices is shown in Figure 37, and detailed below. 
This workflow is similar to that employed in screening applications, but incorporate the different 
modeling approach with the aim of estimating device age.  
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Figure 37. Aging Workflow 

1. Select control samples 

These samples will be used throughout data collection to monitor PSA instrument health and 
ensure that any changes in PSA signals are reflective of device change, rather than instrument 
set-up. The control samples should be similar to the devices under investigation, though they do 
not need to be identical (e.g., can be from another lot of similar devices). The samples should 
not be exposed to large environmental changes or other testing throughout the study duration to 
ensure that the assumption of unchanged status is not violated. 

2. Create control sample model 

PSA data of the control samples collected at the beginning of the study can be used to form a 
control sample PCA model, similar to classification models of samples demonstrated in Section 
4. At the start of new collection events, the control samples will be measured and compared to 
this initial model using the Q-Residuals and Hotelling’s T2 values to assess the PSA instrument 
set-up.  

3. Select baseline units to develop PLSR model 

Units selected to develop the aging model should be representative of the units that will be 
subjected to testing in the future. These units need to span a range of accelerated aging times (or 
real-time aging) expected to induce signs of aging in the devices. Outlier PSA data should be 
removed prior to model calibration. The PLSR model can then be calibrated following the 
method in Section 3.4. The PLSR model should be used to predict ages of control samples; 
these samples should be consistent across time to demonstrate that the model is predictive of 
age, rather than sample collection date. 

4. Estimate device ages 

At the beginning of each collection event, PSA data of the control samples should be collected 
and evaluated in the PLSR model. If the control samples are not consistent with earlier control 
data, adjustments to the PSA experimental set-up can be made to reduce changes in the PSA 
data. If the changes in the control model persist, a correction factor can be determined for the 
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data in this collection based on the control data. Performing this data quality check will prevent 
collection of uninformative sample PSA data and improve model performance. 

Sample PSA data will then be evaluated by the PLSR model. Estimated sample age can be 
compared to the known sample age to evaluate whether the unit is aging as expected. 
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6. CONCLUSIONS 

This report investigated existing PSA data sets to understand the utility of PSA combined with 
multivariate data analysis to evaluate COTS electronics components. Section 2 evaluated PSA data 
collected from a nominally unchanged set of control samples over four years. Analysis of these data 
demonstrated how changes in experimental set-up had the potential to influence future model 
performance, and showed that a handful of sample units were needed to establish baseline predictive 
models. 

The application of PSA to evaluate COTS device age was explored in Section 3. These data 
demonstrated how changes in experimental set up could influence models, requiring correction for 
collection event or the need to evaluate experimental set-ups using control samples prior to data 
collection. While the PSA data of Zener diodes showed substantial spread in the PLSR models, 
aging could still be modeled to predict age of the validation samples. Aging models could be used in 
the future to evaluate real-time aging data to assess the validity of accelerated aging data, and to 
understand whether samples are effectively the age they are expected to be. Discrepancies between 
predicted age and known sample ages might point to unexpected aging behavior in samples, and 
could drive further work to fill in any knowledge gaps. A technical advance for the method of 
developing the algorithms demonstrated in this section was filed (SD# 16263). 

The application of PSA to screen COTS electronics was explored in Section 4. PCA models 
combined with a classification metric based on residual model error (Q-residuals) was able to 
successfully detect sample units exposed to radiation or accelerated aging conditions. The simplicity 
of implementing these models to make acceptance decisions puts PSA in position for use as a 100% 
screening tool for COTS electronic components.  

The lessons learned from these example implications formed the basis for workflows laid out in 
Section 5. Future development of these workflows could target combined use of the screening and 
aging models. First, units could be screened for defects or other gross anomalies. Following that, 
aging models sensitive to smaller changes relating to sample age could be employed to determine 
remaining expected lifetime of these components. Both applications have the potential to enable 
reliable use of COTS electronic devices throughout the stockpile, using a fast, non-destructive 
testing device partnered with multivariate data analysis.  
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