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Motivation for Solar Ammonia3

aiche.org/resources/publications/cep/2016/september/introduction-ammonia-production
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Cycle Description

 Two-stage process
◦ Stage 1: N2 production 
◦ Stage 2: NH3 production

 Stage 1 Metal oxide (MO) cycle
◦ (Ba,La)xSr1-xFeO3-δ
◦ Step 1: Solar reduction (oxide “priming”)
◦ Step 2: N2 separation (oxidation)

 Stage 2 Metal nitride (MN) cycle
◦ MN TBD
◦ Step 1: Nitridation (N transport)
◦ Step 2: Ammonia synthesis

 Reactor Design Tasks
◦ Stage 1, Step 1
◦ Stage 1, Step 2
◦ Stage 2
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Packed Bed Reduction-Oxidation (Redox) Reactor

 Purpose
◦ Demonstrate redox cyclability
◦ Study heat/mass transfer conditions of 

Stage 1, Step 2 (N2 separation)

 Setup
◦ Stationary packed bed
◦ Vertically-mounted tubular furnace
◦ Geometry optimized via sensitivity study

 Experiments
◦ Reduction and oxidation (redox) modes
◦ Air and inert gas flow control and 

measurement
◦ Temperature control and measurement
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Redox Reactor Inert Particle Testing6

 Shakeout tests performed to study heating
◦ Accucast ID50 ceramic casting media
◦ Chemically inert, high temperature stability

 Heating to 500 °C
◦ 45 min heating time
◦ Stable temperature throughout 45 min dwell

 Informs experimental planning for MO redox 
testing
◦ Control T, pO2 to match reduction extent (Δδ) 

from on-sun reactor, estimated by:
1. Measure outlet T, pO2 (on-sun)
2. Predict Δδ with compound energy model

◦ Introduce compressed air to study oxidation, 
air separation
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On-Sun Reduction Reactor Design

 Purpose
◦ Demonstrate MO reduction by 

concentrated light

 Solar Simulator Setup
◦ Four 1.8 kWe lamps
◦ Vertical axis

 Reactor Setup
◦ Water-cooled copper face
◦ Directly irradiated inclined flow
◦ Heated hopper, 2-5 kg MO
◦ Collector w/mounted load cell

 Materials
◦ Quartz (window)
◦ SS304L sheet metal and thin-wall pipe
◦ Al/Si composite insulation

Hopper

Lamps

Cavity

Collector

Solar Simulator Reactor Cross-Section

Computational heat/mass transfer models used 
to develop reactor cavity and aperture designs



On-Sun Reactor Component Design

 Design considerations
◦ Uniform inlet temperature 400-500 °C
◦ Continuous dense, granular flow
◦ Uniform, thin bed depth

 Prior lessons learned (Schrader et al. 2020)
◦ Steady temperature measurements
◦ Particle dynamics at temperature 

Particle
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Schrader et al. (2020).  Applied Thermal 
Engineering, 173, 115257
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On-Sun Reactor Geometry Optimization
 Computational heat/mass transfer models

◦ Lamp input power
◦ Heating predictions

 Slope position to best heat particles
◦ Relative to aperture
◦ Z-direction: hotspot extent
◦ Y-direction: hotspot position

 Manufacturability defines limits

 Ray traces to evaluate Y-direction
◦ FRED
◦ CAD imported to simulation
◦ Material surface properties applied

 Conclusions
◦ Move slope as far forward as possible
◦ Future study: z-direction coupled to 

heat/mass transfer
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Summary

 Two reactors designed to demonstrate solar reduction, oxidation for air separation

 Reactors will demonstrate high-purity N2 production for ammonia synthesis

 Packed bed redox reactor:
◦ Computational heat transfer modeling optimized bed dimensions

◦ Inert testing performed to study temporal heating and design reactive media 
experiments

 On sun reduction reactor:
◦ Computational heat/mass transfer modeling and ray tracing optimized design

◦ Engineering designs created to ensure optimal conditions control, particle heating, 
measurements



Future Work

1. Bulk metal oxide synthesis
2. On-sun reactor construction and validation
3. Solar thermal reduction experiments
4. Packed bed reactor redox experiments
5. Computational heat/mass transfer performance modeling
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Thank you for your attention!
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Sensitivity Study

◦ Sobol indices provide relative impact 
of parameters assuming linear 
relationships

◦ Impacts are roughly scaled between 
0 – 1

◦ Performed for both reactors
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Symbol Parameter Name
δ0 Initial δ value
ΔH Enthalpy of reduction
C Particle bed conductance
Ph Pressure in head region
Il Total lamp power
Tf Feed temperature of particles
dbed Depth of bed
θ Angle of inclination 
σl Decay radius of lamp intensity
Cw Conductance, reactor to particle 

bed
W Width of reactor

On Sun Reactor

Packed Bed Reactor



On Sun Reactor Hopper Design17

 Particle hopper:
◦ 1/16” SS304L
◦ Footprint prevents lamp shading

 Particle inlet:
◦ Linear actuator, starting/stopping

◦ Accuglass 
◦ LabView interface control

◦ Orifice grate(s), flow control
◦ Replaceable for varied flow rates
◦ Hole size function of particle diameter, set by 

Beverloo equation

 Water-jetted components for fine tolerances

Lamps

Actuator


