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3 I Motivation for Solar Ammonia

Important agricultural commodity
> 10" kg/yr NH; worldwide
- 88% for agriculture

GHG emissions reduction

- Ammonia production is energy, GHG
intensive

kg CO, eq.
2.6.kg. kg NH.

emissions

, >1% global GHG

Energy carrier, storage medium
> H, storage medium
> Applications in TCES cycles

Goal: Use solar energy to produce
ammonia from H, and air

Solar Ammonia Process

Qr»olar

r Air, H,
NH,

(N

aiche.org/resources/publications/cep/2016/september/introduction-ammonia-production



https://www.aiche.org/resources/publications/cep/2016/september/introduction-ammonia-production

Cycle Description

Two-stage process
o Stage 1: N, production
> Stage 2: NH; production

Stage 1 Metal oxide (MO) cycle
> (Ba,La),Sr, FeO5 5
o Step 1: Solar reduction (oxide “priming”)
o Step 2: N, separation (oxidation)

Stage 2 Metal nitride (MN) cycle
- MN TBD
o Step 1: Nitridation (N transport)
o Step 2: Ammonia synthesis

Reactor Design Tasks
o Stage 1, Step 1
o Stage 1, Step 2

(e}

Stage 1: Nitrogen Production & Storage

Concentrated 0,
Solar Irradiation £
i i
: Step 1: Solar Reduction Reactor !
I &
| MOy = MOy_g + iDz !
|
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Step 2: Nitrogen Production Reactor

(1]
HOK + NI “ Mnx_& + E 02 Air

N, Stage 2: Ammonia Production
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Packed Bed Reduction-Oxidation (Redox) Reactor

Purpose
o Demonstrate redox cyclability

o Study heat/mass transfer conditions of
Stage 1, Step 2 (N, separation)

Setup
o Stationary packed bed
> Vertically-mounted tubular furnace
o Geometry optimized via sensitivity study

Experiments
o Reduction and oxidation (redox) modes

o Air and inert gas flow control and
measurement

o Temperature control and measurement

Sweep/Oxidant

Gas Flow Control 56 Injection

Point

M

j’_‘j . Solenoid

Valves

'JrPécked
Exhaust'

Vertical Tube Furnace
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Tube

Sweep flow '
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« | Redox Reactor Inert Particle Testing

Shakeout tests performed to study heating
o Accucast ID50 ceramic casting media
o Chemically inert, high temperature stability

Heating to 500 °C

o 45 min heating time

o Stable temperature throughout 45 min dwell
Informs experimental planning for MO redox
testing

o Control T, pg, to match reduction extent (Ad)
from on-sun reactor, estimated by:

°C

1. Measure outlet T, py, (on-sun) ,_-
2. Predict Ad with compound energy model

o |Introduce compressed air to study oxidation,
air separation
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On-Sun Reduction Reactor Design

Purpose

> Demonstrate MO reduction by
concentrated light

Solar Simulator Setup
> Four 1.8 kW, lamps
o Vertical axis

Reactor Setup
o Water-cooled copper face
o Directly irradiated inclined flow
- Heated hopper, 2-5 kg MO
> Collector w/mounted load cell

Materials
> Quartz (window)

o SS304L sheet metal and thin-wall pipe

> Al/Si composite insulation

Solar Simulator Reactor Cross-Section
A
Hopper ‘

Computational heat/mass transfer models used
to develop reactor cavity and aperture designs
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On-Sun Reactor Component Design

Design considerations
o Uniform inlet temperature 400-500 °C
o Continuous dense, granular flow
o Uniform, thin bed depth

Prior lessons learned (Schrader et al. 2020)
o Steady temperature measurements
o Particle dynamics at temperature

Heater Placement Hopper Valve Design Inlet/Slope Design

Particle Temperature Measurements
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Schrader et al. (2020). Applied Thermal
Engineering, 173, 115257




On-Sun Reactor Geometry Optimization  Ray Traced Solar Flux (W/m?)

Computational heat/mass transfer models
o Lamp input power
o Heating predictions

Slope position to best heat particles
o Relative to aperture

- Z-direction: hotspot extent /
o Y-direction: hotspot position Relative T /
/
Manufacturability defines limits +7 /
Ray traces to evaluate Y-direction T_) +y II
- FRED

o CAD imported to simulation
> Material surface properties applied

Conclusions
> Move slope as far forward as possible

o Future study: z-direction coupled to
heat/mass transfer




Summary

Two reactors designed to demonstrate solar reduction, oxidation for air separation
Reactors will demonstrate high-purity N, production for ammonia synthesis

Packed bed redox reactor:
o Computational heat transfer modeling optimized bed dimensions

o Inert testing performed to study temporal heating and design reactive media
experiments

On sun reduction reactor:
o Computational heat/mass transfer modeling and ray tracing optimized design

o Engineering designs created to ensure optimal conditions control, particle heating,
measurements



11 I Future Work

Bulk metal oxide synthesis

On-sun reactor construction and validation
Solar thermal reduction experiments
Packed bed reactor redox experiments

a &~ owbdh -~

Computational heat/mass transfer performance modeling
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Sensitivity Study

On Sun Reactor

> Sobol indices provide relative impact | 03— oo —
. . I IXxe
of parameters assuming linear x| Bed 0.2] Beg =T,
. . ! 0.2

relationships 2
o I[mpacts are roughly scaled between §§ 0.1 0.1

0-1 §

: 0 M P_I 0 8o H CP:II Trdpep o) C,y W

o Performed for both reactors | hoh "
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| Packed Bed Reactor 0.3 L Ty
E i | Particle bed conductance
. 5 o Prossure 1 head rogion
E Reactor wall temperature % 0.2 E i B Total lamp power
i Ambient temperature i= : : Feed temperature of particles
E Injection volumetric flow rate © L Depth of bed
. "y 8 o1 .+ ERN Angle of inclination
! “ Initial & value A Lo , , ,
: _ Lo m Decay radius of lamp intensity
E Heat of reaction b Conductance, reactor to particle
! Particle bed conductance o bed
E 0- Lo Width of reactor




17 1 On Sun Reactor Hopper Design

Particle hopper:
> 1/16” SS304L

o Footprint prevents lamp shading

Particle inlet:
o Linear actuator, starting/stopping
o Accuglass
> LabView interface control
o Orifice grate(s), flow control
> Replaceable for varied flow rates

> Hole size function of particle diameter, set by
Beverloo equation

Water-jetted components for fine tolerances Actuator




