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Network Segmentation

* Network segmentation involves
o dividing a network into a set of sub-networks and
o enforcing communication rules among network devices

* Improves security by limiting an attackers ability to pivot between
workstations on network

Segment 1 Segment 2
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Power System Cyber-Physical Network
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Cyber-Physical Model
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Cyber-Physical Network Segmentation

Operator observes the attack and

Defender segments the SCADA systemto o yishatches power to minimize load shed

limit the scope of the attacker

min min E L4
(mﬂy?qﬂt)ep (Qﬂfﬁp?l)eo(uﬁvﬁw) d€£

Attacker attacks up to N segments on the
defender-segmented SCADA and disables
relays in compromised substations.

Rules
« Leaders make decisions in anticipation of optimal follower decisions
* Followers must adhere to decisions made by leaders
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Network Segmentation Model
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Network Segmentation Model

D A(may) O(U,U,w

Z Ter =1, Ve € £(S) 2) Zzg <U (22) Ik
- et kekidik)=s}  ke{k'lolke)=s) ¥seS  (3)

gij,_, =1, VY¥reR (3) 35S Y Yesr,  YAB)EZNfeE(B) (23) + 3 p= Y (Da-la) )
eck( eeE(A) a=G del,
Qoe = z Loy, TYae S, ee 5|{5} 4) b = Z Torta, YreR 24) _h. = er'k[ﬁlmk; - ﬂu!;kl - 9;_] vk e K (32)

reR, — —
ccE(S) —Fr<fi<Fi Yk e K 33

Goe 2T0r;  VIESTER, e CL(S) ®) w<(1-6,), VkeKreRy 5) s lee Ref
Qe Y 2, VseSec&(S) (6) -~ : ' 0<p, <w,P, YgeG  (34)

"e = =t T ! v > Eg*il'*ir)' IRL| +1, Yke K (26) (1 —wd)Da<la<Da YWd e L (35)
Qs:e :21'3,1-.- VSES.F‘ER,.FEgu(S] (?] w, ‘_:f[el_.ir}‘ VgEG,?E'RE m} =T Eﬂx 1-_: w ITI'QES (36)

Y ¥s=1,  ¥(AB)eZ[cEB) @ wyz Y (1-6) =Ryl +1, VYge@ 28)
eef(A) o reRy I
Y tne=1, VTeT,ec&(T) 9 u<(1-46), VdeLlreRy (29)
nel

> 1-6,) - +1, YVde L
ten < Z !'h.[@n.j + Z Ye,fln, f+ e '.;‘{ 5'] rRiI m}
fEEa(B) fEELB) (10
V(4,B)eZ,ec&(A),ne B

ten Zyﬂ.IQn,_ﬁ I‘J"{A.B}Ez.f’ ESI:A)‘- (11) T

ne B, f e &(B)
S ) ; Z;;f*-*”- a2 Attacker precedence-based
neb, Jeiy .
fom < Qmer  Y(A,B) € 2,¢ € £(A), 0 selection model
me A ne B,
ten < Qm,es V{A-B} ceZ,ec 81(-'4)1

Results in the

me A nec B, (14 0 .
ve.s € {0,1},¥(e, f) € (E(C) x £(8)) U (£(B) x E{C}(}m Designer Cqmlng .S|IdeS
r.,€{0,1}, ec&(S),¥reR (16) assignment model W|” Clanfy the

e € {0,1},  ¥(n,e) € Urer(T x &(T)) Qa7
ten €{0,1}, ¥(e,n) € (E(C) x S)U(E(B) xC) (18)

model

SECURE: Science and Engineering of Cyber security through Uncertainty quantification and Rigorous Experimentation



Outline

 Motivation

* Description

» Solution Technique

* 9-Bus and 30 Bus Results

 Larger Cyber-Physical Systems

SECURE: Science and Engineering of Cyber security through Uncertainty quantification and Rigorous Experimentation 9



A Naive Solution Technique for Small Systems

Step 1: Linearize bilinear terms using McCormick Relaxation

Rf < Z Ye.f=e fk‘ — Bkvk (Qo(k) o Qd(k) N G‘)k)

cCE(A)

Step 2: Dualize third ( ) model and reduce attacker and dualized
into a single max model, transforming the trilevel model into a
bilevel min-max model.

o Note that the combined max model has binaries, so it cannot be dualized.

Step 3: Use bilevel branch-and-bound to solve mixed bilevel model

o Apply branch-and-bound to high-point relaxation (constraints from both levels with
leader objective) and obtain cuts to remove follow-suboptimal solutions through
callbacks.

o Fischetti et. al. has made their CPLEX-based academic solver available for
research purposes.

o MibS is open-source and uses COIN-OR framework.
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9-bus System Before Segmentation

Balancing Authotity 1

Control Center 1 Control Center 2

| Bus 2 Bus 7 Bus 8
l f‘. L ' — ~
(2 /D& S oo
| '-.__7__7‘_.
1 240 MW
b ]
. C
~
.
S
A
\\ Bus 5 100 MW
Ay
A Y
by
“
N
A
A
Y
\ 125 MW Bus 4
Y
h f
AY ‘\"‘ 'U“
: Y I‘h h
\ i
AN Bus1
S
~\
N A
AY 7
h )
A b U8
N %
'\ ——

SECURE: Science and Engineering of Cyber security through Uncertainty quantification and Rigorous Experimentation 12




9-bus After Segmentation &

Balancing Authority 1

Each Control Center L———

Split in Two :> 1 N

—

N Bus 3 E 100 MW Bus 6

, 125 MW Bus 4

SECURE: Science and Engineering of Cyber security through Uncertainty quantification and Rigorous Experimentation 13



9-bus (Attacker Budget = 5) Before Segmentation
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9-bus (Attacker Budget=5) After Segmentation
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Scaling to Larger Systems

 Bilevel branch-and-bound is ineffective for interdiction models.
o Follower and leader objectives are the same.
o This leads to weak dual bounds.
o Does not scale well for larger power systems than the 30-bus test case.

« Partnered with Emma Johnson and Santanu Dey (Georgia Tech),
Jonathan Eckstein (Rutgers), and Cynthia Phillips (Sandia) to develop
decomposition algorithm for trilevel interdiction.

o Based on the Covering Decomposition Algorithm for bilevel programming by
Israeli and Wood (2002)
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A Trilevel Decomposition Algorithm

min min E la
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Large-scale Results

« Can solve small instances far more quickly with trilevel decomposition than
with the bilevel branch-and-bound approach.

* To further help with scaling, the DC optimal power flow was simplified to
capacitated network flow

o Relaxing B-theta constraint has empirically been shown to yield high-quality
lower bounds for the inner two problems (Johnson and Dey 2021)
o Can solve:
500-bus system with a SCADA system that communicates with the whole grid.
2000-bus synthetic system with a SCADA system that communicates with 30 buses.
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Thank you!
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