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Different Process Settings Cause Different
s | Microstructures and Performance
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Microstructure Prediction — Cellular Automata
Approaches
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5 Brldgmg Length Scales — Informed Relevance

Build Scale Thermal + Mechanics
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Process — Structure — Property — Performance Linkages
¢ | via Microstructurally Aware Simulation

Mesoscale Texture/Solid Mechanics/CX
T. Rodgers, J. Brown, K. Ford

Build Scale Thermal + Mechanics
Kyle Johnson, Kurtis Ford & Joe Bishop
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‘ Microstructure Prediction in Stochastic Parallel
| PARticle Kinetic Simulator (SPPARKS)

. Grain
growth
(T<T)

kMC & Solidification
Structure

Solidification
boundary (T=T )

M(T) = M,exp (%) p= {

Mobility
1

Vo Molten zone o
5e+b
0.8 (T>T,) e
0.25 I 5e+5
I 0 a) Microstructure 0

b) Mobility field

*The molten zone randomizes grain identities when it enters a
region.

*Along the trailing surface, voxels either join existing columnar
grains or form new grains.

*The temperature gradient creates a corresponding gradient
of grain boundary mobilities via an Arrhenius relationship.




Sandia — Powder Bed Melt Model + Grain
s | Prediction

Final temperature field of thermofluid simulation (M. Martinez)

Final microstructure with old
nucleation

Final microstructure with
N, = 10"

Effect of nucleation site density:

Particle-scale powder bed simulations used a
much smaller lattice size than previous work
(0.75 pm vs ~20 pym). With the old nucleation
approach, these led to a large overprediction of
nucleating grains, which resulted in a fine
equiaxed structure (top).

Introducing a N, -dependent nucleation rule
allowed only 1 nucleation site per 2,500 lattice
sites and resulted in larger grains that grew from
the substrate structure.

M. Martinez, T. Rodgers



o | Sandia — Conduction & Radiation Model

w — Using a radiative,
e conduction model we
can estimate not only
Iih'\l the build scale
LN thermal field and
history, but also the I
effective residual
I o stresses within the |

e o Tie 9 build as a function of
thermal history.
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This goes beyond the

local melt-scale
solidification front
phenomena to provide

build scale

understanding across
appreciable intervals

of time and physical I
space. ]
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thermal residual stress

Johnson et al., Computational Mechanics 2018
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Sandia — Conduction & Radiation Model + Grain

Prediction
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Sandia — Comparison with Experiment
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Direct Numerical Simulation on Additive
2 | Microstructures
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Synthetic AM builds

Direct numerical simulations in solid mechanics for understanding
the macroscale effects of microscale material variability
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‘ Direct Numerical Simulation on Additive

Microstructures
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Direct Numerical Simulation on Additive
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Microstructures
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‘ Direct Numerical Simulation on Additive

Microstructures
. 5 S 9
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71 Error estimation as UQ

e simple macroscale model
* deterministic (simulate once)
* assess error a posteriori

l stress field in tension assuming a
homogeneous isotropic material

Available online at www.sclencedirect.com e
e ScienceDirect i
iy machanics and
. e ielleg enginearing
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time to failure bound

Adaptive reduction of constitutive model-form error using
t : ? t < : 7 a posteriori error estimation techniques
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s | Error estimation and adaptivity

adaptivity (apparent properties)

___________________________________________________________

N4
i : : error
approximate —> simulation ——> enlglneelrmg —> estimation
model quantity of interest

(UQ)

A
reference |
model o

a posteriori error
(expensive) estimation framework
. . stochastic
time to failure
bound

te(w) >ty < n(w)




Error estimation: material-model error

(Zohdi, Oden, Rodin, 1996, “Hierarchical modeling of heterogeneous bodies”, CMAME)

e A So Tl
Phe - \ N <~ Te~l
- \ s ~. "= =<_
displacement field \ ~ T~
using true material approximate displacement strain field resulting from stress field resulting from
model field from simplified or approx. stress field but true approx. strain field but true
approximate material model material model material model

Key point: Can bound error using only known quantities from the approximate
simulation. Don’t need to run “true” model simulation.




» | Equiaxed microstructure




2 AM Microstructure

« KMC (SPPARKS) voxelated geometry

« 55M voxels

» two laser passes per layer (difference
between surface and interior microstructure)

* map to conformal finite-element mesh

« 30M finite elements




» | Homogenization-Localization Duality

Homogenize Using Macroscale simulation Localization
Crystal Plasticity (recover fine scale)
(filter fine scale) L ° |7

ress, MP

Assumptions:

] 001 0.0z 0.0z 004

true strain ° Scale Separatlon
* RVE well defined
* no surface effects
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First, partition structure into non-
overlapping subdomains.

904 subdomains




2 Type 1 localization

33K hex elements




25‘ Type 1 localization

traction b.c.s

displacement b.c.s

submodel

33K hex elements

local stress field



% | Type 2 localization (overlapping)

130K hex elements




71 Type 2 localization

traction b.c.s

displacement b.c.s

submodel

local stress field

won_mises_elem_avg

2.500a+00
2.000e+00
1.500e+00
1.000e+00
5.000e-01




Localization results (equiaxed)
homogeneous type 2 projection
isotropic

type 1 projection (1 Schwarz iteration)
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Minutes

~4 days on 2048 cpus



Localization results (AM)

homogeneous o type 2 projection
type 1 projection (1 Schwarz iteration) exact (DNS)

isotropic

Dirichlet
projection
(submodeling)

von Mises

Minutes ~4 days on 2048 cpus
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Sandia Fracture Challenge

316L Stainless Steel LPBF Part
Complex geometry with internal
channels and spherical cavity
Loaded in tension

Given CT data along with smooth
tension and notched tension data
Challenge Questions:

21 Participant Teams

Force at four different
displacements

Force and log strain at four
points on front face

Total force-displacement curve
Force and log strain along four
horizontal lines on front face
Images of front surface at crack
initiation and complete failure

Kramer, Boyce et al., IJF (In preparation), Johnson et al. IJF (In preparation)




s | Sandia/NM Predictive Approach

1. Fit robust plasticity model to calibration test data with
porosity distributions as initial damage

2. Run many iterations of challenge geometry with many
porosity distributions

3. Perform statistical analysis on results to enrich result
distributions

SNL/NM Team Members: Kyle Johnson, John Emery, Kurtis Ford,
Joe Bishop, Judy Brown, Chris Hammetter, Spencer Grange

Additional help from Kyle Karlson (SNL/CA)

Kramer, Boyce et al., IJF (In preparation), Johnson et al. IJF (In preparation)
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a) Model of Additive Manufactured Tensile Specimen in
grips (cut-away). b) Mechanical Test Set-up.
[Salzbrenner, et.al, IMPT 2017]

Kramer, Boyce et al., IJF (In preparation), Johnson et al. IJF (In preparation)




31 BCJ Material Model

Temperature and history-dependent viscoplastic internal state variable model
Stress is dependent on damage ¢ and evolves according to

(BN
J—(E—1_¢)J+ (1—¢)(€—¢€p)

Flow rule includes yield stress and internal state variables for hardening and damage

_Je __ 4
¢, = fsinh™ (% - 1)

The isotropic hardening variable k evolves in a hardening minus recovery form.

k= ;«.:g + (H(0) — Rq (0)K)E,

Kramer, Boyce et al., IJF (In preparation), Johnson et al. IJF (In preparation)




3D Reconstruction & Characterization of Pore
Defects

Y0 5001000500 0 S0010O0SORA0

X[ 5 X[pum)

~ 0 5601000502000

X[um]

3D uCT surface render 3D uCT internal porosity

Tremendous variation in pore content from sample to sample
Pore locations reminiscent of AM laser raster pattern

J. Madison, T. Ivanoff, O. Underwood
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Incorporating porosity as initial damage

EHT = 1000 kY

WD = 188 me Signal & = BE2

EHT = 1000 kY

WD = 188 me Signal & = BE2

A *9

‘Wickh = 8708 am

Void Nucleation

Fine scale voids (<

nucleation

Void Growth

1um) indicate

J2 Js (p)
N N, EL
Jf*] + 23 + BU‘E)

Pre-existing voids captured by void growth

QE" — gﬁp

Kramer, Boyce et al.,

2. 1—(1—¢)™" . _[2(2m—1)(p)
1_0)" smh[ ]

2m+1 o,

IJF (In preparation), Johnson et al. IJF (In preparation)




% | Porosity Distribution Directly Mapped to Mesh

~ Chart
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Kramer, Boyce et al., IJF (In preparation), Johnson et al. IJF (In preparation)



Calibration Results With Void Growth and
71 Nucleation
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» Each test has unique parameter set

Kramer, Boyce et al., IJF (In preparation), Johnson et al. IJF (In preparation)



Porosity Distribution Directly Mapped to Challenge

1 Geometry
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Kramer, Boyce et al., IJF (In preparation), Johnson et al. IJF (In preparation)




w | Performance Prediction and Experiments

Sample A21
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Crack initiation and
propagation matches
experiments well
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Kramer, Boyce et al., IJF (In preparation), Johnson et al. IJF (In preparation)




21 Participant Predictions Covered A Wide Range
o1 of Responses

21 Predictions and Bounds with Exp. Average and Bounds 21 Nominal Predictions with Exp. Average and Bounds

SFC3 Challenge Geomelry Load ve. Displacement® SFC3 Challenge Geomelry Load v, Displacerment®
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Kramer, Boyce et al., IJF (In preparation), Johnson et al. IJF (In preparation)



Blind Predictions of Force-Displacement Curves
« | Compare Reasonably Well With Experiments
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Kramer, Boyce et al., IJF (In preparation), Johnson et al. IJF (In preparation)




2| Summary

* Process models offer insight into phenomena such as melt pool
dynamics, thermal histories, and residual stress

* Microstructure prediction using SPPARKS code has been
performed at several different length scales and AM processes

» Texture prediction is being incorporated

» Initial approaches of coupling microstructure to continuum models
show importance of microstructure consideration

* Investigating use of a posteriori error estimation techniques for
quantifying homogenization errors and other model-form errors

* Continuum scale modeling of AM part performance compared well
in blind predictions

* Porosity can be accounted for using a damage formulation



