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Complex Systems of Reactions and Combustion
Mechanism Development

v

Studying the chemistry of complex systems of reaction networks
v

Gaining insights into the scientifically relevant aspects (key intermediates and chemical pathways) by
addressing the “right” level of detail for

» formation of polycyclic aromatic hydrocarbons (PAHs)

» low-temperature oxidation and ignition chemistry (detection, identification, and quantification of KHPs)

experiments and analysis procedures, theory, and new experiments




Gaining Experimental Insights Into Complex
Systems of Reactions Under Ideallzed Condltlons
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v’ Orthogonal extraction reflectron time-of-flight ™=

v Detection limit: ~0.5 ppm

v" Mass resolution m/Am ~ 4000

v’ Electron and photon ionization (at the Advanced Light Source)

v’ Continuous ionization, rapid (35 kHz) ion extraction u




Gaining Experimental Insights Into Complex

Systems of Reactions Under Idea

1. Sample from Complex Systems and record Mass Spectra

at various positions from and temperatures in the reactors
. Identify Key Components

based on m/z ratios, ionization thresholds, fragmentation
patterns, PIE curves

Signal / ion counts

. Determine the Quantitative Composition of the Reactors
calibrate the system (mass discrimination factors), measure (or
calculate) photo- and electron ionization cross sections

. Identify Relevant Reaction Pathways
from species” identities and their mole fraction data
combine measurements of mole fractions with kinetic modeling
results

. Gaining Insights into Relevant Chemical Aspects
for PAH formation and low-temperature oxidation

m GE=A

GAS PHASE CHEMICAL PHYSICS

(e

i-= N-C4H5
A:5.8
B:2.1

C5H8-13

329
C3H5

A:34.2

A:2.2/B:2.

A:37.4
|B:36.3
C3H4

7

C4H7-5

J

ized Conditions

- CAHG 555> 1-CaHS, 73

A13|
319|

A67.7
B:72.8

i
r i
! |
1
i 1
! i
H 14:0.0 A:18.3 :
A205 - |A970 18130 523 !
B:53.3 B:28.9 | i
. C3H3 1
(:5"'7"31':)3'%3I A:5.9 I
1 A424 5. i
A:29.3 : B:60.0 B:14.0 :
| S FC6HG :
e dmmmm——— ¥
CYCSHE <— e ;
A:85.1 A:21.3 e I
B:29. B:225 |B:99.9 !
A;21.3 1
CYCSHS- 3225 A4I 7
B 29.5 A:7.0
A:58.9 AI? Boo |A247
E | 8164 , QA1 B:47.1
kkkkk B:80.0 Al-
663 1A329~: ‘-“ A:46.6 A:70.2 A20.4
3210 8:30.0 B \ |B:68.7 B:59.9 319.4
A1C2H c1 _

A9.2
B:3.1

|

-~ A:59.9

B:34.4

A1'R5 —_—

A1CH3

A:61.
B:42.

A1CH2

2
7




Formation of Benzene

Surface reaction
and coagulation

Particle inception

PAH formation

Precursor
molecules
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Molecular-Growth From The First Aromatic Ring

to Pyrene

v' What are the first aromatic species and how are they formed?
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Molecular-Growth From The First Aromatic Ring
to Pyrene
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Molecular-Growth From The First Aromatic Ring

to Pyrene
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We provided a now “lumping” approach that allows
for analyzing mass spectra based on signal ratios and

for gaining chemical insights (without modeling).
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Addressing the Complexity of Reaction Systemes:
Tandem Mass Spectrometry
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Tandem Mass Spectrometry:
General Performance of the Mass Spectrometer

atmospheric pressure
photoionization (APPI)
two modes of operation:
» time-of-flight mode
» MS-MS mode

Resolution: QMF ~1, TOF ~8000

collission gas: Ar
sensitivity: thd
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2D-Color Maps of PAHs in Co-Flow Diffusion

Flames
total ion counts aromatics alkylated aromatics
(even masses) C/H=1 C/H<1
45 ; : : r




Fragmentation Scans: Identification of core-PAH
Structures
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Fragmentation Scans: m/z = 202
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Identification of core PAH Structures and
Aliphatic Chains
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Addressing the Complexity of Reaction Systemes:
Innovative Modeling Approaches/ML
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Measuring 2D Temperature Fields with Kr X-Ray
Fluorescence

Beamline 7BM at the Advanced Photon Source (APS) of the Argonne National Laboratory

X-ray fluorescence beamline
Synchrotron-generated 5.1-22 keV

High photon flux (2 x 10! photons/s)
Size of focal point: 5x 7 um

Kr excitation at 15 keV and fluorescence
detection at 12.6 keV (Kr Kat)

emitted electron

coooo

electron

electron
emitted X-ray

. p*. T
fluorescence ' sy
K
incident . L h

X-ray photon

17
@E’t N. Hansen et al., Combust. Flame, 2017, 181, 214-224 and Proc. Combust. Inst., 2019, in press -



Measuring 2D Temperature Fields with Kr X-Ray
Fluorescence

n
\ S(y)~ @ Xxgr(x,y) X
turbo pump V

Flame Chamber NYYWy p
p =30 Torr ~@ X Xgr(x,y) X T
\\'/ Quartz Nozzle (x,y)

\"/ Detector
Detector (incident beam) S(x,y): fluorescence signal

t itted be
(transmitted beam) X-Ray 15 keV @: photon flux incident X-ray beam

{from synchrotron)
Xgr(x,¥): Kr mole fraction

2 —:number density
pressure
McKenna Burner

T (x, y):local temperature
y
Flame conditions: 14.5% C,H,, 25.5% O,, 55% Ar, 5% Kr, ®=1.7, 30 Torr, 0.00404 g/cm?/sec

@ @E’t N. Hansen et al., Combust. Flame, 2017, 181, 214-224 and Proc. Combust. Inst., 2019, in press w
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Measuring 2D Temperature Fields with Kr X-Ray
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Measuring 2D Temperature Fields with Kr X- Ray

Fluorescence P
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Low-Temperature Oxidation and Ignition Chemistry
Molecular-Beam Sampling Jet-Stirred Reactor
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\Expansion Region |
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Oven
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@ @E,t K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374 u
v K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901



Low-Temperature Oxidation and Ignition Chemistry

Molecular-Beam Sampling Jet-Stirred Reactor
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Low-Temperature Oxidation Chemistry of
Dimethyl Ether (DME)

CH;0CH,
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@ @E,t K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374 a
K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901
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Low-Temperature Oxidation of DME
|dentification of the Ketohydroperoxide HPMF

Fragment pattern gives additional evidence for
the experimental detection of HPMF

Ground state populatio
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[ ]
L ]
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Photon Energy / eV
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K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374
K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901
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Detection of carbonic acid provides evidence for the Korcek
decomposition mechanism!



Low-Temperature Oxidation of DME
Quantification of the Main Species

r'd
0.024
, vV v
v

0.01+

0.004

0.06

Mole fraction

0.04+

0.024

0.00-

m GE=A

GAS PHASE CHEMICAL PHYSICS

= 1 0.03

4 0.024

4 0.014

= 4 0.00-
800 1000

", |0.02;

‘ Ar
19201 u.s-_ww
| 0.18] { 0.7 _ ;
] . Experiment
o8 USTC mech.
{0.124 oty R (PP NUI mech.
= == = Nancy mech.
0.5-
0.044

0.00+

00 800 1000

Temperature (K)

600 800 1000

K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374
K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901



Low-Temperature Oxidation of DME
Quantification of Some Intermediates

« Experiment ——USTC mech,

----- NUI mech. - - - CNRS mech. CH, O = Experiment
(a) H,0 e o — USTC mech.
6 20, dimethyl athar (DME) - oo« NUI mech.
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CH50CH, g1 RIS
1[ 15t O,-Addition = o .:.'..
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i % it f-on l g
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1Y performic acid -£0, hydropercxymethyl formic acid methyl
i Hz | Ttormate (HPMF) hydroperoxide 500 600 700 800 900 1000
1 \ i Temperature (K)
i } 1[ Korcek Decomposition
Models:
] HOCOOH 0/\0 —— [ HcooH Z. Wang et al., Combust. Flame, 2015, 162, 1113-1125 (USTC)
i e e e R carbonic acid | “CHz0 o )\d{ formic acid U. Burke et al., Combust. Flame, 2015, 162, 315-330 (NUI)

Temperature (K) A. Rodriguez et al., J. Phys. Chem. A, 2015, 119, 7905-2923 (CNRS)

@ @E,t K. Moshammer et al., J. Phys. Chem. A, 2015, 119, 7361-7374 a
K. Moshammer et al., J. Phys. Chem. A, 2016, 120, 7890-7901
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Low-Temperature Oxidation of DME

Quantification of CH;O00H and the Ketohydroperoxide HPMF

» using calculated photoionization cross sections

ePolyScat (version E3)

F. A. Gianturco et al., J. Chem.
Phys., 1994, 100, 6464-6471

A.P.P. Natalense et al., J. Chem. r r |
Phys., 1999, 111, 5344-5348 -

R. R. Lucchese, Texas A&M

A. W. Jasper, Argonne
> tested against a variety of known species

= uncertainty < a factor of 2

» it calculates total cross sections
= fragmentation pattern needs to be known

> it doesn‘t calculate Franck-Condon overlaps
= scale to experimental photoionization efficieny curves
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Low-Temperature Oxidation

neo-Pentane and Tetrahydrofuran as Logical Extension

High temperature chemistry
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auto-oxidation

O apply the insights gained from the DME

project to study the low-temperature
oxidation of a more complex molecular
system:

v neo-pentane
v’ tetrahydrofuran (THF)

v’ ethylene ozonolysis

N. Hansen et al., J. Phys. Chem. Lett., submitted m



Low-Temperature Oxidation of neo-Pentane
Detection and Identification of the KHP
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Low-Temperature Oxidation of Tetrahydrofuran
|ldentification and Quantification of the Ketohydroperoxide

THE JULURNAL 10
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J. Phys. Chem. A 2016, 120, 6582-6595

Pressure-Dependent Competition among Reaction Pathways from -0t
First- and Second-0, Additions in the Low-Temperature Oxidation of

Tetrahydrofuran T
Ivan O. Antonov, Judit Zidor, Brandon Rotavera, Ewa Papajak, David L. Osborn, Craig A. Taatjes, Aok
and Leonid Sheps*
Combustion Research Facility, Sandia National Laboratories, Livermore, Califomia 94551, United States -50F
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“..energies were calculated using MO6-
2X/cc-pVTZ geometries and frequencies and
a high level energy correction that
approximates the CCSD(T)/CBS result,
where ~CCSD(T)/CBS = CCSD(T)/cc-pVTZ +
MP2/CBS — MP2/cc-pVTZ and the CBS limit
was approximated using a two point
formula and the cc-pVTZ and cc-pVQZ basis
sets.” — Ahren Jasper (Argonne)




Ozonolysis of Ethylene
Ketohydroperoxide and Criegee Intermediate Reactions
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Addressing the Complexity of Reaction Systemes:
Rotational Spectroscopy

» dissociative ionization might preclude a complete qualitative and quantitative interpretation of the
sampled mass spectra

» similar ionization energies and photoionization efficiency curves may prevent isomer-specific assignments

» small Franck-Condon overlaps might hamper an adequate formation and sensitive detection of the
corresponding ion

» access to synchrotron facilities for photoionization measurements might be very competitive and limited
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Microwave Spectroscopy as a Diagnostic Tool

MW spectroscopy is the most accurate way to determine molecular -
structures \

v’ rotational transitions are uniquely dependent on the molecular \
structure ‘?/Ei?a alectronic
[lk. -iss.x::.au:n

v’ characteristic fingerprints due to fine and hyperfine structures, and
internal rotation effects
v superior resolution (E/AE ~ 10°)
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Challenges: imternuckear separation
the rotational temperature of the targeted species must be: s E=J(J+1)B
» sufficiently cooled after sampling from the hot (up to EJ_H
— 128

~2300 K) environment of the reactors
» independent of the varying temperatures at different
sampling positions
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Addressing the Complexity of Reaction Systemes:
Rotational Spectroscopy ;
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Addressing the Complexity of Reaction Systemes:
Rotational Spectroscopy
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Addressing the Complexity of Reaction Systemes:
Rotational Spectroscopy
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Potential Targets:

v' Reactors (flames, JSR, etc.) can provide target species in a controlled
manner that are hard to obtain otherwise

Highly exidized intermediates
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= isomer- and conformer
specific spectroscopy
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v" Low-Temperature Oxidation:
» Identification and
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Conclusions and Outlook

> address the complexity of chemical reaction networks with a combination of
experiments, data analysis procedures, and model development

v’ identify reaction pathways, detect and quantify key intermediates

» fuel-structure dependence of molecular-weight growth reactions using an
experimental lumping approach

> imaged 2D temperature fields around the quartz sampling probe

> detection, identification, and quantification of elusive highly oxygenated
intermediates during the low-temperature oxidation of DME, neo-pentane, and
THF

v" conformer-dependent ionization and appearance energies, photoionization
cross sections

» address the complexity of the reaction networks with new experimental
approaches, i.e. microwave spectroscopy and MS-MS
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