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ABSTRACT

Predictive design of REHEDS experiments with radiation-hydrodynamic simulations requires
knowledge of material properties (e.g. equations of state (EOS), transport coefficients, and
radiation physics). Interpreting experimental results requires accurate models of diagnostic
observables (e.g. detailed emission, absorption, and scattering spectra). In conditions of Local
Thermodynamic Equilibrium (LTE), these material properties and observables can be
pre-computed with relatively high accuracy and subsequently tabulated on simple
temperature-density grids for fast look-up by simulations. When radiation and electron
temperatures fall out of equilibrium, however, non-LTE effects can profoundly change material
properties and diagnostic signatures. Accurately and efficiently incorporating these non-LTE
effects has been a longstanding challenge for simulations.

At present, most simulations include non-LTE effects by invoking highly simplified inline
models. These inline non-LTE models are both much slower than table look-up and significantly
less accurate than the detailed models used to populate LTE tables and diagnose experimental
data through post-processing or inversion. Because inline non-LTE models are slow, designers
avoid them whenever possible, which leads to known inaccuracies from using tabular LTE.
Because inline models are simple, they are inconsistent with tabular data from detailed models,
leading to ill-known inaccuracies, and they cannot generate detailed synthetic diagnostics suitable
for direct comparisons with experimental data.

This project addresses the challenge of generating and utilizing efficient, accurate, and consistent
non-equilibrium material data along three complementary but relatively independent research
lines. First, we have developed a relatively fast and accurate non-LTE average-atom model based
on density functional theory (DFT) that provides a complete set of EOS, transport, and radiative
data, and have rigorously tested it against more sophisticated first-principles multi-atom DFT
models, including time-dependent DFT. Next, we have developed a tabular scheme and
interpolation methods that compactly capture non-LTE effects for use in simulations and have
implemented these tables in the GORGON magneto-hydrodynamic (MHD) code. Finally, we
have developed post-processing tools that use detailed tabulated non-LTE data to directly predict
experimental observables from simulation output.
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1. INTRODUCTION

The fields of high energy density science (HEDS), radiation effects science (RES), and inertial
confinement fusion (ICF) are characterized by experiments that heat material from everyday,
ambient conditions to extremes of pressure, density, and ionization. These experiments are
conducted on facilities that compress energy in space and time. For example, Sandia’s Z machine
stores 20 megajoules of electrical energy in capacitor banks and delivers that energy in the form
of > 20 mega-ampere currents to centimeter-scale targets over a few hundred nanoseconds. RES
targets such as wire arrays undergo vaporization, implosion, and rapid ionization and heating,
producing terawatts of X-rays over a few nanoseconds from stagnation plasmas with temperatures
around 3 keV and densities above 1 mg/cm?®. ICF experiments such as Magnetized Liner Inertial
Fusion (MagLIF) reach stagnation conditions with similar temperatures and near-solid densities,
producing kilojoules of fusion products which, at larger scales, could lead to self-heating fusion
plasmas with significant energy gain. HEDS experiments that test the fundamental physics of
materials at extreme conditions reach conditions similar to those found in the centers of giant
planets, the solar photosphere, and the surfaces of white dwarf stars.

Sophisticated magneto-radiation-hydrodynamic (R-MHD or rad-hydro) simulation codes are used
to design and interpret data from these experiments. These codes simulate the evolution of targets
under the driving forces of intense radiation or high electrical currents and predict measurable
quantities like X-ray and neutron spectra and output yields. Reliable predictions of target
evolution and performance enable efficient use of the limited number of experiments that can be
conducted on large-scale facilities like Z, shortening design cycles and maximizing impact.
Accurate material properties are a key factor in the reliability of rad-hydro codes: changing
material equations of state (EOS), transport coefficients, or radiative properties can have profound
effects on simulation predictions including implosion velocities, instability development,
stagnation conditions, and outputs.

Material properties are incorporated into rad-hydro codes either through read-in of tabular data or
by inline calculations. High-accuracy tabular data can be pre-computed using first-principles
atomic-scale models such as density functional theory-molecular dynamics (DFT-MD) for EOS
and some transport coefficients, or multiconfiguration Dirac-Fock models for radiative properties.
Importantly, however, many of the most sophisticated atomic-scale models generate only a subset
of material properties. Thus, rad-hydro codes will often use tables of EOS, transport coefficients,
and radiative properties that come from independent models. This ensures that the best available
data is used for each property, but introduces potential inconsistencies. For example, an EOS
table might predict melting at different conditions than a conductivity table. These inconsistencies
can lead to instabilities in rad-hydro models and contribute to uncertainty in design predictions.
By contrast, inline calculation of material properties ensures a complete set of consistent data, but
because these models must be invoked many times, they must be fast and highly simplified, and
are thus much less accurate than the sophisticated atomic-scale models used to generate tabular
data.

These considerations inspire the first research line of our LDRD, which is to generate a complete
and internally consistent set of material property data from a single, relatively accurate model. We
choose a DFT-based average-atom model (DFT-AA) as our foundation, since it has deep
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theoretical connections to both the DFT-MD models used for EOS and the multiconfiguration
Dirac-Fock models used for radiative properties and can generate a complete set of data for a
single temperature-density point in ~minutes, rather than the ~hours or days that more
sophisticated codes might take. Chapter [2 describes the DFT-AA model and our model choices
for its generation of EOS, transport, radiative, and observable properties, as well as its extension
to non-equilibrium plasma conditions. These choices were critically informed by detailed
comparisons to state-of-the-art DFT-MD, time-dependent density functional theory (TDDFT),
collisional-radiative (CR), and line broadening models, whose capabilities were advanced during
the LDRD to provide extensive and accurate touchstone reference data to guide the DFT-AA
model development. Energy-resolved data such as dynamic structure factors, dynamic collision
frequencies, stopping powers, and line shapes have proven especially valuable, since those
quantities help us assess collisional properties that have direct impact on transport coefficients,
which are particularly ill-constrained in DFT-AA models. We have also begun to investigate
many-body calculations of electron-phonon and electron-electron scattering processes, described
in Appendix [A] that will improve our understanding of transport coefficients.

With a generalized model such as our DFT-AA, data tabulation is straightforward for material in
local thermodynamic equilibrium (LTE), where material properties depend only on temperature
and density. LTE is a highly restrictive steady-state condition where the electron, ion, and
radiation distributions are all perfectly thermal with equal temperatures (7, = T; = T,.). While LTE
is nearly ubiquitous at everyday temperatures, it becomes extremely difficult to maintain at high
temperatures, lower densities, and for high-Z elements. Non-LTE effects are especially important
for RES targets and diagnostic tracers in ICF experiments, which rely on high-Z radiators like
copper (Z = 29) and krypton (Z = 36) to produce multi-keV X-rays from sub-solid-density
plasmas with high electron temperatures. In these plasmas, where the radiation temperature
cannot keep pace with the electron temperature, LTE calculations overestimate radiative cooling
rates by orders of magnitude and predict overionized emission spectra that are dramatically
different from experimental measurements. Simplified inline models can roughly capture these
dramatic non-LTE effects, but they are much less accurate than more detailed models and are not
suitable for direct comparisons with measured data. And even highly simplified inline models add
significant computational expense to design simulations, often dominating runtimes.

The importance of non-LTE effects and the relative inaccuracy and computational expense of
existing inline models lead to the second research line of our LDRD, which is to design and
implement a tabular scheme for non-LTE material properties. This is challenging because
non-LTE material properties depend on infinitely variable radiation fields and electron-energy
distribution functions and density rather than on equilibrated temperatures and densities. Chapter
[3] describes our approach towards tabular non-LTE, which uses a physics-informed tabular
structure that captures a wide range of non-equilibrium behavior in tables that are only about ten
times larger than LTE tables. For each electron temperature and density, the tables sample
radiation fields typical of optically thick, fluorescing, and photoionized plasmas, explicitly
including an LTE point. Because many of the details of the radiation are folded into the table
generation, we find that we can use a very coarse radiation bin structure that keeps table sizes
moderate for use in rad-hydro codes. This chapter also describes interpolation strategies and the
implementation of the coarse-binned NLTE tables in the MHD design code GORGON. While the
tabular scheme was developed using an existing non-LTE collisional-radiative code that has
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reliable radiation physics but rough EOS and transport models, the addition of non-LTE effects to
the DFT-AA model described in chapter 2] allows us to combine the research advances in tabular
non-LTE and internally consistent modeling for unprecedented accuracy, consistency, and speed
in generalized HED target design.

The third and final research line of our LDRD aims to increase the usefulness of these new
capabilities by developing post-processors that can predict detailed observables suitable for direct
comparison with experiments. Chapter {] describes our approach. First, we supplement the
coarse-binned non-LTE tables described in chapter [3] with separate tables of highly resolved
emission and absorption spectra. Next, we have built a simplified plasma model with cylindrical
symmetry that reads in plasma conditions and our coarse-group non-LTE tables, performs
iterative radiation transport to find a self-consistent radiation field, and produces detailed emission
spectra from the tables as output. Finally, we have developed a rigorous model of specific
instruments fielded on Z, including diodes, imagers, and spectrometers, that can take detailed
multidimensional output from our GORGON MHD simulation and predict spatially, temporally,
and spectrally resolved diagnostic data suitable for direct comparison with experimental data.

This LDRD has made significant advances along all three of its research lines, reaching early
implementation stages for new capabilities in internally consistent non-LTE DFT-AA models,
tabular non-LTE data generation and its use in rad-hydro codes, and post-processing for direct
comparisons with experiments. Its support of advances in state-of the art line broadening and
TDDFT models has led to tens of presentations at national and international conferences and
workshops; four published papers papers directly related to the development work done in the
LDRD: Gomez et al. [8, 9, 10], Callow et al. [[11]] (including two PRLs); two submitted papers:
Baczewski et al. [12]], Nagayama et al. [[13]; three papers near completion: Kononov et al.

[14]], Hentschel et al. [[15], Kononov and Baczewski [16]; and one planned paper: Adler et al.
[17]. Additionally, the capabilities developed during the LDRD contributed to eight papers with
external collaborators: Kraus et al. [18], Strehlow et al. [[19], Hu et al. [20], Beier et al. [21]], Jiang
et al. [22], Kononov et al. [23], Ramakrishna et al. [24, |25] (including two published PRLs and
two submitted Nature Communications articles). The work enabled by this LDRD has led to
ongoing dynamic collaborations with students at Cornell and UNM, a late-start Academic
Alliance project with UIUC on first-principles modeling of electron-electron interactions
(described in Appendix [A), and has engaged scientists from LLNL, LANL, and LLE on topics of
tabular non-LTE, DFT-AA, and line broadening.

2. INTERNALLY CONSISTENT ATOMIC-SCALE MODELING

Atomic-scale modeling of high energy density plasma (HEDP) is an extraordinarily rich field.
Adequate models must incorporate information about both electronic and ionic structure,
including physical effects such as partitioning between free and bound electrons (ionization Z*),
the structure and occupations of specific electronic configurations and free-electron densities of
states, the spatial distribution of quantum electrons (screening), and the spatial distribution of ions
(e.g. lattice structure). Together, these properties can be used to determine the equation of state
(EOS) of a material. Some models can also predict the dynamic (energy-dependent) responses of
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the whole electron+ion system to perturbations such as external electric fields, temperature
gradients, photons, and fast charged particles. These response functions can be used to derive
transport properties such as electrical and thermal conductivities, opacities, and stopping powers.
The most powerful models can also generate predictions for detailed observables, such as
emission, absorption, and scattering spectra.

Within the wide range of temperatures and densities relevant to high energy density science, many
approaches to atomic-scale modeling have been developed that take advantage of simplifying
assumptions. In the classical plasma limit of very high temperatures and very low densities, atoms
are often assumed to be fully ionized and the electron and ion energy distributions are often taken
to be simple thermal Maxwellians. The kinetic models that operate in this regime use statistical
methods to describe the properties of the plasma. The most sophisticated kinetic models can
incorporate ionization and dynamic screening effects via, e.g. quantum statistical potentials; some
can accommodate non-Maxwellian distribution functions; and the non-equilibrium atomic-kinetic
models described in Section [3|can describe the occupations of detailed electronic configurations.
But kinetic models are fundamentally classical: they often struggle to incorporate quantum effects
such as electronic degeneracy and almost invariably treat ions as an ideal gas. In the condensed
matter limit of high density and low temperature, models from solid-state physics treat the ion-ion
and electron-ion interactions exactly, with approximations only made to the electron-electron
interaction to prevent the cost of treating the electrons quantum mechanically from growing
exponentially. The most sophisticated of these models, such as Quantum Molecular Dynamics
(QMD) or density functional theory - molecular dynamics (DFT-MD) are multi-center (many-ion)
models that account for electron-electron interactions through a density-dependent
exchange-correlation potential in a self-consistently evolving electron-ion system. They can be
used to generate equations of state, predict phase boundaries, and model electron-ion coupling
rates that inform conductivities and (for TD-DFT) dynamic response functions. But these models
rely on the same fictitious electronic orbitals that all DFT models do, struggle with
non-equilibrium, and tend to be computationally expensive, especially for high temperatures and
many-electron systems. Path-integral Monte Carlo (PIMC) methods offer an alternative to DFT
that can be more accurate in certain circumstances, but they frequently have a computational cost
or restrictions on temperature that prohibit their use in quite as wide a range of applications.

While many atomic-scale models operate in only limited regimes, REHEDS experiments and
simulations access material conditions from cold solids to hot plasmas and thus must have
information about material properties over a wide range of regimes. This requires combining
regime-specific models to provide a continuous set of tabulated material properties, which is a
significant challenge. Further, since few models provide data for all material properties,
simulations often draw on tables for EOS, transport coefficients, and opacities calculated with
different models. For example, melting and metal-insulator transitions may occur at different
conditions in a given EOS table than they do in a conductivity table derived from a different
atomic-scale model [26, [27]. Such inconsistencies can lead to instabilities and unphysical
behavior in simulations. These considerations motivate the first line of research in this LDRD: to
develop a single atomic-scale model that can span a wide range of material conditions and
provide a complete set of material properties. While such a model may not be locally as accurate
as more specialized models, its predictions will be at least internally consistent and its behavior
across regimes will be driven directly by its underlying physics.
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In this section, we describe our efforts to develop and extend a relatively fast and flexible
DFT-based average-atom model (DFT-AA) to serve as a basis for a complete set of internally
consistent material properties data, incorporating features from both kinetic and multi-center DFT
models. The DFT-AA model is a single-center, fully quantum, all-electron model that can capture
the statistically averaged properties of both electrons and ions over a very wide range of
temperatures and densities, with each run taking only a few minutes on a desktop. It can be
extended to make a wide range of predictions for material, transport, and radiative properties.
Since many of these extensions invoke theories with significant degrees of freedom, we rely on
the guidance of more expensive and sophisticated regime-specific models to constrain its
predictions. In the following sections, we describe the fundamental structure of the DFT-AA
model and its predictions of EOS, transport, and radiative properties.

2.1. Introduction to the Average-Atom Model

Average-atom models distill the complexities of multiple electronic and ionic configurations into
a single, averaged ion with a self-consistent electronic potential and electron density. They have
deep ties to modern density functional theory (DFT) [28-30], which asserts that all of the
properties of a quantum mechanical system can be determined as functionals of the spatially
dependent electron density. DFT-AA models have a long history of application to high energy
density science, beginning with Thomas-Fermi models developed in the 1920s [31, 32]], and are
still widely used today due to their compactness, completeness, and computational efficiency.

Early average-atom models used a fluid description of the spatially dependent electron density in
a given potential, derived a new (screened) potential from that density, and iterated until the
screened potential and the electron-fluid response to that same potential converged. Modern-day
AA models are fully quantum mechanical [33] 34]: they use the Schrédinger or Dirac equations
to obtain both bound and continuum electronic orbitals in a given potential, populate those
orbitals according to Fermi-Dirac statistics to obtain an electron density, and iterate until the
potential and electronic density are convergent (self-consistent). Neutral pseudo-atom (NPA)
models [35H37] extend AA model predictions to include ionic structure by constructing a
dynamically screened inter-ionic potential that can be used to determine the average spatial
distribution of the ions in strongly coupled (fluid) and weakly coupled (plasma) systems. For
crystalline solids and molecular systems, these single-center models will fail to give complete and
reliable predictions — although approximations that extend the applicability of AA-based transport
models to solids exist and are discussed in section 2.3 below.

The DFT-AA model used in this work was originally developed as a semi-relativistic version of
the Purgatorio code [34] that is used to generate equation of state and conductivity data for
LLNL’s LEOS databases. Before this LDRD began, the code had been substantially extended
following Starrett and Saumon [37/]] and Johnson [38]] to extend its predictions to include ionic
structure, Compton scattering, and optical properties. Here, we provide a brief summary of its
structure, discuss the fundamental model sensitivities to things like boundary conditions,
definitions of ionization, and exchange-correlation potentials, and compare some basic
predictions of the model to the much more sophisticated (and expensive) multi-ion-center
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DFT-MD code VASP [39-41]]. Atomic units (h=m, =e=ag=1) |1_-I are used throughout unless
otherwise noted.

The inputs to the DFT-AA model are simple: a nuclear charge Z,,,., a temperature 7', and a mass
density p. The density and nuclear charge are used to define an ion density n; = Nap/aw ag (with
N4 Avogadro’s number and aw the atomic weight) and the Wigner-Seitz radius

Rws = (3/(4nn;))'/3 that defines space-filling ion spheres. The model uses a muffin-tin ion
distribution that is zero for r < Ry s and unity beyond, and makes an initial guess at a potential
V(r) that interpolates from —Z,,./r at small r to zero at r = Rys. The model solves a
semirelativistic version of the Schrodinger equation in the given potential, determining the radial
dependence of bound (P,y) and continuum (Fgy) electronic orbitals, which are populated
according to their statistical weights g, = 2(2¢, + 1) and the Fermi distribution

f(eau) = (14 eE/%) =1 with T = kgT (in this chapter, T indicates temperatures in atomic
energy units). The chemical potential u is variationally constrained to enforce neutrality within
each sphere. The total electron charge density,

4r?ne(r) =Y f(8a:1)8aPs (r), (1)

is in turn used to determine a new potential,

Z R / /
nuc+/ WSM_;_VXC@), )
0

v —r|

with the first term accounting for the nuclear charge, the second term accounting for
self-consistent screening, and the last term an exchange-correlation potential, which we take to be
Vie(r) = —[3n.(r)/n]'/? + V,(r) using exchange in the local density approximation (LDA) and a
Hedin-Lundquist correlation potential [42]]. This procedure is iterated until n,(r) and V (r)
converge, yielding a complete set of bound-state orbital binding energies €, radial
wavefunctions P, (r), and average occupations o,y = g¢f (€,¢;11) f(f ¥s P2,(r)dr along with
continuum wavefunctions Pg(r), a continuum density of states (DOS) X (€) = Y., Xy(€), with
X/(e) = 4mgy f(f WS p2,(r)dr, and phase shifts 1, for each of the distorted continuum waves. The
model also provides several plausible definitions for the average ionization Z* [43]], a
self-consistent chemical potential y, and a self-consistent electron density distribution n,(r). The
model runs in a few minutes on a desktop for any element, temperature, and density.

To obtain the ion distribution function, we solve an additional set of self-consistent equations
similar to the above, but excluding the central charge. This provides an external electron density
n&®(r) that is used to define the screening density 75" (r) = n,(r) — n (r) — ni*(r) that informs
the inter-ionic potential and ionic distribution. There are several plausible choices for the

definition of 7" (r) [36]], which are related to the choice of Z* and are discussed further below.

'Some useful relations are:
energy: l au=1Ha=272¢eV
length: 1 au=0.529 A=0529x10"% cm
time: 1 au=24.2 x107 '35
pressure: 1 au =294 Mbar
temperature: 1 eV = 11605 K
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With this additional step we supplement the complete and self-consistent set of average electronic
structure information with a self-consistent picture of the average ionic structure. EI

This DFT-AA model is rigorously self-consistent but not fully self-constrained. Its predictions
will vary with choices for a) the exchange-correlation potential (as is true for all DFT models), b)
the boundary conditions (V (Rys) and/or P,y(Rws) — see [[11]), and c) the definition of the
screening potential (alternatively, the choice of Z* and n/°"(r)). To help constrain these choices,
we turn to multi-center DFT-MD models, which provide first-principles predictions of electronic
and ionic structure that are sensitive primarily to the exchange-correlation potential. By fixing the
exchange potential to be the LDA in both the DFT-AA and DFT-MD models, we can use model
comparisons to constrain our remaining choices for DFT-AA. These rigorous comparisons for
both the static properties discussed here and the dynamic properties discussed in later sections

were a key part of the success of the LDRD.

Here, we use solid-density iron as an exemplar (Z,,, = 26,p = 7.9 g/cc, T =1 eV). This
many-electron system has a highly structured continuum density of states that leads to a profound
difference in two plausible definitions of Z*, and so provides a good test of our model choices.
The top panel of fig. shows the energy-dependent density of states for the valence bound

(¢ < 0) and continuum (€ > 0) electrons. The states have been broadened in the DFT-AA model
for comparison with the multi-center DFT-MD code VASP and shifted by 1.4 eV to align the
chemical potentials of the two models (10.4 eV for DFT-AA and 11.8 eV for DFT-MD). Overall,
the agreement is quite good, indicating that the DFT-AA model captures the average quantum
electronic structure of even this complicated material rather well. This (along with other
comparisons not shown) supports our choice of boundary conditions that force V (Rys) = 0 and
place no constraints on P(r) or dP(r)/dr. Note that while the 3s and 3p states in both codes are
clearly bound, the “scar” of the 3d state (pressure-ionized from a bound state at lower densities) is
solidly in the continuum with € > 0. The unstructured ideal density of states, X’ = (2€)'/2/(n;n?),
which represents the allowed states for plane-wave (“free”) electrons, is given by the dashed line.
Here, X' is much lower than the quantum DOS. The chemical potential of around 11 €V is, in this
degeneracy-dominated system, approximately equal to the Fermi energy

er ~ 1.7(nc[e/cm®] /10?%)2/3 eV, indicating an ionization Z* of about 2 electrons per ion.

In the DFT-A A model, there are several plausible options for defining the average ion charge Z*
[43]]. One intuitive option is to count the number of positive-energy continuum electrons:

Ze = Znue — Zpouna = [y X (€)f(&;u)de. In our iron example, Z, integrates over the 3d resonance
and predicts that there are 8 continuum electrons per ion: this corresponds to the light gray nS(r)
curve shown in fig. 2-Tp. Another option is to count only the free electrons in the ideal density of
states, Zy = [;°X'(€) f(g; u)de — predicting only 1.8 free electrons per ion: this corresponds to the

dashed n{f (r) curve in fig. . These choices directly affect the definition of the bound electron
density belonging to the ion, n’"*(r), and therefore profoundly affect the screening electron
density n5"(r) defined above. In more concrete terms: the ion-ion coupling parameter

[y = (Z*)?/Rwstis 33 using Z* = Z ¢ (indicating a strongly coupled liquid), while for Z* = Z,,

2One can go farther with self-consistency by replacing the muffin-tin/Heaviside ion distribution function that was
used to calculate the initial electronic structure with the self-consistent g(r), but Starrett and Saumon have shown
that the resultant changes to the electronic structure (and therefore subsequent g(r)) are small [37]]; thus we stop at
this step.
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Figure 2-1 A comparison of multi-center DFT and DFT-MD data and our
DFT-AA model for iron at p = 7.9 g/cc and 7 = 1 eV: (a) valence-shell
electronic densities of state, (b) radial electron densities with error bars
representing averages over ions for DFT-MD and two plausible defini-
tions of ionized electrons in DFT-AA, and (c), radial ion distributions for
the two definitions of ionization.
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I';; = 653 — well above the I';; = 172 melt boundary of the simple one-component plasma (OCP)
model — that is, well into the solid regime. A comparison of the resultant radial ion distribution
functions g(r) with the first-principles DFT-MD result is shown in fig. 2-Tk: using Zy as the
number of screening electrons gives excellent agreement between DFT-AA and DFT-MD, while
using Z. leads to striking disagreement. E-]This result definitively constrains our choices of Z*:
whenever we consider phenomena that rely on the free response of electrons that can spread
throughout space, we will use Zy, plane waves P!, (r), and the ideal density of states X'(€);
excluding the spatially localized component of the continuum electrons. By contrast, whenever
we consider phenomena that must satisfy sum rules or that require matrix elements based on the
actual quantum distorted-wave states, we will use Z., Pes(r), and X (€).

The necessity of separating “free” electronic states from continuum electronic states requires a
formal treatment that goes beyond the two relatively simple definitions of Z* defined above,
which were based on the energy-dependent densities of states: we must also be able to define the
radial dependence of both free and continuum states in order to calculate the ion density n'°"(r)

used in the definition of the screening density 7" (r). So far, our DFT-AA model provides only

the full distorted-wave orbitals Pg, and thus nS(r) — but not nl (r) or Py for the features in the

continuum density of states that are the “scars” of bound P, states. These resonances retain some
bound-state character (with high probability to be near the nucleus, as illustrated by the substantial
3d continuum feature evident below 0.6 A in fig. ), but also acquire long-range oscillations
that resemble phase-shifted free-wave states with radial wavefunctions P, = (2/mp) V2prj(pr),
with p = (28)1/ 2 and j, the spherical Bessel functions. As we step through the energies associated
with each resonant feature, the phase shifts of the long-range Py functions change over 27 [34]],
so that an integral over the resonances yields a “quasibound” P« state with finite extent. We thus

define quasibound radial wavefunctions as P = [ [PeeX; — P&X éi]de, where the integral is over

the resonance peak, and normalize the resonance orbitals by setting f(f WS P,f .dr to

fs = [es [Xe — X]de/ [,,, Xede. This gradually reduces effective statistical weights as resonances
merge into the continuum, a reduction analogous to — and continuous with — the reduction factors
of f(f ws Pfgd r imposed for bound orbitals that extend beyond the ion sphere. In the remainder of
this report, we use these quasibound states only to define the screening density defined above
(through their inclusion in 7°"(r)) and to compute Slater coefficients for the multiconfiguration

expansion of the model (described in section . ﬁ

3The Quantum Ornstein-Zernike equations that are used to calculate g(r) in the DFT-AA model are unstable for
high values of T, so the continuum-based g(r) shown in the figure is unconverged — and in any case, the g(r) of a
crystalline solid would have distinct, narrow peaks corresponding to its lattice structure rather than the spherically
averaged representation of an AA model. Nonetheless, the figure is a reasonable representation of the dramatic
differences in ionic structure between liquids (where the kinetic energy of ions has the same order of magnitude as
the potential energy between them) and solids (where the ion kinetic energy is dwarfed by the interionic potential).

“In our early calculations of scattering spectra [12], we proposed to use these quasibound states identically to bound
states in calculations of bound-bound and bound-free scattering features; however in the last year of this LDRD
we derived the more consistent treatment now presented in section
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2.2, Equations of State

The equation of state (EOS) is an essential closure term for hydrodynamic simulations: it
determines how materials respond to external forces. The EOS provides a relationship among
thermodynamic variables such as pressure, density (or volume), and temperature that satisfy
Maxwell’s thermodynamic relations. For example:

oU = 19S — POV 3)

with U the internal energy, S the entropy, P the pressure, and V = 1/n; the volume. A very simple
equation of state is the ideal gas equation: PV = nRT, from which we can derive a simple estimate
for the pressure knowing only the ionization Z*: P[Mbar| ~ (p/aw)T [eV](1 4 Z*), with p the
mass density and aw the atomic weight. The ideal-gas pressure includes both ion and electron
pressures in the factor (14 Z*), and so the electron-pressure term is sensitive to our choice of Z*.
The left panel of fig. @ shows the temperature dependence of Z (dashed) and Z. (light dashed)
from the DFT-AA model along three isochors about solid density for aluminum (top) and copper
(bottom), and compares these to Z* from the SESAME tables (93721 for aluminum and 3325 and
29325 for copper). E] The Z. have generally worse agreement with the reference ionization values,
especially at low temperatures, and for copper Z, exhibits sharp discontinuities as increasing
temperatures allow re-binding of the pressure-ionized 3d* resonances illustrated in the previous
section (see also [43]]). We thus take the electron pressure to be a phenomena that depends on the
“truly free” electrons Z; rather than on the positive-energy electrons Z.. The light dashed lines on
the right panels show that the total (ion + electron) ideal-gas pressures using Z* = Zy are in good
agreement with the SESAME tables at high temperatures, but do not capture degeneracy effects
important at high density and low temperature.

To account for degeneracy effects, we use a modification of the ideal-gas expression for the
electron pressure: P, = (21)%/2L 12(u/T)/ (6m?), derived from the quantum mechanical expression
for the stress tensor [44], where I3 5 is the Fermi integral assuming an ideal density of states. The
heavier dashed lines on the pressure plot in fig. [2-2] show the results from this expression for the
electrons (keeping the ideal-gas approximation for the ions). This simple expression agrees with
the tables down to much lower temperatures than the ideal-gas P, and is the preferred option for
our DFT-AA (and non-LTE-model) tables, since it is always positive and is not particularly
sensitive to numerical precision.

We also routinely calculate two other estimates of the electron pressure from our DFT-AA
models: 1) PY"" = (n;/3)(2U —U,,), an expression derived from the Virial theorem [45] with U
the total internal energy and U, the internal potential energy (see below), and 2) a variational
P)*" = —(0F [0V )|, with F = U — 1S the Helmholtz free energy and S the entropy. We find that
the Virial and variational pressures demand extreme numerical precision [34], and while the three
expressions for pressure (modified ideal, Virial, and variational) agree to within 5% at high
temperatures, P/ tends to asymptote to a too-large constant positive value at low temperatures
and P)" tends to asymptote to a constant negative value; neither of these pressures are shown in

fig.

>From John Carpenter and Kyle Cochrane
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Figure 2-2 A comparison of average ionization (left) and total (ion +
electron) pressure (right) for aluminum (top) and copper (bottom) iso-
chors about solid density. Colors correspond to the densities as la-
beled. The solid lines are from SESAME tables. For ionization, the
dashed lines are DFT-AA Z; and Z. (light). For pressures, the dashed
lines are DFT-AA degenerate and non-degenerate (light) ideal electron
pressures. The light gray lines are LTE results from our screened-
hydrogenic CR model ([1]; see section [3) to illustrate the relative ac-

curacy of inline non-LTE models.

23




To enable the variational pressure calculation — as well as calculations of other variational
quantities such as heat capacities (Cy = (dU /dT)|y) and compressibilities

(xr = —(1/V)(0V /9P)|r = Sii(0)/(n;t)) — at single temperature-density points and on coarse
tables, we have built in additional convergence loops in the DFT-AA model that recompute the
self-consistent electronic structure under small changes in density and temperature. For variations
in density, we compresses the radial grid from r — r/f, (with f, ~ 1.02) and leave the effective
potential unchanged as an initial guess; this provides a starting point for convergence that is
generally good to within a few percent and offers a significant speedup over starting from scratch.
While these additional convergence loops increase the computational time, they extend the
capabilities of the model and enable rigorous checks on thermodynamic consistency (that is,
simultaneous satisfaction of Maxwell’s thermodynamic relations) on coarse temperature-density
grids.

Other thermodynamic quantities of interest include the electron internal energy U and entropy S,
which enable generation of Hugoniot curves that minimize the quantity

(U—-U"+ %(V — V) (P + P°) for some reference density p. In our atomic-kinetic non-LTE
models, the internal energy is taken to be just a weighted sum over the energies of bound
configurations (referenced to the isolated neutral ion) plus an ideal-gas representation of the
kinetic energy in the free electrons and ions: 3/2t(1+Z*). In the DFT-AA model, we compute
the kinetic Uy and potential U, contributions to the free energy U = Uy + U), and the entropy
directly from the self-consistent quantum mechanical electron densities and densities of states,
removing any dependence on the choice of Z*:

Uy = /O "X (e) f(e)de + /O S V(P “)
U, = /ORWS n [ch (r) — r;uc:| 2 /Rws ner = )
s=— [ X@U@mlre)] +[1 - el - s(e)]de ©

where X (€) are the densities of states (X (€,¢) = g¢ [ Rws P2,dr8(e — &) for bound states), f(€) is
the Fermi-Dirac occupation factor, and €,.(r) is the exchange-correlation energy. Strict
convergence and high numerical precision are particularly important for the calculation of U,
since it includes several large positive and large negative terms. Examples of Hugoniot curves
calculated using an earlier version of our DFT-AA code were included in a fairly recent
compilation of data from an EOS code comparison workshop [46]].

Future work in this area will focus on understanding the requirements of rad-hydro simulations
for stringent thermodynamic consistency and testing that consistency in the DFT-AA code. We
will also develop a more sophisticated treatment of the thermodynamic properties of the ions

[47, 48], including cold curves and approximate molecular bonding. These efforts should improve
the agreement of our DFT-AA model with existing EOS tables at low temperatures. While we do
not ever expect perfect agreement with existing tables, which are often bespoke and carefully
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modified to match existing data, improving the low-temperature agreement would make our
tables easier to adjust to trusted values and will increase confidence in non-LTE calculations that
cannot be checked against existing high-accuracy tables.

2.3. Static Transport Coefficients

Transport properties such as electrical and thermal conductivities, viscosities, and sound speeds
(cs = (Y/xrp) 1/2) [49] play critical roles in the energy balance and instability development of
HED systems. Electrical conductivity is particularly important for REHEDS on the Z machine,
which uses electrical current to drive experiments. Presently, Sandia’s approach to tabulating
electrical conductivities uses targeted DFT-MD calculations (discussed below) to correct the
high-density and low-temperature behavior of Z*-parameterized analytical calculations such as
the Lee-More-Desjarlais (LMD) [50] model, which modifies the original Lee-More [51] model to
improve agreement with (sparse) experimental data and targeted DFT-MD calculations. At
LLNL, self-consistent data from the DFT-AA code Purgatorio is used to generate conductivities
following the Ziman approach for liquid metals [52153]. In this LDRD, we significantly
improved the internal consistency of the Ziman approach used in our DFT-AA model, modified
the Lee-More calculations used in our atomic-kinetic models, studied first-principles approaches
to transport calculations with multi-atom models [24, 25]], and began a collaboration with UITUC
under Sandia’s SAA program to study first-principles modeling of electron-electron collisions
(see Appendix [A).

The Ziman-Evans approach to electron-ion conductivity is a linear-response formulation
developed for liquid metals that has been extended to plasmas and is widely used with DFT-AA
models [53H535]]. In this approach, the static (DC) electrical conductivity is related to the
frequency of electron-ion collisions that halt the acceleration of transport electrons:

Ggf =Z;ni/ vZ, with Z;; the number of transport electrons per ion and

z_ L [~ of(e)\ [ 396"(€,0)
Vei_3nZ¢A de <— 3¢ )/0 q TS,,(q)dq. (7)

To account for strong collisions, we use a T-matrix differential momentum-transport cross
section:

2
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with g? = 2p?(1 — cos @), P, the Legendre polynomials, and 1, the phase shifts. Here, Z; is a
normalization factor that must be consistent with the energy integral, which is a finite-temperature
generalization of Fermi surface properties related to the density of states. For the ideal density of
states implied by the expression for vfi above, this requires that Zj = Z; [56]. However, the ideal
density of states is not consistent with the differential cross section, which represents collisions
with all of the continuum electrons, or with the self-consistent quantum density of states in the
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material. To count all of the continuum electrons, it has been proposed to define a new chemical
potential y. that satisfies [;” X i(e) f(e;u.)de = Z. [54]; but this, too, is inconsistent with the
quantum density of states. One of the major changes we have made to the standard Ziman
approach is to perform the energy integral for vZ with the factor X (¢)/X"(€), so that V% captures
interactions with all of the continuum electrons in the self-consistent quantum density of states
without invoking a modified chemical potential (see Starrett et al. [4]]). This change requires that
Z; = Z., tends to increase Vfi over calculations that assume X'(¢), and improves the continuity of
vZ under pressure ionization.

The number of charge carriers that directly informs the electrical conductivity through

Gﬁf =Z;ni/ Vfi does not have the same variational constraint as Z;, so we appeal to comparisons
with multi-atom models to guide our choice for Z;. We first note that the ion-ion structure factor
Sii(q) that appears in the expression for Vfi is the Fourier transform of the radial distribution
function g(r) discussed in section For a transition metal with large differences between Zy
and Z., we have shown that the self-consistent DFT-AA g(r) is in very good agreement with a
DFT-MD g(r) when we use Z for the screening electrons and in very poor agreement when we
use Z.. Here, we assign Zy to be both the number of screening electrons per ion (used to calculate
Sii(q) and g(r)) and the number of charge carriers per ion, Z;, used directly in the electrical
conductivity. These free electrons represent the delocalized portion of the continuum electrons
that respond to electric fields — whether those fields are imposed by other ions for S;;(¢) or
externally for 025.

For high-temperature and low-density plasmas with ion-ion coupling parameters
Iy = ZJ% /TRws < 10, the above prescriptions are reasonable. However, for ions with more than

one valence electron, the vfi integral will always capture the first peak of the structure factor and
as a result, the conductivity on any isochor will asymptote to a constant value at low temperatures
(high I';;). This does not match the observed behavior of simple solid metals, whose conductivity
monotonically decreases with temperature up to 7. We thus propose a modification to the
self-consistent S;;(¢) roughly following Sterne et al. [53]] and Wetta and Pain [55]: First, we
define the melt temperature to occur at some I" Z-”” (about 172 for the one-component plasma).
Above that value of I';; (where the material is in a solid state), we use the Baiko et al. [57]]
prescription for a structure factor that neglects collisions on lattice vectors since these processes
simply translate an electron from one lattice site to another and thus do not contribute to the Vfi
scattering. This provides a direct 7! dependence of the conductivity below the melting point. At
higher temperatures, for ['; < I"7, we use S;;(¢) — min[1,S;;(¢)] to roughly remove the
incipient lattice structure (Bragg peaks) in the liquid, resulting in a discontinuity at melt and
providing good agreement with the liquid aluminum results of Wetta and Pain [S5]. E| We also
incorporate these general effects into our implementation of the Lee-More model by imposing a
factor (14 T7;/3) on all Lee-More conductivities.

Figure [2-3] shows a comparison of various static electric conductivities for aluminum and copper
along the same isochors as the EOS data given in section[2.2] The solid lines are from recent

®Note that Wetta and Pain [55] use the full liquid structure factor (do not truncate peaks) but they also use Z. as
their number of charge carriers. The good agreement is due to the cancellation of the two effects, since using the
full structure factor modestly decreases the conductivities by increasing the collision integral, while including all
continuum electrons as charge carriers modestly increases it.
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Figure 2-3 A comparison of DC electrical conductivities for aluminum
(top) and copper (bottom) isochors about solid density. Colors corre-
spond to the densities as labeled. The solid lines are from SESAME
tables, based on LMD (Al) or LMD modified with select DFT-MD calcu-
lations (Cu). The light lines are our implementation of the original Lee-
More model parameterized by Z; from DFT-AA (light dashed) and from
the Z* of our atomic kinetics model (light gray). The dashed lines are
from our self-consistent Ziman implementation in the DFT-AA model.
Experimental data, where available, are given by small filled points
[2, 3], selected Kubo-Greenwood conductivities (see sec. are given
by open circles from DFT-AA and closed circles from DFT-MD [4].
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SESAME tables: for aluminum, they are simply the LMD values informed by the reference-table
Z* from fig. For copper, the LMD values have been adjusted to match DFT-MD calculations
at select points with temperatures below about 3 eV and densities with a factor of 3 of solid. The
small solid points indicate data from exploding wires [3], laser experiments [2], and solid-state
reference data. Dashed lines are the DFT-AA calculations described above IZ] and the light lines
are our implementation of Lee-More parameterized by the DFT-AA Z (light dashed) or our
screened-hydrogenic CR model Z* (light gray). Although our Lee-More implementation
eventually reaches LMD at very high temperatures, it has significant differences from LMD at
most temperatures that are not solely attributable to differences in Z* or the structure-factor
corrections: we intend to implement LMD to reconcile these differences.

Of more interest to this LDRD are the differences between the low-temperature reference data,
the reference SESAME table conductivities, and our internally consistent Ziman model, which
are significant. While our Ziman conductivities follow the general trends of the LMD (Al) and
adjusted-LMD (Cu) curves, they differ by factors of two or more in magnitude and exhibit notable
features in three different regimes.

First, at high temperatures (where the both Al and Cu reference tables use LMD), the DFT-AA
conductivities are systematically smaller than LMD values. In this regime, there is no sensitivity
to the structure factor and the Z* from the different codes agree fairly well, so this difference is
primarily attributable to collision frequencies and cross sections. Here, the DFT-AA model is
much more sophisticated than LMD (which uses impact parameters to estimate collisions) and
thus may be preferred — however, there are no experiments or DFT-MD calculations in this regime
to verify that preference. We have plotted conductivities extracted from the zero-frequency limits
of Kubo-Greenwood calculations that use DFT-AA orbital data but an entirely different
formalism than the Ziman calculations (see sec. [2.4)) at selected points (open circles), which
mostly agree rather well with the DFT-AA Ziman values. For Al, we have also plotted
Kubo-Greenwood calculations from DFT-MD [4] (filled circles), which support LMD values
below T ~ 3 eV and DFT-AA values at 10 eV.

A second region of interest is at solid density around the melting discontinuity. Here, the
I'j;-parameterized DFT-AA model only roughly captures the melt temperatures (reference values
of T™¢! are 0.08 eV for Al and 0.12 eV for Cu). It also gives conductivities that are
systematically larger than the reference curves, which are here informed by reference data and
DFT-MD. These are significant and real errors likely driven by the simplifications of the
spherically symmetric DFT-AA model, especially in the ion structure, and would need to be
adjusted before use in simulation codes.

Finally, we note the wide variation in model predictions in the low-density and low-temperature
region. These disagreements are driven primarily by differences in Z* and are consistent with
large discrepancies observed in focused code comparisons of other materials [59].

Since precious little benchmark-quality data exists for transport coefficients, the multi-center DFT
codes offer crucial constraints. DFT-MD and TDDFT can both be used to compute the optical

7For this figure, we have used a fit to the OCP approximation for the structure factors from [58]], since the full self-
consistent structure factor calculations are relatively expensive and the resulting conductivities generally differ
from the OCP approximation by less than 10%.
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conductivity of materials from first principles. Multi-atom approaches include those based upon
the Kubo-Greenwood formula, linear-response (LR) TDDFT, and real-time (RT) TDDFT.
LR-TDDFT is formulated in terms of a Dyson equation for the response function, typically
rendered in terms of a non-interacting set of Kohn-Sham orbitals, and corrections due to an
electronic Hartree and exchange-correlation kernel [60, 61]. In fact, the Kubo-Greenwood
formalism as typically implemented in the HEDS community [62] is equivalent to LR-TDDFT in
the limit in which the exchange-correlation kernel is zero, i.e., the Kubo-Greenwood conductivity
is consistent with the zeroth-order solution to the LR-TDDFT Dyson equation. RT-TDDFT is
formulated in terms of time-dependent Kohn-Sham equations and the conductivity can be
extracted by contriving a scenario in which the time dependence of the underlying Hamiltonian is
due to an electric field that drives a current through a supercell, to which Ohm’s law can be
applied [25, 163} 164]. Furthermore, LR-TDDFT and RT-TDDFT should give identical results in
the limit that the perturbing vector potential that drives the current is sufficiently weak that
nonlinear corrections to the response are negligible. Nevertheless, differences between the two
formalisms have been documented and require further study [24].

The three multi-atom approaches to computing conductivities can be cast as existing within a
consistent methodological hierarchy, and it is worth remarking on improvements that could be
made to all three of them. As with many DFT methods, the key deficiency is due to the choice of
an exchange-correlation potential or kernel, i.e., roughly the first and second derivatives of the
exchange-correlation functional. The KG formalism completely neglects these effects, whereas
LR- and RT-TDDFT are typically limited to energy-independent (or adiabatic) approximations
used in conventional methods. While we know that the exact exchange-correlation kernel for
TDDFT is far more complicated than the adiabatic approximation allows, developing
approximations that capture many of these behaviors has been a long-standing challenge. Among
the features of the exact kernel that have been successfully modeled are the long-range nature of
the Hartree term. It has previously been demonstrated that deficiencies in capturing
electron-electron scattering processes in the KG formalism result in predictions that are
inconsistent with known limits of plasma kinetic theories [65)]. While it is unclear whether even
local adiabatic approximations would suffice to restore this limit, e.g., computing the same
properties using an adiabatic local density approximation, this remains an important area for
future study that we hope will be addressed by some of the more direct inquiries into
electron-electron scattering processes being considered in Appendix

We note that the v,; produced by the DFT-AA model for electrical conductivities can also be used
to estimate thermal conductivities and viscosities, providing a relatively complete set of internally
consistent transport coefficients over a wide parameter range. Accurate electron-electron
collisions [66-68] are expected to be especially important for thermal conductivities [65,167]] and
will be included in our future work. We will also consider whether inelastic processes (which
change the energy of impact electrons rather than just their direction) might influence the static
properties as they do the dynamic properties discussed below. We will implement the
Lee-More-Desjarlais [50] improvements to our current Lee-More implementation for our CR
models, look for refinements of the simple modifications of S;;(¢) described above that could
improve the accuracy of our Ziman model at low temperatures and high densities, and seek to
validate our predictions at high temperatures against independent approaches (e.g. [67]).
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Additionally, we will explore how the self-consistent ion structure factors may inform ion
transport properties such as diffusivity and viscosity [69].

2.4. Dynamic Response Functions

The static transport properties described above provide important information about the response
of materials to zero-frequency external gradients (of electric potentials and temperatures).
However, these static properties are exceedingly difficult to measure in HED experiments, since
benchmark measurements require 1) creation of a uniform sample of matter at extreme
conditions, 2) independent characterization of those conditions, and 3) independent diagnostics of
the transport properties. None of these requirements are easy to meet, but diagnosing static
properties is particularly challenging since most active experimental probes (lasers, x-rays) and
many direct observables (emission, absorption, and scattering spectra) are frequency-dependent.
This motivates us to go beyond calculations of static properties to dynamic (frequency-dependent)
properties.

The Kubo-Greenwood (KG) approach to dynamic conductivities offers a baseline for our
investigations into frequency-dependent responses. As noted above, KG is a critical tool for
extracting even static conductivities from multi-atom DFT-MD models. For the DFT-AA model,
Johnson et al. [70] have derived a relatively straightforward expression for the optical
conductivity based on the dipole cross sections between every pair of quantum electronic states.
The KG dynamic conductivity includes bound-bound, bound-continuum, and
continuum-continuum contributions, as illustrated in the top panel of fig. 2-4] and is given by:
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The KG dynamic conductivity, which gives a complete picture of the dipole transitions among all
excited states, is extremely powerful. We can generate the imaginary part of the dynamic
conductivity (or any other dynamic quantity) using the Kramers-Kronig dispersion relation:
ci(w) = —%P [dw'c,(0)®/(0? — ®?) , where P is the principal value (avoiding the poles), and
then generate a wide range of dynamic material properties including the dielectric function €(®),
the index of refraction n(®), and the absorption opacity k() [71]:

g(m)=1-— 4gcs,-(o)) (10)
£i(®) = %"c,(m) (11)
n(©) = 5175 (o) + &) (12



K(0) = o(w). (13)

The KG expression given in Eq. (9) diverges as 1/®” in the low-frequency limit due to the
continuum electron contribution. To regularize the divergence, we can impose a Lorentzian
broadening/ Drude form on the low-frequency conductivity: 6//(®) = 6//(0)/[1 + (v /vK9)?].
For plane-wave free electrons, this is the entire free-free contribution to the dynamic conductivity
and, by construction, perfectly satisfies the conductivity sum rule [°o//(w)do = (1/2)Zsn; for
any value of VK, so we typically impose the Ziman value, setting vK¢ = vZ. Additionally, the
DC limit of the dynamic collision frequency in the Drude model v// (0) = n;Z¢ /677 (0) is
identical to the regularizing frequency v&C, and inversion of the complex transform suggested by
[72], o'/ (w) = Zsn;/[v// () — io], returns a constant Re{v// ()} that is also identical to vKC.

Using the distorted wave continuum electrons from the DFT-AA model in the Kubo-Greenwood
expression complicates this picture. The quantum 6‘(®) modifies the simple 1/®? behavior,
typically adding an additional feature at finite frequency that corresponds roughly to inelastic
(absorbing) transitions among the continuum electrons, as illustrated in the top panel of fig. 2-4
To regularize the quantum 6(®), we multiply it by a factor 1/[1+ (VK9 /®)?] and search for the
collision frequency VK that will satisfy the sum rule [;°6%(®)d® = (n/2)Z.n; [73]. This
generally returns a value of VKU that is close to the Ziman vZ for cases where vZ is not sensitive to
Sii (the ion structure is nowhere included in our present KG calculations, but see Starrett [[74]).
The complex transform of this 6°(®) returns a structured Re{v(w)} that goes to vKY at small
frequencies and then increases at higher frequencies. Unlike in the Drude case, the
zero-frequency limit of the transformed 6°“(w) is not identical to the collision frequency implied
by the DC limit of 6°(®), v“(0) = n;Z¢/c“(0), although it is often quite close. Thus there is
some ambiguity as to which frequency we should assign to the conductivity for our KG
calculations; the KG conductivities shown in fig. of the previous section use v&C.

A general understanding of the dynamic electronic responses of materials to an external
perturbation — particularly v(®) and €(g, ®) — is important for the interpretation of experimental
scattering spectra. In the high energy density physics (HEDP) and warm dense matter (WDM)
communities, x-ray based scattering methods, like x-ray Thomson scattering (XRTS) [[75-78]] or
resonant inelastic x-ray scattering (RIXS) [[79], have become essential tools for benchmarking
theories of WDM and furthering our understanding of this complex regime. In our work on
modeling dynamic electronic response, we have thus focused our attention on applications to
XRTS.

For atomic-scale models that discriminate between the bound and free electrons, like the DFT-AA
model, the Chihara decomposition has been a widely used theory for analyzing scattering spectra
[80]]. The decomposition states that the dynamic structure factor (DSF), which is proportional to
both Im{1/e(m,q)} and to the intensity of observable scattering spectra, can be split into disjoint

8We have noticed some discrepancies in the series transforms: while the v(®) from the inversion v(®) = Z*n; /6(®) +
io is always well behaved, it does not identically return the original 6(®) when used in the transform 6(®) =
Z*n;/[v(w) — io]. This may be related to regularizing the pole at @ = 0 and/or to our choices of Z*, and warrants
further investigation.
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Figure 2-4 (a) Kubo-Greenwood dynamic conductivity of aluminum at
T =1 eV and solid density (2.7 g/cc) from the DFT-AA model, split into
bound-continuum, continuum-continuum (both quantum), and free-
free components (Drude-like). (b) and (c) are the real and imaginary
parts of the dynamic collision frequencies v(®) from various indepen-
dent calculations: dashed gray lines are from a transform of the Drude-
like 6// (@) shown in (a); green lines are from a transform of the quan-
tum ¢°“(®) shown in (a); solid gray lines use simple approximations
for the dynamic collision frequencies (c.f. [5]); and the solid black lines
show the alternative form for a complete v(®), including inelastic colli-
sions, as discussed in the text.
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contributions from the various scattering processes that can occur. Typically, three contributions
are considered: elastic scattering from the tightly bound electrons that closely follow the ion
motion, bound-free scattering that comes from scattering from bound electrons that are
photoionized in the process, and free-free scattering that describes scattering from the free
electrons [81} 182]].

At higher temperatures comparable to electronic binding energies, thermal excitations can open
additional channels for inelastic processes. Then it becomes necessary to include contributions to
the scattering spectra from bound-bound transitions, a term that is mentioned in passing in [83]]
but which has generally been neglected in XRTS calculations. The existence of bound-bound
transitions in scattering signals has been confirmed by real-time time-dependent density
functional theory (TDDFT) (described below) using an approach that does not depend on the
Chihara decomposition. Since bound-bound transitions depend strongly on thermal excitations,
they are also a promising complement to current plasmon-based thermometry measurements. We
described an early version of these results that used the quasibound states described in section [2.]
in Baczewski et al. [[12], and have since improved our treatment of the continuum response to
allow a more coherent picture of the free-free (continuum-continuum) scattering spectra, which
we describe briefly here. Key to this new description is the inclusion of a factor X (¢)/X'(g) in the
expression of the dieletric function and a complete and consistent treatmeant of the dynamic
collision frequencies v(®). The self-consistent treatment of the elastic, bound-free, and
bound-bound terms are well described in Baczewski et al. [12], along with a description of some
intriguing results on a sharp collective scattering feature observed in TDDFT.

The elastic, bound-bound, and bound-free contributions are all computed self-consistently within
the AA framework. For the free-free contribution, we write the DSF in terms of the dielectric
function (g, ®) of the free electrons. As a first step for computing the dielectric function, the free
electrons are assumed to act as a uniform electron gas and the interactions are handled within the
random phase approximation (RPA), which we implement following Johnson et al. [38]. This
RPA approach is a common baseline model of the collective plasmon response in XRTS
experiments of warm, dense samples [38, 76, 77,182, |83]].

We can go beyond the RPA-based DSF by using an alternate form for the dielectric function
based on the Mermin ansatz [84], which builds upon the RPA dielectric function by including an
energy-dependent electron-ion collision frequency v(®):

(0+iv)[e (g, 0+iv) — 1]
0+iv[ed(q,o+iv) —1]/[e%q,0) — 1]’

Mg, 0) =1+ (14)

where €° is the RPA dielectric function and v = v(®).

The accuracy of the predictions of the free-free portion of XRTS spectra using the Mermin DSF
model depends on the choice of the collision frequency model. In work that we are currently
writing up for publication in Hentschel et al. [15], we enumerate the various choices that can be
made when evaluating the collision frequency. This ranges from the simplest version of dynamic
collision frequencies — Born theory for v(®) using Born scattering cross-sections obtained from a
Yukawa-type interaction potential with an ideal density of states (DOS) [5] — to a more complete
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and self-consistent picture (denoted as T+) that uses a Lenard-Balescu treatment for v(®) [73] ,
T-matrix cross-sections to account for strong collisions in the DFT-AA interaction potential, a
fully quantum DOS, and includes inelastic scattering processes based on the total cross section
derived from the phase shifts of the DFT-AA model’s distorted waves. These advances build on
results from the investigations of the static structure processes described in section[2.3] Like those
advances, they can be compared with both the independent KG calculations and state-of-the-art
calculations from multi-atom codes such as TDDFT (see fig. [2-5|below).

Real-time TDDFT can be used to calculate the dynamic structure factor in a multi-atom
framework that goes beyond many of the approximations made in AA. Our particular
implementation of real-time TDDFT in a fork of the Vienna Ab-initio Simulation Package (VASP)
[39-41]] was first described in Refs. [81)185]]. In short, the approach calculates the DSF from the
electron density’s real-time response to a perturbing potential in the linear response regime.

In the course of computing benchmark data with TDDFT, we uncovered an unexpected non-LTE
effect related to the geometry of the atoms in the sample. The DSF of isochorically heated
aluminum, where electrons are at an elevated temperature while ions remain cold, contains
additional features which are absent from the DSF of melted aluminum, where electrons and ions
are in thermal equilibrium (see Figure [2-5h). Further investigation revealed that these features
arise from the band structure of crystalline aluminum: gaps among high-energy conduction bands
lead to a nonideal density of states (see Figure[2-5b), and modulations in the density of states
correspond directly to modulations in the DSFE. These types of band structure effects could
potentially help diagnose ion and electron temperatures simultaneously in XRTS experiments on
non-LTE samples. They also suggest future directions for AA development, since AA methods
struggle to capture band structure in degenerate matter. We are currently preparing these findings
for publication in Kononov and Baczewski [16].

In addition to illustrating the differences in observable signatures between crystalline and liquid
aluminum (and highlighting the inability of the spherically symmetric DFT-AA model to capture
lattice effects), fig. [2-5| shows the impact of including the dynamic collision frequencies detailed
in fig. on the observable DSF. In general, the real part of v(®) will broaden the plasmon peak
of the DSF from its RPA expression and the imaginary part will shift it. The significant shift from
the RPA in the peak of the DSF evident in fig. [2-5h is a strong indication that neither the
transform of the Drude-like 6//(®) nor any simple Born approximation for v(®) can adequately
capture the dynamic response of warm dense aluminum. A similar shift in the plasmon was
observed experimentally by Sperling et al. [77]]. By contrast, both the transform of the KG ¢°“(®)
and the T+ inelastic v(®) give shifts in the plasmon peak that match the TDDFT predictions, with
the T+ inelastic v(®) additionally having more broadening and better agreement with TDDFT. In
other cases we have examined, the two approaches to calculating v(®) are in better agreement.

Future work with the DFT-AA model in this area includes reconciling the various approaches to
generating v(®), clarifying the role of inelastic collisions and lattice effects (both of which could
help bring the static conductivities discussed in the previous section into better agreement with
reference data at low temperatures) and additional comparisons with both TDDFT and
experimental data. We are also exploring the use of Bayesian inference methods for extracting
uncertainty bounds for v(®) from TDDFT DSF data. Inversion of the Mermin DSF to obtain the
collision frequency is prone to instabilities, in that multiple v(®) can yield roughly the same DSF
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Figure 2-5 (a) Dynamic structure factors at a scattering ¢ of 1.55 A1
and (b) densities of state for aluminum at solid density and a temper-
ature of 1eV. The TDDFT curves show crystalline aluminum isochori-
cally heated to an electronic temperature of 1 eV (blue) and melted alu-
minum in thermal equilibrium at the same temperature (red). The DFT-
AA curves in (b) illustrate the good agreement of the fully quantum
density of states from the DFT-AA model with the melted multi-atom
calculation and highlight both the inability of the DFT-AA model to cap-
ture lattice effects and the persistent difference between the quantum
and ideal densities of states. In (a), the RPA and DFT-AA curves illus-
trate the effects of various dynamic collision frequencies (detailed in
fig. on the Mermin DSFs.
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signal. Our technique relies on optimization methods and Markov chain Monte Carlo for finding
the distribution of v(®) for a given set of DSF data, without making restricting assumptions on its
form. The resulting v(®) and uncertainties from this approach can be used to directly validate our
collision rate theories and inform the validity of inferences like [77]]. Overall, this line of research
has been one of the most productive of the LDRD, leading to multiple papers in preparation.

2.5. Stopping Powers

Stopping powers describe how charged particles lose energy as they travel through a plasma
environment. They are important for fusion simulations as the primary mechanism by which
energy from initial fusion reactions is returned to the fuel. That is, they control the self-heating
that can lead to fusion ignition and burn. To calculate stopping, we again turn to the dielectric
functions, calculating an energy loss function Im{—1/g(q,®)} (closely related to the DSF) to
describe the retarding force that the target electrons have on the ion projectile. Using the random
phase approximation (RPA) for the dielectric function, the stopping power can be analytically
approximated for the low and high projectile-velocity limits. This allows for efficient
computation of stopping powers, and can be combined with a local density approximation scheme
to include density effects determined from the DFT-AA model’s n,(r) [86} 87].

We can also use the Mermin dielectric function to compute stopping powers, incorporating the
significant improvements to €(g,®) described above. However, now there is no analytic form for
the stopping numbers, and thus it is not computationally practical to incorporate density effects as
above. However, we have found that when only considering the stopping from the free electrons
in the target, the Mermin stopping model with accurate collision frequencies has better predictive
capabilities than the RPA stopping when validated against TDDFT stopping powers. Figure
illustrates how the inclusion of accurate collision frequencies (both T+ and KG) gives significant
improvements over stopping powers computed with the RPA and more approximate
collision-frequency theories, especially below the Bragg peak. We are currently preparing our
findings on the effect of electron-ion collisions on dynamic structure factors and stopping powers
for publication in Hentschel et al. [15].

We can also use Ehrenfest-TDDFT to calculate stopping powers in a multi-atom framework that
goes beyond many of the approximations made in the DFT-AA model. Our particular
implementation of Ehrenfest-TDDFT in a fork of the Vienna Ab-initio Simulation Package
(VASP) [39-41]] was first described in Refs. [85)88]. Stopping powers can be computed from
Ehrenfest-TDDFT by analyzing the force induced on a proton projectile by the electrons of a
material as it traverses that material with a given velocity. However, the results of this method can
depend on the specific path the proton takes through the material [89,90]. Typically, TDDFT
stopping power studies avoid costly averaging over many trajectories by using a random
trajectory assumed to be representative of this average.

In the course of generating reliable benchmark stopping data, we developed a more rigorous
approach for selecting suitable projectile trajectories, which we are preparing for publication in
Kononov et al. [[14]. Our method is based on the principle that the projectile should experience a
representative distribution of nearest-neighbor distances along its path in order to correctly
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Figure 2-6 Electronic stopping power for aluminum with a density of
2.7g cm~> and a temperature of 1eV. The DFT-AA curves illustrate how
the inclusion of different kinds of collisions in the Mermin dielectric
model can influence the stopping power. In particular, the use of so-
phisticated collisions with T-matrix collision cross-sections, quantum
DOS, and inelastic collisions (black line), or the KG-based collisions
(green line) dramatically shifts the Bragg peak from the RPA predic-
tions to yield better agreement with TDDFT for lower projectile veloci-
ties. TDDFT calculations use a 3-electron pseudopotential to determine
the stopping from the valence electrons.
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sample core-electron excitations occurring during close collisions with the host material’s ions.
Computing a statistical distance between the ideal nearest-neighbor distribution and the
nearest-neighbor distribution achieved along a particular trajectory provides a quantitative metric
of trajectory quality which can then be optimized to enable more accurate and systematic
calculations of average stopping powers with TDDFT.

Future work in this area will explore contributions to the stopping power from bound as well as
continuum states. In particular, we will test whether integration of the full DSFs from the
DFT-AA model (see Baczewski et al. [12]) capture the high-velocity limit and retain agreement
with all-electron TDFFT calculations. We will also continue to investigate the relationship of
inelastic collisions (which significantly improved the DFT-AA DSFs and low-velocity stopping
powers) to electron-ion equilibration times (see Scullard et al. [91], Dharma-wardana and Perrot
[92], Faussurier [93]], section [3.2] and Appendix [A).

2.6. Radiative Properties

One of the overarching goals of this LDRD was to develop a single model that can provide EOS,
transport, and opacity data based on a common set of self-consistent atomic data. This has not
been done previously because reaching high accuracy in each material property has been
emphasized over ensuring consistency among different material properties. Opacities are a very
good example of why accuracy is emphasized: if we use Kubo-Greenwood (Eq. (9)) to generate
absorption coefficients or opacities directly from the DFT-AA electronic orbitals, we obtain the
dashed lines shown in fig. While the bound-free contributions that dominate the spectrum at
low and high energies are in reasonable agreement with the detailed-structure SCRAM model [6],
described in section (which is itself in reasonable agreement with high-resolution
experimental data), the bound-bound contributions from DFT-AA-KG are far too averaged. The
DFT-AA-KG results would be particularly misleading for calculations of Rosseland mean
opacities, which are inverse averages used in radiation transport calculations that emphasize the
“windows” between lines.

The hybrid-structure SCRAM model achieves its combined accuracy and relative efficiency by
drawing on pre-computed tables of detailed atomic structure and rates for isolated atoms and ions.
For each charge state of each element of interest, these databases are generated once (last updated
around 2008) using the independent multiconfiguration Dirac-Fock atomic structure code FAC
[94]]. Detailed structure calculations move beyond the DFT-AA model’s single transitions
between fictitious one-electron orbitals (n¢ — n'¢") to many transitions among multiple
integer-occupied electronic configurations, each of which can have a slightly different energy
depending on the configurations of spectator electrons. Because of its detailed structure and
resultant spectroscopic accuracy, SCRAM is widely used to help diagnose experimental plasma
spectra (e.g. [21]). But at high densities, it must invoke ad-hoc modifications to account for
plasma density effects such as continuum lowering and pressure ionization — and these
modifications do not necessarily capture the complexities of plasma-ion interactions with the
same fidelity as the fully self-consistent DFT-AA model.
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Figure 2-7 Monochromatic LTE opacity of L-shell iron at 0.17 g/cc and
T = 180 eV from various models. The blue line is from the detailed-
structure SCRAM code [6], the dashed gray lines show a straightfor-
ward application of Kubo-Greenwood to DFT-AA orbitals, and the black
line shows the results of efficiently splitting the DFT-AA electronic
structure into multiple electronic configurations using Taylor expan-
sions of Slater coefficients and applying spin-orbit splitting to the cal-
culated spectra.

Extending the DFT-AA model to generate the detailed multiconfiguration (MC) electronic
structure necessary for consistent and accurate radiative properties is thus a major challenge.
Doing so efficiently — given the consistency requirement that the structure be recomputed from
scratch for every temperature and density condition — compounds the challenge.

We move systematically from the highly averaged DFT-AA-KG spectrum to the highly detailed
DFT-AA-MC spectrum shown in fig. [2-7]in several steps, each of which accounts for an
important effect. First, we enumerate real integer-occupied configurations about the average
configuration. Starting with the integer-occupied ground configuration of an ion with a charge
close to Z*, we excite one electron from each occupied bound orbital into all orbitals with
vacancies (including the quasibound orbitals described in section [2.1)). This gives us a set of
singly excited configurations, including (if desired) ones with inner-shell excitations. From each
of these new configurations, we repeat the systematic excitation of electrons from occupied states
into states with vacancies, avoiding duplicate configurations, to obtain a set of doubly excited
states. This process can be iterated as often as desired, although the combinatorics can quickly
lead to an intractable number of configurations (see [93]) and so we usually stop at triply excited
states and often exclude deep inner-shell transitions.

We then calculate the energies of each of those configurations using stored quantities calculated
from the DFT-AA orbitals P, (r). Following Cowan [96], Faussurier and Blancard [97], we set
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the configuration-average binding energy of each i = n/ electron in each [(nf)"...] configuration

tobe E' = E{ + E},.+ Y ;- E", the sum of its kinetic energy, its nuclear interaction energy, and

its interaction energies with all other electrons in its configuration. The kinetic energies are:

.1 [Rws > li(6i41)
E, =< P |——+"5—|Pd 15
k 2 /() i |: dr + rz } r, ( )
the electron-nuclear potential energies are:
i Rws 2
Ehe= [ (~Zuc/ PP ar (16)

and the interaction potential energies E'/ are given in terms of Slater integrals F¥(ij) = R¥(ij,ij)
and GX(ij) = R¥(ij, ji), with the radial integrals
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The configuration-average total binding energy of each N-electron configuration is
E.=YEl+E},. +%Y,.E"Y). Note that since we restrict the intergrals to the ion sphere, we
capture the effects of pressure ionization as states dissolve into the continuum. And since we
include the quasibound states in our accounting, we do not risk missing orbitals that may be
bound in one ion or configuration and unbound in another. Finally, each configuration is assigned
an occupation fraction according to Fermi-Dirac statistics [98],99], returning an LTE Z* that is
typically falls between Z; and Z. from the DFT-AA model. To calculate emission and absorption
spectra, we calculate the dipole matrix elements among just the DFT-AA orbitals to obtain
oscillator strengths for each n¢ — n'¢’ transition. We then assign radiative decay rates with
occupation and vacancy factors as we would for a simple screened hydrogenic model [[1], but
using transition energies and oscillator strengths derived from a fully self-consistent model.

Splitting the DFT-AA model into multiple configurations leads to a profound improvement over
the DFT-AA-KG opacities, giving tens to thousands of transitions for each single nf — n'¢’
transition in the DFT-AA model. While the resulting spectra might be marginally suitable for
calculating mean opacities and overall emission envelopes, they remain inadequate for direct
comparisons to experiment since they neglect several significant effects including orbital
relaxation, relativistic effects, and plasma effects. We systematically address each of these here,
with each change to the configuration energies resulting in slight modifications to occupations
and significant modifications to the detailed spectra.

A significant deficiency of the simple multiconfiguration model is that it does does not account
for how the orbital wavefunctions (and therefore Slater integrals, £, E;,., E', E', and E,)

40



self-consistently change in response to changes in the electronic configurations. This effect is
called orbital relaxation, and the most straightforward way to account for it is to re-optimize the
self-consistent orbitals to each configuration, recomputing the energies and Slater integrals for
each. But this is computationally daunting, especially for complex ions with many active
electrons that may have many thousands of configurations. Instead, we have developed a new
approach: after self-convergence is achieved for the DFT-AA model, we systematically move
AN = 0.2 electrons from each highly occupied (Ny = o(n;¢x) > 1) bound and quasibound orbital
k into the continuum, re-converge the self-consistent field equations on that new configuration,
recompute new Slater integrals and energies a; = E. + E!,,. and b;j = E"/, and define coefficients
for a Taylor expansion of the energies under changes Aoy in each orbital:

AA—A
(afm —4; Ok)

d (ik) = v (19)
AA _ pAA—Rog
b'(ijk) = (b =y ) (20)

Aoy,

This requires only a handful of re-optimizations that do not require particularly stringent
convergence and allows us to generate reasonably accurate E. for any configuration using

a; = aA + 3 ¥, d'(ik) ANy and b;; = b‘l“]A + 3 ¥4 b'(ijk)ANi. We have tested the accuracy of this
approach by verifying that the predicted E, for a given configuration remains stable even when it
is several ionization stages or excitations removed from the reference DFT-AA configuration
(AN > 2). Including orbital relaxation in this way is extremely efficient and significantly
improves the accuracy of the transition energies.

The next improvement in the atomic structure is the inclusion of relativistic effects.Since our
DFT-AA model is only semi-relativistic (that is, it includes gross relativistic effects in a Pauli
approximation but solves the Schrodinger equation for n¢ orbitals rather than the Dirac equation)
it does not produce the major and minor components required for an nfj representation. We
return to the reference DFT-AA orbitals and compute the spin-orbit interaction:

2 R
. of [RwsaV(r), .,
El = — —|P|“d 21

for states with ¢ > 0, which leads to splitting of the transitions into j = ¢ — % and j =/(+ %
components. Before computing the detailed spectra, we statistically weight the occupations and
oscillator strengths of each of these components to preserve the total strength of the
non-relativistic transitions. Here we also include correlation effects following Cowan [96].
Together, the orbital relaxation, spin-orbit, and correlation modifications to the base
multiconfiguration DFT-AA model result in the DFT-AA-MC spectrum shown in fig. This
spectrum is in quite good agreement with the detailed-structure SCRAM code, despite not
including the full configuration interaction effects that SCRAM uses for some of its levels.

Finally, we consider the influence of the plasma potential. Notably, we find that the transition
energies predicted by the above calculations are fairly insensitive to the plasma density, even
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though P,4(r) and the first-order estimates of transition energies as 8¢ = €,y — €,/ can change
significantly at high densities [[100]. Faussurier and others propose including an additional term in
the configuration energies to account for the plasma potential, E, = }; E,, with

. Ry S )
£y, = [ Vv, 0)lpLdr 22)

with V),(r) the plasma potential. We have explored both the Massacrier and Dubau [101]]
approximation for the plasma potential used by Faussurier and Blancard [97] and variations of the
external potential described in section These can both lead to the plasma polarization shifts
[102] that have been observed in dense plasmas [100} 103, [104]] by estimating the
density-dependent shifts in transition energies obtained as simple differences in orbital binding
energies [100, 103]]. We have also developed a self-consistent variational approach to describing
these shifts (described in section [2.8|below), which adds yet another re-convergence loop to
calculate self-consistent binding energies in the absence of the free electrons, providing the
zero-density limit of DFT-AA transition energies in their reference configuration.

However, in comparisons with state-of-the-art line shape calculations, it appears that line shifts
may be primarily due to the dynamic response of electron-electron collisions (reminiscent of the
plasmon red shifts described in section [2.4] while the plasma potential is primarily responsible
only for ion-Stark broadening (see section This remains an area of active study. Additional
future work will explore whether the configuration-interaction (CI) effects that are essential for
spectroscopic accuracy in closed-shell ions (He-like, Ne-like...) and adequate treatments of
metastable states can be approximated at the level of the average atom. If so, we will also explore
whether CI effects with the continuum can be reasonably included, addressing a longstanding
problem for atoms in plasmas. We will also explore lumping high-n orbitals together to form
superconfigurations [1035], partially resolved transition arrays [[106], and the application of a
convergence criterion that will signal when additional excitations are negligible.

2.7. Non-Equilibrium Average Atom

So far, all of our reported results have assumed local thermodynamic equilibrium (LTE), where
detailed balance among collisional and radiative upward and downward rates enforces
Fermi-Dirac statistics for level populations. With few exceptions (Lokke and Grasberger

[107], Faussurier et al. [108]]), LTE is a standard assumption for AA and DFT-based models. A
key goal of this LDRD was to develop not only an internally consistent DFT-AA model suitable
for tabulation of a complete set of relatively accurate material properties, but to extend that model
to non-LTE plasma conditions, where downward spontaneous radiative rates dwarf
photoexcitation and photoioniztion in weak radiation fields (see Chapter [3).

Given the set of configurations, photionization cross sections, and oscillator strengths described in
section [2.6] it is relatively straightforward (though not computationally trivial) to generate and
solve a collisional-radiative (CR) rate matrix to obtain non-LTE configuration occupations.
However, the LTE Z* can be very far (tens of charge states) from the non-LTE Z* for low
densities, high temperatures, and high Z,,.. And since configuration energies, cross sections, and
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oscillator strengths (and thus the CR rate matrix) depend on the initial DFT-AA ionization stage
and P,y orbitals, we need at least a rough approximation to the full non-LTE solution to provide a
reasonable estimate for the initial non-LTE electronic states. This first estimate of the non-LTE
DFT-AA model does not have to be particularly accurate, since the Taylor expansion of
configuration energies for the DFT-AA-MC model is fairly robust to variations of a few charge
states, but it has to be cheap, since the DFT-AA-MC calculations are relatively expensive and we
do not wish to do them more than once.

Comparing the Saha-Boltzmann statistics used to establish LTE in chemical models to the
Fermi-Dirac statistics used to populate the LTE configurations of the DFT-AA model [98, 99]], we
note that detailed balance of ionization *and reco*rnbination rates Ry /. | and R7S, ;. enforce
LTE ratios between the populations X and X% *! of the ground configurations of adjacent
charge states:

Z¥+1 ion
X . RZ*—)Z*-F] _ e(AE—,u)/‘C (23)

Z* T prec
X RZ*+ 1—2Z*

with Ae = €7+ — €7+ 1, or, for ionization of a particular bound n/ electron, Ae = €y, and where we
have assumed that X2 and X% *! have equal statistical weights. We thus propose replacing the
Fermi-Dirac occupation factor used to populate the n/ orbitals of the DFT-AA model as

follows:

1 1
fLTE (8n£) _ N fnon—LTE (8n€> —

- 1+ e(sné—,u)/'c 1 +R£10£n/RZ%C (24)

with Ril”ﬁ” and R}’ calculated using (for now) very simple hydrogenic approximations for the
collisional and radiative ionization and recombination rates to and from a given shell.
Dielectronic recombination (d.r) and excitation autoionization (a.i) are much more difficult to
estimate in the one-electron-orbital picture of the DFT-AA model (see [108]), and we have not yet
found a simple way to estimate their impact on the proposed non-LTE occupation factor. Figure
[2-8| shows that this simple substitution gives very good agreement with the screened hydrogenic
[1] collisional-radiative (CR) model when d.r. and a.i. processes are excluded and reasonable
agreement even with the full CR model. And it is no more expensive to run than the LTE
DFT-AA model. It thus provides a good-enough starting point for full collisional-radiative
non-LTE calculations based on the configurations and rates from the DFT-AA-MC extension.
Once the full CR occupations are computed, the equivalent AA shell occupations o,/ can be
enforced in a final calculations of self-consistent electron orbitals and potentials for the DFT-AA
model, and every EOS and transport property described above can be generated for a non-LTE
plasma with the same accuracy and internal consistency that we have achieved for the standard
LTE DFT-AA model.
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Figure 2-8 (a) Average ionization Z* of krypton at p = 0.01 g/cc from
various models. The LTE values are given in light gray (and are nearly
identical for the collisional-radiative model SCRAM and the DFT-AA
model. Modifying the Fermi-Dirac occupation factor as described in the
text brings the DFT-AA model into good agreement with SCRAM with-
out dielectronic recombination (d.r.). SCRAM with d.r. has lower ion-
ization. (b) the L-shell emissivity of Kr at p = 0.01 g/cc and 7, = 500 eV
from various models. The LTE emission differs profoundly from the two
non-LTE models, which are in reasonable agreement with each other.
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2.8. Line shapes

Emission and absorption spectra are key observables in high energy density experiments and
critical data for radiation-hydrodynamic simulations. Calculations of these spectra require not
only the energy-level structure and occupations of electronic configurations (as discussed above)
but also line shapes — that is, an understanding of how the photons from each transition are
distributed in energy about their central transition energy E°. In isolated atoms, emission lines are
broadened by the uncertainty principle: since energy and time are conjugate variables,

OEdt > h/4w and long-lived excited states with high uncertainty in their lifetimes can have very
narrow emission profiles, while the line shapes of transitions from excited states with fast decay
rates are much broader to compensate for low uncertainty in their lifetimes. In HEDP, the plasma
environment can introduce additional broadening. Very roughly, this broadening originates from a
few key sources:

1. Doppler effects from the thermal motion of the ions leads to Gaussian broadening of lines
with fwhm ~ 5 x 1079E%(T;/ an.)l/ 2 eV (with 7; and EY in eV). With photon energy
E = hv and line-center frequency v, Doppler-broadened line profiles are:
op(V) = me—[(v—vw/wﬂz, with fwhm = vp+/In(2).

2. Fast electron-ion collisions decrease excited-state lifetimes, increasing the uncertainty in
the transition energy and broadening line shapes: fwhm ~ 15/(T,)'/?(n,/10%) eV (with T,
in eV and n, in e/cm?; very approximate). Lorentzian line profiles are:

OL(v) =L [(v—vo)?+V7]~!, with fwhm = 2v; and v, = ¥ rates /4.

3. Static electric microfields caused by neighboring ions can induce shifts in the electronic
structure that lead to shifts in transition energies; the resulting broadening for transitions
with even An is fwhm ~ 4.3n / Z,,c(n./10%2)%38 eV (with n, in e/cm?). Ton-Stark line
profiles are sometimes approximated as Voigt convolutions with a Holztmark distribution of
Gaussian and Lorentzian widths, but accurate models predict splitting that cannot be
captured with simple line profiles.

These sensitivities of line shapes to the plasma environment make them a key diagnostic in
experimental plasma spectroscopy: line shapes encode a wealth of information about the local
conditions of the plasmas that produce them, including electron densities, electron and ion
temperatures, turbulent and bulk motion, and electric and magnetic fields. Line shapes are also
significant for radiation transport, since broader lines close the low-opacity "windows" in the
absorption spectrum that largely determine the Rosseland mean opacity.

This LDRD supported significant research in the development of spectral line shape theory along
two lines. First, we made significant improvements to a standard line-shape code to include more
fundamental physics, resulting in four publications (including three PRLs): Gomez et al.
[8,19,110], Kraus et al. [18]. Next, we developed a new approach for ion-Stark broadening that
uses the output of the DFT-AA model to predict both electronic structure shifts and electric
microfields, ensuring internal consistency. These advances are described in the sections below.
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2.8.1. Balrog: an improved standard model

At their core, spectral line shape calculations compute the perturbation of a plasma environment
on the electronic structure of atoms and ions and then average over that perturbation. Unperturbed
(isolated) atoms have sharp, narrow lines at their fundamental transition energy, E°, that are
broadened according to the uncertainty principle into line shapes with Lorentzian profiles.
Embedded in plasmas, additional perturbations broaden these lines and they take a non-trivial
shape that can no longer be approximated by the usual Lorentzian prescription.

Standard line shape calculations use multiple — and often untested — approximations. These
approximations are necessary because of the complexity and breadth of the physical processes
involved. To perform accurate line-shape calculations, one needs to understand atomic structure
and spectra, atomic collisions, plasma physics, electric and magnetic field perturbations, and
statistical mechanics. Thus, no line-shape model captures all of the physics exactly. However, we
can probe the importance of some bits of physics to evaluate their importance. For example,
Gomez et al. [109] evaluated how important the plasma statistical nature is to the line shape;
Gomez et al. [8] reviewed many of the approximations used by line shapes and their validity; and
Kraus et al. [[18]] has shown that removing these approximations has significant impact on our
ability to determine plasma properties.

One of the most common approximations in the the field of spectral line shapes is that the
perturbing plasma particles can be treated as classical quasi-particles. This approximation is
extremely common and allows researchers to test different types of physics that can’t be tested
otherwise, e.g. plasma screening [[110]. It had been the conventional thinking that a classical
treatment and a quantum treatment of the plasma particles resulted in the same line shapes
[L11].

In the conventional method of calculating line shapes, radiationless recombination channels such
as dielectronic recombination have generally been neglected as unimportant [[112} [113]]. But,
when we examined them, we found that they are important for a long-standing discrepancy in the
measured and modeled widths of isolated lines. Including these recombination channels in the
calculation reduced the theory-experiment discrepancy in the line shape; this work was published
by Gomez et al. [9].

While the work of Gomez et al. [9] was significant in establishing the importance of a quantum
treatment of the plasma electrons, a significant deficiency remained: the second-order
approximation. The second-order approximation uses an expansion method to describe the time
evolution of the atomic system. Accurate evaluation of the time evolution is important, and it
having the property of unitarity (conservation of probability) is also important, but the
second-order approximation does not preserve the unitarity property. Therefore, to have full
confidence in quantum line shapes, we needed to address the unitarity problem. With the help of
some external collaborators from Los Alamos National Laboratory, we were able to adopt the
method of Bray and Stelbovics [[114] to fix the non-unitarity problem in the line shape. We
published our results in Gomez et al. [10].

This fundamental research into spectral line broadening has also sparked ongoing research into
fundamental questions about the integrated opacity of a total system (ion + plasma). Sum rules
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state that the total integrated opacity of a system of electrons is equal to the number of electrons
in that system. In isolated atomic systems, the integrated opacity should be equal to the number of
bound electrons in that atom. However, in a plasma, these atomic systems are not isolated, and we
must therefore include the effects of complex configuration interaction with the free (plasma)
electrons that go beyond the perturbations so far considered. These interactions may alter the
expected sum rule, especially for highly charged ions like the transition metals ionized to L-shell
ions in the opacity experiments on Z machine [[115]. A preprint of this work [[116] is available for
review.

2.8.2. Test Shape: a new approach to ion-Stark broadening

As noted above, standard line shape theory for has many challenges. Among them are 1) the
computational expense of perturbation theory and complete all-order quantum collisions when
applied to many-electron systems and 2) the difficulty of consistently combining atomic and
plasma models. In the spirit of this LDRD, which emphasises computational efficiency and
internal consistency and relies on guidance from the most sophisticated existing models, we have
developed a new approach to calculating ion-Stark broadening using quantities derived from the
self-consistent DFT-AA model.

Ion-Stark broadening is among the most challenging aspect of line shape theory: First, it requires
calculating perturbed electronic structure for many values of external electric fields, which
becomes prohibitively expensive for ions with three or more active electrons. It is also among the
least consistent aspect of line shape calculations, since it requires a separate calculation of the ion
microfield distribution; these are usually provided by models that use approximate screening
based on input plasma density and perturber and radiator ion charges. Once both the
atomic-physics and plasma-field effects are calculated, the field-dependent shifts of each
component of each transition are foled with the electric field distribution and summed to provide
a line profile.

As opposed to the traditional method of folding the electric field probability distribution from an
external source like APEX [117] with field-dependent transition energies from perturbation
theory, our new method posits that we can instead directly fold a nearest-neighbor radial
probability distribution Pyy(r) with radially dependent line shifts, using transition energies,
energy shifts, and radial density distributions from a single model, DFT-AA, which has the same
computational efficiency for ions of any complexity.

The atomic data needed for line-shape calculations is generated by the DFT-AA model in the
following way. First, the standard self-consistent loop is performed, ensuring consistency
between the screened electronic potential and the electron density of the statistically occupied
quantum mechanical orbitals it supports. This produces a set of orbitals (1s, 2s, 2p... nf) with
binding energies eﬁg that change under changes in the plasma conditions. Next, we perform a
second self-consistent loop, holding the bound-state occupations fixed at their plasma values but
removing the screening due to the continuum (plasma) electrons. This provides a second set of
binding energies, 8212 that represent the average-ion structure of an isolated system with the same
ion charge and internal electronic distribution. For any nf — n’¢’ transition, we set the
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isolated-atom transition energy to be Er?g o = 82 — 82, » and the plasma-perturbed transition
energy tobe EV, ., =el, —¢’, .. Removing subscripts for simplicity, the plasma-induced shift
of any line is thus AE = E” — EY. Early investigations showed that, to a fair approximation, these
shifts follow a simple functional form: AE = C/r?, with C = (EP —E°)R3,5 a
transition-dependent coefficient calculated at the plasma density (characterized by Ry ) and r the
distance of the nucleus to the nearest-neighbor ion (in the muffin-tin approximation of the
DFT-AA model, where the ion distribution is a step function, r = Rys). While C varies by a few
percent depending on the density (or Ry s) at which it is calculated, determining C at the density

of interest for each case ensures that the shift will be locally accurate. EI

Note that the above procedure is quite different from the standard approach of applying
perturbation theory to an isolated atom in the presence of an external electric field. However, we
can relate the strength of the field at the center of the radiating ion in the DFT-AA model to the
equivalent electric field strength used in the perturbation-theory approach. For unscreened ions
with charge Z* = Z;,, the Coulombic electric field is EC(r) = Z* /r?. For ions screened with a
Debye parameter kp = ©,/(t> +¢€7)'/2, the screened Yukawa electric field is

EY(r) = Z*(1 +kr)e " /r>. We can thus define new coefficients CS = C/Z* and

CY = C/[Z* (1 + kRys)e *Rws] that imply locally linear transition energy shifts in terms of the
electric field: AE = CgE; these can be directly compared to the predictions of the standard
perturbation theory models.

Figure [2-9 shows calculations of the energy shifts in the K-shell transitions of H-like (red) and
He-like (blue) aluminum as a function of the electric microfield. The standard perturbation theory
results are given by thin solid lines, showing that detailed atomic models for these ions predict
splitting into multiple components that is roughly linear with the electric field strength above
about 1 au for the o lines, 0.3 au for B, and 0.1 au for . In the linear regime, the red-shifted and
blue-shifted components are symmetric to a few % in both H-like and He-like ions. The fractional
oscillator strengths of each component, listed on the figure, allow us to find a weighted average of
linear-fit coefficients CET from the standard perturbation-theory method. These linearized and
averaged fits, given by heavy blue and red solid lines in the figure, agree to within a few % for H-
and He-like ions and can be directly compared to the C}g linear-fit predictions of the DFT-AA
model (heavy black solid lines). Given the significant differences in the physical underpinnings
and code implementations of the two approaches, the agreement is quite good: our CE matches
(CET) within the expected variations of the C¥ coefficients under different temperature and
density conditions and much smaller than the variations among CET components in the standard
model. While the DFT-AA model predicts only red shifts, here it has been reflected to provide a
blue-shifted component as well. The worst agreement is seen for the He-like 2p — 15 (Heg,)
transition, where configuration interaction effects dominate over the external field effects at small
field strengths. However, the o lines are not typically used for diagnostics and we accept this as a
known error.

“Initially, we examined just the transition energies from DFT-AA calculations performed at different densities. We
found that the transition energies were best described by a power-law fit with transition-dependent coefficients and
offsets. We identified the offsets as the zero-density (aka: zero E-field) transition energies and that the power law
suggested an inverse square relationship between the energy shift and the density-dependent Wigner-Seitz radius.
The coefficients were unique to each transition within each charge state and varied up to 20% with variations in
the density.
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Figure 2-9 Line shifts (in au) from perturbation-theory calculations of
H-like (red) and He-like (blue) aluminum in strong electric fields. The
2p — ls (o) transitions are at the top, 3p — 1s(3) in the center, and
4p — 1s(y) at the bottom. Fractional oscillator strengths are listed
for each component type (light lines) and the linearized, oscillator-
strength-weighted average shifts shown (bold lines). The DFT-AA
model prediction for the nearest-neighbor shifts translated to a Yukawa
electric field are given by black lines.
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With these encouraging results for the atomic-physics part of the line shape problem in hand, we
turn to the plasma-physics component: the determination of the electric field distribution. Here,
we use the self-consistent radial distribution function g(r) derived from the DFT-AA code and
described above in section [2.1|to generate a nearest-neighbor probability distribution function,
Pun(r) = dnnir*g(r)explfy 4mnir?g(r')dr’]. These are illustrated in fig. a) for aluminum at
T,=250eV and mass density 0.1 g/cm® (n, = 2.4 x 10*2¢/cm?), which has k = 0.072(au). Again,
we can use the Yukawa relationship between the nearest-neighbor distance r and the electric field
E to translate Pyy/(r) to an electric field probability distribution PY (E) = Pyy(r)(dE/dr) vs.
EY(r). A comparison of this electric field distribution against the P(E) calculated by APEX [117]
for the same electron density and temperature is shown in fig. 2-10(b). Here, we fixed the charge
of both the perturbing and radiating ions to be 11 for He-like Al, while the background ion charge
Zp, from the average-atom model at these conditions was 10.64 and the continuum charge Z¢ was
11.25. The agreement is quite reasonable; on par with the few-percent agreement we found in the
atomic-physics part of the calculation, with the most pronounced disagreements occurring at
small fields.

Figure @Fc) shows the He-like 3p — 1s (Heg) lineshapes that result from averaging various
field-dependent shifts over electric field distributions, as well as our new approach of folding the
radially dependent shifts with the nearest-neighbor distribution PNN(r) (black line). The blue
line shows the full calculation of the (unlinearized and unaveraged) perturbation-theory
components with the standard (APEX) electric field distribution. m The simplified
field-dependent line profiles (given by dashed lines) are ¢(AE) = P(E)(dE/dAE): the dashed
blues line shows the average perturbation-theory He-like coefficient folded with the APEX P(E),
and the dashed black line shows the DFT-AA coefficient folded with the DFT-AA P(E) (both of
which translate the radial nearest-neighbor dependencies into electric field dependencies using the
Yukawa potential).

At the relatively low electric fields (less than about 0.2 au) present in this plasma, the Heg-line
components retain some individual character and are not fully linear, leading to the asymmetry
and red-side structure evident in the full calculation. Retaining the APEX electric field
distribution, but linearizing and using the weighted average perturbation-theory coefficients,
recovers the blue-shifted component of the line reasonably well but washes out the red-side
structure. Replacing the linearized and averaged coefficients and the field distribution from the
standard theory with quantities derived solely from the DFT-AA model leads to a very small
change in the line shape: modestly transferring strength away from line center due to the low-field
differences in P(E) low-field/shift regions. This indicates that our DFT-AA approach does a
rather good job of capturing both the averaged atomic and the plasma effects that contribute to
ion-Stark broadening in the standard theory: that is, the agreement of TestShape with standard
models is no accident. Finally, removing the intermediate step of translating the radially
dependent DFT-AA quantities into field-dependent quantities also has a relatively small effect —

10The standard perturbation-theory + APEX ion-Stark calculations were done specifically for this test of the ion-Stark
broadening effects by minimizing the contributions of electron-ion collisions. A full calculation including electron
collisions has additional broadening and, notably, a significant redshift. We are actively investigating whether
complete and self-consistent dynamic collisions, as described for the continuum-continuum processes in section
can account for this redshift or if it is more accurate to invoke a plasma potential as described at the end of
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Figure 2-10 (a) Radial ion distribution functions from DFT-AA and the
line-shape-standard model APEX for aluminum at 7, =250 eV and p =
0.1 g/cc, along with the derived nearest-neighbor probability P(r) from
the DFT-AA curve. (b) Electric field distributions for the same plasma
from DFT-AA and APEX. (c) Al Heg line profiles using: component-
resolved perturbation theory and APEX P(E) (solid blue); the linearized
and weighted-average coefficient from perturbation theory with the
APEX P(E) (dashed blue); DFT-AA coefficient CL and the P(E) derived
from DFT-AA (dashed black); and, finally, the DFT-AA radial shift coef-
ficients folded with the DFT-AA Pyy(r) (solid black).
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and removes any dependence on the assumed functional form of the electric field and screening,
returning the model to full internal consistency.

While the averaging of either the standard theory or the DFT-AA approach leads to some
significant disagreement in the red-shifted component of the Al Heg line at the given conditions, it
offers a real improvement over many other approximate methods. For example, the
collisional-radiative models described in section [3.1|use the fwhm approximation for ion-Stark
broadening given above, folding that width into a Voigt line profile that does not recover central
splitting. Here, that approximation gives a Stark fwhm ~ 5 eV, which is fairly close to the 4.5 eV
fwhm of TestShape. And while the statistical approximation will be even worse for the o lines, we
expect it to be quite good for the high-n lines often used for plasma diagnostics. We also expect it
to be more reliable at higher densities, where electric fields are higher and the non-linear low-field
behavior of the shifts is less important. Finally, some of the details of the disagreement will be
washed out by electron-collisional broadening, which here will convolve the ion-Stark line shapes
with a Lorentzian characterized with a fwhm of about 2 eV.

Finally, we emphasize that 1) our new approach removes some of the potential inconsistencies
between the atomic and plasma physics components of the standard approach to ion-Stark
broadening and 2) will be dramatically faster for complex ions with multiple active electrons. It
may be able to give reasonable approximations for L- and M-shell transitions that have largely
been beyond the reach of standard theory. We plan to write up these results for publication in
Adler et al. [17].

The known errors in this approach include the statistical average over detailed components, the
lack of discrimination between ions in the coefficients C, and the use of averaged ions to
determine the nearest neighbor distributions. Future work will explore whether we can impose a
second-order broadening to account for the components and will include more extensive
comparisons of our model against Balrog and other codes for other elements, plasma conditions,
and transition types — including the L-shell transitions that are critical for describing the opacity
experiments underway on Z and NIF. We are also interested in rigorously exploring the
connections between the dynamic collision frequencies described above in section [2.4] and the
standard approaches to line broadening —and line shifts — from fast electron-ion collisions.

3. NON-LTE TABLES AND R-MHD IMPLEMENTATION

In this Section, we give a brief overview of non-LTE modeling and the specific models used in
this work, describe the challenges of tabulating non-LTE data and our physics-informed approach
to tabulation and interpolation, and describe our initial implementation of non-LTE tables in the
radiation-magnetohydrodynamics code GORGON.
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3.1. Non-LTE Atomic Models

Occupations (or populations) of electronic configurations (or states) are fundamental quantities in
the atomic models used to describe material properties. EOS quantities such as internal energies
and pressures are derived from the distribution of population among bound-electron
configurations and the number of ionized free electrons, Z*. Transport quantities depend on the
number of free-electron charge carriers and the bound-electron screening that determines
momentum-scattering cross sections. Radiative properties are directly dependent on the
populations of initial states from which, for example, radiative decay or photoionization processes
lead to emission or absorption of photons.

In local thermodynamic equilibrium (LTE), the populations of electronic states follow relatively
simple statistical relationships that are established by detailed balance among direct and reverse
rates. These statistical relationships depend only on the electronic structure of the ions under
consideration and the temperature and density of the plasma. For LTE to hold, the electron, ion,
and radiation temperatures should all be equal (7, = T;,, = T,) and their energy distributions
should be in thermal equilibrium (Fermi-Dirac, Maxwellian, or Planckian). LTE can also be
established at high densities where collisional rates dominate over radiative rates: roughly

ne > 1018Tel/ 276 cm~3 for K-shell transitions in ions with nuclear charge Z and temperature 7,
(in eV). For high-Z elements at temperatures large enough to support K-shell radiation, strong
spontaneous radiative decay rates enforce LTE only at prohibitively high densities or radiation
fields. Most of the high-Z plasmas encountered on Sandia’s Z Machine for RES sources and for
ICF diagnostics have electron densities below 10?> cm™3 and 7, < 7T, — that is, the vast majority
of high-Z REHEDS plasmas are highly non-LTE.

When the simple statistical relationships of LTE cannot be used to determine the populations X; of
electronic states 7, one has to explicitly calculate and solve a set of coupled collisional-radiative
(CR) rate equations: dX;/dt = X;Y ;R;—,j+ ¥ ;X;R;;, where R;_, ; represents all possible rates
from state i to state j. These rates can be spontaneous, like radiative decay A", collisional, like
electron-impact excitation and ionization, or driven by photons. The CR rates depend on both the
electronic structure of the ions under consideration, which determines the cross sections G;; of
various processes, and the plasma conditions (7,1, T;...), or more generally the energy
distribution functions F, of electrons and photons: R = n,(c;;F). Different CR models make a
variety of choices for the sets of states and the calculations of rates, which can lead to significant
variations in their predictions of material properties (see Hansen et al. [[118] and references
therein).

In this work, we consider three distinct CR models: The reference model is SCRAM [6]], an
established model suitable for direct comparison with experimental spectra that uses hybrid
electronic structure encompassing fine-structure levels, configuration-averaged states, and
superconfigurations. A related model is SCFS, a screened-hydrogenic superconfiguration model
that closely resembles the DCA inline model [1] used for non-LTE calculations in the
radiation-hydrodynamic codes LASNEX and HYDRA. These models use isolated-ion atomic data
for electronic states and cross sections, ad-hoc density effects, and can incorporate a wide variety
of electron and photon distributions. The final model we consider is the DFT-AA model described
in Section which uses self-consistent atomic data that natively incorporates density effects but
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which, for now, is restricted to thermal electron and photon distributions and uses a modification
of the Fermi occupation factors to approximate non-LTE effects rather than a full CR matrix.
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Figure 3-1 Monochromatic absorption spectra from LTE (dashed) and
non-LTE (solid) calculations from various models for Cu at 7, = 1 keV
and 0.1 g/cm>. While the three independent non-LTE models have sig-
nificant variation in charge states and detailed absorption features,
those variations are dwarfed by differences between LTE and non-LTE.

Figure [3-1) shows a comparison of detailed K-shell absorption spectra from our three non-LTE
models for copper (Z = 29) at T, = 1 keV and a mass density of 0.1 g/cm? (n, 2.5 x 10*?¢/cm™3).
The profound difference between the LTE curve (dashed) and the non-LTE curves (solid)
underscores the order-of-magnitude effect of non-LTE modeling. Here, the non-LTE calculations
retain significant population in L-shell charge states (Li-like, Be-like, etc.) that contribute to a
robust continuum support for the K-shell lines. In LTE, most of that population shifts to the He-
and H-like K-shell ions, dropping the continuum dramatically and generating a strong new H-like
absorption feature around 8.7 keV. In LTE, the Rosseland mean (weighted inverse) opacity is 30
times smaller than in non-LTE, and the total LTE emissivity (not shown here, but see fig. 2-8)) is
about five times larger than that of non-LTE (and more than 100 times larger above the K-edge).
By contrast, the differences here among non-LTE calculations are only on the order of 10% for the
bulk radiative properties (even though d.r. is excluded in the DFT-AA-MC model and included in
the two other models). Note that DFT-AA-MC is significantly closer to our reference model
(SCRAM) than is the simple screened hydrogenic model SCSF, which is representative of the
model quality available for inline non-LTE calculations. For more complex ions, the differences
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among non-LTE models can be significantly larger (factors of 2 - 10) — but the differences
between LTE and non-LTE calculations also become more profound. This guides our tabular
non-LTE development: if non-LTE tables can reproduce the bulk radiative properties of our best
non-LTE models to about a factor of two, they will have similar accuracy to inline non-LTE — but
will be much faster — and will offer an enormous increase in accuracy over LTE tables.

3.2. Non-LTE Tables

In LTE, the populations of electronic states and the ionization Z* depend only on the local
temperature and density. Thus tabulation of material properties is straightforward: typical LTE
tables have about ten points per decade in temperature and density, spanning temperature ranges
from 0.02 eV (approximately room temperature) to 20 keV (fusion ignition temperature) and
density ranges from 10!° cm™3 (atmospheric density) through 103 cm™3 (solid density) to

10%% cm™3 (inertial fusion density) with about 60 x 70 = 4200 points. Fore each of these
temperature-density points, EOS and transport tables report a handful of properties, while
monochromatic (detailed) opacity tables report absorption coefficients k(v) on about 10* photon
energies (hv) to enable resolution of details like photionization thresholds and bound-bound
transitions. In LTE, the emissivity j and absorption coefficients k are simply related to each other
through Kirchoff’s law: j(v)/k(v) = B(v), with B a Planckian blackbody spectrum (this is
essentially a restatement of detailed balance), so emissivities do not need to be reported
separately. Most rad-hydro codes perform significant averaging over photon energies before
starting radiation transport calculations, reducing the 10* photon-energy gridpoints to 10? or
fewer photon energy bins.

In steady state (dX /dt = 0) E and for the special case of 7, = 0, non-LTE properties can be
tabulated and used in a similarly straightforward and efficient way to the LTE case. While
Kirchoff’s law no longer holds for 7, = 0, so that emissivities must be tabulated along with
absorption coefficients, the resultant non-LTE tables remain tractable. However, the completely
general non-LTE case must consider variations in each of 10* photon energy bins that must span
orders of magnitude in intensity, from an ill-defined effective zero to the largest likely radiation
field present at a given frequency in a given plasma. This enormous dimensionality prohibits
straightforward non-LTE tabulation.

Several approaches have been taken to tabulate non-LTE properties, all of which are aimed at
specific plasma conditions that constrain the radiation fields in some way. For RES plasmas, local
radiation fields are produced by bound-bound line emission from hot plasma regions and the
incident radiation spectrum at any point in the plasma varies from effectively zero to an optically
thick spectrum whose intensity depends on the global plasma’s optical depth. Researchers from
the Naval Research Laboratory developed a tabular collisional-radiative model (TCRE) [[119] that
parameterizes radiation fields according to the optical depth of strong K-shell lines. A similar
model was developed by one of us and used in the analysis of wire-array emission spectra from
the Z Machine [120]. For ICF plasmas at the National Ignition Facility, where the radiation field

"Time dependence can be captured by inline non-LTE models but is extremely challenging to tabulate. Our approach
to incorporating time-dependent effects in non-LTE radiation-hydrodynamics is described in Section
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is provided by the near-Plackian emission from a high-Z hohlraum, a different approach must be
used: Scott et al. [121] have developed a linear response matrix (LRM) approach that records the
emission and absorption values — and a matrix of their gradients — of 10? photon energy bins
under small variations from a reference spectrum. Here, the reference spectrum is selected to
resemble the 7, ~ 300 eV + M-shell gold emission of a NIF hohlraum. Related work has explored
coarsening the photon energy bin structure to capture only a handful of bands [[122].

While the TCRE and LRM approaches have been very successful in their intended domains, this
LDRD attempted to develop a tabular non-LTE scheme that would be more general, aiming to
capture non-LTE effects for not only optically thick and hohlraum plasmas but also fluorescence
emission and general photoionized plasmas. Fluorescence emission occurs when high-energy
photons (or hot, non-thermal electrons) ionize an inner-shell electron in a cold material and the
resultant hole is filled by the radiative decay of another electron. Fluorescence spectra obtained
from ICF plasmas on both Z and NIF, where x-rays from the hot fusion core drive photoionization
in transition-metal dopants in relatively cold external shells, have been used to help diagnose
temperatures and areal densities critical to understanding confinement [[100, [123]]. Fluorescence
emission is also important to RES source development on Z, since hot electrons accelerated in
voltage gaps may provide substantial warm X-ray emission [124]. Our interest in general
photoionized plasmas is related in part to the Z Astrophysical Properties Program (ZAPP) [125],
which uses the X-ray flux from wire array implosions to drive ionization in nearby samples [[126]
Our tabulation strategy is illustrated by the sample table shown in Fig. [3-2] For each electron
temperature-density point, we first assign a number of radiation bins n;, and a number of
radiation field points for a) optically thick cases (n4,) b) fluorescence emission (1 4;,,,) and ¢)
general photoionization (n,; = npy — Niay — Nf1uer)- In the sample table, the optically thick points
are outlined in blue, the fluorescence points are outlined in magenta, and LTE cases are outlined
in red. The user can specify 1y, frqus 1 fiuor, and the total number of radiation fields np,. A
complete description of the input and output quantities is given in Table

For each temperature and density, we begin by computing an optically thin spectrum with 7,, = 0
and find the peak line-center absorption coefficient £ (units of 1/cm). We assign the effective-zero
input radiation field jj, to be the self-emission from a plasma whose size x (in cm) ensures a peak
optical depth T = kx < 1, and then perform (n,,, — 1) calculations that systematically increase the
peak optical depth up to values sufficient to impact the ionization (t > 100). Each of these
optically thick calculations uses the escape-factor approximation to calculate the detailed effects
of self-photopumping in a uniform plasma of the given size. This ensures that the driving
radiation in these cases corresponds to a highly resolved input spectrum regardless of the
coarseness of the radiation bin structure. Since the output kP values are averaged over coarse
radiation bins, we also track and record the deviation of the detailed absorption &y from the
averaged absorption (kp) in each bin. This gives us a factor f; = (((kp) —ky)?)/{kp) that helps
capture line-dominated radiation transport even with coarse radiation bins. Typically, we use

niau = 3 — 4 and vary the peak line-center optical depth from about 0.1 to 1000; a plasma with an

12We note that the tabulated electron-ion equilibration times (which are derived from the inelastic collisional rates in
the CR model) tend to be factors of m;/m, longer than the electron-ion collision times (derived from the simple
Lee-More approximation for momentum scattering). This is roughly consistent with the small zero-frequency-limit
contributions of inelastic scattering to the dynamic collision frequencies described in sec[2.4]and the relatively long
electron-ion equilibration times described in Appendix A.
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Figure 3-2 Example non-LTE table with blue outlines for optically thick
cases, magenta outlines for fluorescence, and dark red outlines for
LTE. Here, we have enforced AZ* ~ 2
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infinite optical depth will produce its own blackbody radiation field with 7, = T, and will thus be
in LTE.

To capture fluorescence, we assign a very high color temperature to an external Plankian radiation
field and apply a significant dilution factor to ensure that a) there are a sufficient number of
high-energy photons to produce non-thermal fluorescence emission and b) the diluted radiation
field does not substantially affect the ionization. For a color temperature of 10 keV, the dilution
factor is about 1073%,. Within the CR calculation, we track and record a factor

fi=lir(ns1uor) — jp(1)]/ jp(n fiuor), Which is the fraction of emission that is driven by the
non-thermal radiation field in each radiation bin. We also track the ratio of photoionization rates
to the rate of collisional ionization that would occur from hot electrons in a Maxwellian
distribution with a hot-electron temperature of 7j, = 2 x Ex, (80% of which will lie above the
K-shell ionization threshold Ex) and use this ratio to assign and record an equivalent hot electron
fraction fj,. This entry in the table can thus be used to estimate fluorescence line emission from
both high-energy photons (where it will scale directly with f;ji,) as well as hot electrons (where it
will scale directly with f; and the hot electron density nj, = fj, * n.). The tabulated fluorescence
emission includes bound-bound characteristic line emission as well as free-bound radiative
recombination, whose slope is characterized by exp~™/Te Hot-electron-driven fluorescence
requires the addition of an analytical free-free component to capture bremsstrahlung from the

non-thermal populations: jzr=1.2 X 10723 fhneZ*zexp_hV/ T/ Thl/ % W/ion. Thus fluorescence
driven by both external photons and hot electrons can be reproduced using a table with a single
fluorescence point. H The extension to non-thermal electrons goes beyond the scope of the
original proposal and we hope to implement it in hybrid design codes that track the production of
non-thermal electrons.

Finally, the tables sample a variety of Planckian radiation fields with color temperatures 7. and
dilution factors of 1.0 for 7. < T, and 0.5 for 7. > T,. These dilution factors are chosen to a)
provide a touchstone to LTE for 7. = 7, and b) transition to half-sky illumination for general
photoionization. The lowest color temperature in this section of the table is calculated using the
slope of ionization against the total incident energy in the radiation field derived from the
optically thick cases; we aim for the first photoionized case to have AZ* ~ 1 from the thickest
case. Generally, this requires 7, with 2 - 10 times more total energy than the driving field of the
thickest case, and we restrict 7, to be < T, to ensure that the LTE touchpoint is captured. We then
systematically increase T, and can aim to either a) reach a fixed peak radiation temperature in
fixed number of radiation field points remaining or b) (recommended) take steps that ensure
AZ* < 2 to avoid large changes in the emission spectra. In either case, we make sure to capture
T. =T, for LTE if allowed by np,. E Defining the photoionization cases in this way ensures
monotonicity in the tabulated input radiation fields and Z*, which is helpful for the
interpolation.

This physics-based tabulation strategy provides a compact representation of an enormous range of

BEarly versions of the tables used n fuor = 4 and sampled several non-thermal color temperatures for the radiation
field, but we found that the additional complexity confused the interpolation and was not as accurate as a straight
scaling of the non-thermal fraction of the emission in each bin to the driving radiation field intensity.

4For example, in the sample table of fig. we haveixed the number of radiation fields for each temperature-density
point to be 12., so the case with T, = 1keV did not reach the LTE condition
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plausible non-LTE radiation fields using only 10 — 20 radiation fields for each
temperature-density point. The EOS and transport data it produces thus require only about 10x
more memory than EOS and transport data from the LTE tables now in use. And since our
calculations incorporate the full detail and extent of self-opacity and external Planckian radiation
fields, regardless of the bin structure or output energy range, we can specify a very coarse
radiation bin structure (n;, = 3 — 10) that compensates for the increase in table size accrued by
incorporating the radiation field. Users can select the number of radiation point as well as the
number of bins, or even input a pre-specified bin structure.

Since these compact tables can be pre-computed with detailed CR models like SCRAM and
DFT-AA, which are far too expensive to run inline in rad-hydro simulations, they offer a
significant increase in accuracy over inline models but incur only a minimal increase in
computational cost (runtime). The compactness of the present tables does carry some drawbacks,
however: First, the various opacity and fluorescence factors may not be trivial to incorporate into
radiation-hydrodynamics codes (like any tabular non-LTE method). Perhaps more importantly,
coarse binning may not be sufficiently accurate for some radiation transport calculations:
convergence studies with inline non-LTE in NIF hohlraums suggest that 10? bins are required for
reasonable energy balance near LTE. While understanding the interplay of known inaccuracies in
binning/transport with known inaccuracies in the highly simplified inline CR models is beyond
the scope of this LDRD, we plan to explore these issues in continuing collaborations with the
developers of inline and LRM models.

In addition to the compact tables for read-in to the rad-hydro code, we also compute
accompanying tables of detailed emission and absorption spectra suitable for use in
post-processors (see sec. 4f) that can generate synthetic data for direct comparison to experimental
measurements. These accompanying tables have 103~* frequency points for each temperature,
density, and radiation field, and accommodate sparse frequency sampling in line-free regions of
the spectrum that can significantly reduce the size of tables with high spectral resolution. The
detailed spectra also allow bespoke re-binning of the coarse radiation groups when needed.

3.3. Non-LTE table interpolation

The table strategy we have described so far draws on previous work for three components: a)
optically thick emission b) fluorescence emission, and c¢) Planckian radiation fields
(photoionization). In this section, we will test focused interpolation schemes for each table
component and describe a global interpolation scheme that can be used inline in rad-hydro codes
and post-processors. In all cases, we illustrate the interpolation schemes by comparing the
detailed emission spectra from the supplementary tables described above, since they provide a
stringent test of the interpolation methods and their accuracy should be representative of
interpolation on the radiation-binned quantities reported in the compact tables. We also
interpolate only on the radiation field, leaving interpolation on temperature and density to
standard methods, where interpolated quantities Q; are given by piece-wise linear interpolation of
In(7,) and In(n): e.g. In[Q;(X;)] = exp[fi—1In(Qi—1) + (1 — fi—1)In(Q;+1)], where Q;—_1 and Q;
are the tabulated quantities at the nearest gridpoints above and below the independent variable X;
(temperature or density), and fi_; = [In(X;11) — In(X;)]/[In(Xi+1) — In(Xi—1)].
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input fields | description

Ne(e/cc) 1 density (electron, ion, or mass density)
Te(eV) 1 electron temperature

rin (J/cc) Npin incident radiation field

Tr(eV) 1 radiation temperature

fTr 1 radiation dilution factor

tauR 1 peak line-center optical depth

mdet/th 1 model type (hydrogenic or detailed) OR hot electron fraction fj,
output fields | description

zbar 1 average ion charge Z*

mu(eV) 1 chemical potential

Ee(J/g) 1 internal energy (electron)

Ei(J/g) 1 internal energy (ion)

Pe(bar) 1 pressure (electron)

Pi(bar) 1 pressure (ion)

tee(s) 1 electron-electron collision time

tei(s) 1 electron-ion collision time

tceq(s) 1 collisional equilibration timescale

treq(s) 1 radiative equilibration timescale
econd(S/cm) |1 electrical conductivity

Kt(W/cm/eV) | 1 thermal conductivity

Cve(J/eV/g) 1 heat capacity (electron)

Cvi(J/eV/g) 1 heat capacity (ion)

Cs(cm/s) 1 sound speed

kR(cm?2) Npin Rosseland mean opacity (inverse, weighted by dB/dt)
kP npin | Plank mean opacity (direct, unweighted)
JP(W/ion) npin | Planck emissivity (sum)

kPfac Npin opacity factor fi OR fluorescence factor f;

Table 3-1 Tabulated quantities for non-LTE EOS, transport, and radia-
tive properties. SCRAM tables use ideal gas approximations for pres-
sures and sound speed, the Lee-More [51] approach for conductivities
and collision times, and internal collisional-radiative-rates for equili-
bration times.
properties for below-solid densities. Tables from our DFT-AA model
will have more rigorous EOS and transport properties and slightly
rougher approximations for radiative properties, as described in sec-
tion For either type of model, the EOS, transport, and radiative
properties are internally consistent — that is, they are based on the same
underlying atomic data.

SCRAM gives very reliable ionization and radiative
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Figure 3-3 Interpolation of the optically thick table entries for copper
with 7, = 3 keV and n, = 1—?cm—3. (a) Log-log (dashed black) and lin-
lin (solid black) interpolation between nearest table entries (light lines)
on the peak line-center optical depth T, compared to the exact calcula-
tion with T = 300 - the log-log interpolation is significantly better. (b)
Log-log interpolation for the same case, but on the total radiation field
(solid black) and on the kp-weighted field (dashed black) — the curves
are almost identical (c) Log-log interpolation for an incident Planck-
ian radiation field with the same total radiation field as the T = 300
case, interpolated on the total radiation field (solid black) and on the
kp-weighted field (dashed black) — the kp-weighted interpolation is an
order of magnitude better.
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Previous work with tabulated emission and absorption from line-dominated optically thick
plasmas demonstrated that a simple interpolation on the peak line-center optical depth 7 is
generally a good approximation for emissivities and opacities. Figure [3-3p shows a comparison of
interpolations (lin-lin and log-log) between nearest-neighbor tabulated cases (given by light lines)
for T=300 from the 7, = 3 keV copper tables illustrated above, which were tabulated on t=[0.1,
10, 1000] against an exact calculation at T=300. The labeled Cu Hey, line is optically thick, while
Cu Hejc and the surrounding satellites are relatively thin. Here, the log-log interpolated
intensities are within a few % of the exact calculation, while lin-lin interpolation has errors up to
30% at the Cu He, peak. Importantly, however, rad-hydro codes do not have direct access to the T
of an arbitrary plasma volume embedded in a larger plasma; instead, they track the binned
incident radiation fields. Figure [3-3b shows interpolation on the total incident radiation intensity
(a simple sum over all bins), along with a modified log-log interpolation on a kp-weighted
radiation field Y ;s K27 / (X pins k2™)r2 (for reasons that will become evident soon). Since both of
these scale very closely with T, the accuracy of both interpolations is very similar to that of direct
interpolation on T.

While log-log interpolations on the peak optical depth, the total radiation field, and the
kp-weighted radiation field all give very good agreement with exact calculations of emission from
plasmas with line-dominated radiation fields, we want our tables to be reliable for general
radiation fields as well. In general, Planckian radiation sources and emission from other elements
will not have the same resonant photopumping effects as line emission from the same element in
similar plasma conditions. To test this part of the table far from its intended regime, we consider
the effect of an external Planckian blackbody with the same total radiation field as the case with

T = 300, and note that while the high-T case has an incident radiation field dominated by radiation
in the L- and K-shell energy bins, the Planckian case has 99% of its radiation in the lowest-energy
radiation bin. And while the high-7 incident field has a profound effect on the emission intensity
due to resonant photopumping of the lines, the Planckian radiation field has negligible impact on
the emission. Thus, interpolation on the total energy of the incoming radiation field will lead to
order-of-magnitude errors, as illustrated in fig. [3-3c. Weighting the incoming radiation field by
the kp factor described above is a reasonable way to correct for this error, since the Planckian
mean opacity is dominated by absorption in the L-and K-shell bins, with the lowest-energy bin
having a fraction of only about 3 x 107 of the total Planckian mean opacity.

For fluorescence emission, our tables use a single radiation field selected to provide significant
fluorescence emission without significantly impacting the thermal ionization. Non-thermal
fluorescence occurs following ionization of an inner-shell electron — whether that ionization is
from photoionization or collisional ionization. The tables record the results of K-shell
photo-fluorescence, which occurs following photoionization from incident photons with energies
above the K-shell ionization threshold Ex ~ 13.6 % (Z — 1.5)%¢V. We find that the K-shell
fluorescence emission roughly scales directly with the incident radiation field strength in the

SThis part of the table uses an escape-factor method that implicitly invokes a highly structured self-generated radi-
ation field dominated by strong lines. While this approach is robust to changes in both the bin structure of the
compact tables and the spectral resolution of the detailed tables, radiation transport of strong lines is distinct from
radiation transport of smooth continuum emission (or of line emission from other materials). Thus, when these
table entries are called in rad-hydro calculations, the absorption coefficient for transport in each bin should be
multiplied by the factor f; to accurately estimate the incoming radiation fields (see section .
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K-shell radiation bin. Since photoionization cross sections peak near the threshold energy Ex and
fall as (Ex/hv)? above threshold, this bin-specific scaling should hold for most Planckian sources
and can even provide reasonable estimates for fluorescence emission driven by x-ray free-electron
lasers (XFEL) with beam energies Ep.., > Ex. Our test case here is the copper table with 7,=333
eV, with Ex = 10.3keV, for which f]l?m = [0,0.03%, and 99%] for the three photon energy bins
(the last represents the K-shell emission, 99% of which arises from non-thermal processes). The
output radiation spectrum is estimated by jo = ji9[1 + f;’i”(r;;’fn — 140 /11ab] "yusing bin-specific
input radiation fields r;;'}n and rfﬁs , fJ’?i”, and ji% values from the fluorescence table entry.

Figure [3-4pa shows an example of interpolating fluorescence emission for a radiation field with 7,
=3 keV and dilution factor of 10~%, which has a K-shell radiation energy density of about 8 J/cc
(compared to the tabulated value of about 0.14 J/cc). The agreement is within a factor of two for
the K, fluorescence emission. Although the simple scaling overpredicts the continuum emission
in the low-energy part of the K-shell bin, that emission is not typically energetically or
diagnostically important. If needed, a continuity condition across bins could be imposed. This
case represents the behavior one might see when calculating fluorescence from impurities in the
cool liner region surrounding the hot fusion core of a MagLIF plasma, with the sky factor reduced
from the ~ 1073 value of a real MagLIF plasma by the density factor 10'° /10°* = 107> to
account for the higher sensitivity of low-density plasmas to external radiation.

Figure [3-4p shows interpolation of an XFEL beam centered at E, = Ex = 10.3 keV, with a square
profile over a bandwidth of 0.01E}, (103 eV) and an intensity of 10'2 W/cm? (again, we have
scaled down typical XFEL intensities by about 107> for this low-density test case). This radiation
field has about 32 J/cc in the K-shell radiation bin. Here, too, the scaling of the fluorescence part
of the emission matches the exact calculation rather well in the K-shell line region and higher
energies. If the XFEL beam were at a photon energy significantly higher then Ex, we might need
to consider including an additional factor of (Ex /Epean)’ to account for the decaying
photoionization cross section.

Since fluorescence emission is a relaxation process that follows inner-shell ionization from any
mechanism, we can also use this single point in our table to estimate hot-electron-driven
fluorescence. The tabulated fj, factors are based on ratios of collisional ionization from a hot
electron distribution with temperature 7;, = 2Ex and number density of f}, * n, to the
photoionization rates from the incident radiation field, and can be scaled to general hot electron
distributions. Since collisional ionization cross sections have a much gentler scaling with incident
energy than photoionization (they scale roughly as In(x) /x, with x = €,/Ek)), fluorescence
emission from hot electrons scales roughly with the number of electrons above the threshold
energy Ex [127]. Hot Maxwellian distributions with temperatures 7, have electron energy
probability distribution functions Fy(€,) = (4¢€,/ ﬂ:Th3)1/ 2¢~%/Ti of which a fraction f- ~
max[l,(Z/ﬁ)e_O‘nEK/Th] (for Tj, > Ex) have energies greater than Ex: f~ ~ 0.8 for Tj, = 2Ex
and goes to unity for 7, > Ek. Figure [3-4c shows a comparison of the exact hot-electron
fluorescence spectrum from 0.01% hot electrons at 7j, = 100 keV to an interpolation of the K-shell
emission j{{f, = jile;() SPCL ) /(0.8£4%%). This interpolation for hot electrons directly scales
the approximate number of hot electrons above the K-shell edge of an input hot electron
distribution to the fluorescence intensity tabulated for a known hot electron fraction, temperature,
and f-. Like the photo-fluorescence scaling, it accounts for the fraction of emission that is
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Figure 3-4 Interpolation of non-thermal fluorescence emission from
copper with 7, = 333 eV and n, = 1—'?cm~3. (a) Fluorescence from
an external radiation temperature much lower than the tabulated flu-
orescence case, relevant to inertial fusion diagnostics. (b) Fluores-
cence from a free-electron laser with bandwidth 0.01 and beam energy
E, = Ex = 10.3 keV. (c) Hot-electron fluorescence from f, = 10~ elec-
trons at 7, = 100 keV, scaling to a tabulated equivalent hot electron
fraction for 7;, = 2Ex keV and adding an analytical contribution for the
free-free bremsstrahlung emission. Insets show linear-intensity plots
of the fluorescence K, lines and gray lines are the single tabulated
spectrum from which all of the interpolations are made.
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non-thermal. Unlike photo-fluorescence scaling, this should only be applied for K-shell
fluorescence (the radiation from other bins is taken to be thermal). Since fast electrons can also
contribute significantly to bremsstrahlung emission, so we include an approximate additional
continuum term: jrr = 3 X 1O*3’2fhneZ*Ze*h"/Th/Thl/2 W/ion/eV.

In all of the cases shown in fig. the tabulated fluorescence spectrum is given by the gray line.
Together, the three plots demonstrate that linear scaling of fluorescence emission to 1) the
radiation energy density or 2) the number of hot electrons above the K-edge both provide
reasonably accurate pictures of fluorescence emission —even when the input fields and intensities
are orders of magnitude away from the tabulated values, and even when the input radiation (or
non-thermal electron) distribution is quite far from the tabulated case.

A universal interpolation scheme should perform about as well as each of the tailored
interpolation schemes described above. So far, we have implemented two approaches for
universal interpolation, both of which incorporate the direct opacity factor f; when invoking table
elements with radiation fields driven by self-opacity and f; when invoking table elements with
fluorescence. The first, denoted “k-wt,” is described above: it performs an interpolation on the
total J/cc radiation field with each radiation bin weighted by the 7, = 0 Plackian opacity k?;. Here,
the interpolation routine finds the two tabulated points with the closest opacity-weighted
intensities and then interpolates between them.

A second attempt at a universal interpolation scheme uses a distance-weighted matrix method
(Sheperd’s method). This scheme computes the linear or logarithmic distance between intensities
in each radiation bin, d, and returns a weight for the output of each tabulated radiation field that
scales with d ™, with the total weight normalized to unity. Here, m can be varied to restrict or
expand the weighting function: typically, we use m = 3. As illustrated in sections and[4.1]
these “universal” interpolation schemes can provide reasonable results. We have also investigated
interpolation forcused on photoionized plasmas, including the particularly challenging cases
described in [121} [122]], where radiation fields contribute to the ionization of a material through an
open shell and where the radiation fields have both thermal and non-thermal components. So far,
we have not found a general interpolation method that works as well as for the cases described
above: we find that the k?,—weighted interpolation is quite good for thermal radiation fields, but the
matrix interpolation better captures non-thermal effects (e.g. of M-shell Au radiation in a
hohlraum). However, neither is optimal and better approaches will be explored in future work: in
particular, we will investigate whether separating the interpolation on the radiation bins can
provide robust performance for non-thermal sources and whether the table strategy should be
adjusted to limit step-sizes of radiation field intensities for critical energy bins.

3.4. Non-LTE implementation in GORGON

Multi-dimensional radiation-MHD calculations applied to high energy density (HED) problems
of interest can quickly become slow and cumbersome to run, and run-time issues are compounded
when non-LTE is required in the radiation physics (as is typically the case). The dependence of
emissivities and opacities on the background radiation environment in non-LTE plasmas typically
requires a simplified atomic physics model to be run in-line with the calculation, and the costs of
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even simplified non-LTE atomic models often dominate the run-time. An alternative non-LTE
scheme that references pre-tabulated data is attractive because of its potential to both significantly
reduce simulation run-time and to increase accuracy over simple inline models.

Since tabulated data is already used routinely in simulations for referencing material models, a
single-point tabulation scheme for non-LTE conditions also offers the potential benefit increased
consistency: the broader material properties (e.g. pressures, ionization, conductivities and
opacities) are typically derived from different sources, which introduces inconsistencies even
before non-LTE effects are taken into account. For example, with different assumptions and
dependencies, the electrical conductivity model may assume a different ionization state than the
atomic physics model being used for EOS, and both might be different from the ionization of the
radiation model. In large, multi-physics systems, the effects of such inconsistencies can be
difficult to quantify — not least because the interplay between different physics processes can be
difficult to replicate in anything short of a complete target simulation. Furthermore, reference
simulations that do not employ differing assumptions are not generally available.

In HED physics problems, the accuracy of material models is often a key factor in the accuracy of
a simulation’s predictions for a given experiment. That is, few-% differences between different
numerical treatments of the hydrodynamics will be easily dwarfed by 10% differences in EOS
data or factor-of-two differences in the radiative properties. This has long been asserted in the
material science program at Sandia, where accurate models of the conductivity and equation of
state are considered essential. So, too, is consistency between those models. For example,
ensuring that the density and temperature of a melt transition is consistent between an equation of
state model and an electrical conductivity model has been shown to be essential in accurately
predicting magnetic field diffusion through an accelerating plate [27]. Studying the effects of
model consistency when radiation physics dominates is in its early stages since it first requires
multi-physics simulation tools capable of undertaking such a study as well as material models
and/or data tables that strictly enforce consistency.

There are consequently two goals in pursuing a tabulated non-LTE radiation treatment:
1. Minimize the computational cost of non-LTE radiation transport

2. Run calculations with a self-consistent and radiation-aware set of material and transport
parameters

3.4.1. Background description of existing methods

We first outline the simple radiation transport approach used by Sandia’s version of the
radiation-magneto-hydrodynamics (R-MHD) code Gorgon prior to this LDRD, detailing its
assumptions and highlighting areas where inconsistencies existed among the support models used
throughout the calculation. This will provide a baseline description of a code whose structure is
representative of the approaches often taken in HED simulations. It will also provide context for
the choices made in the subsequent implementation of the self-consistent tabulated non-LTE
model. The baseline code approach we describe is a R-MHD research code maintained at Sandia
that implements the Gorgon system of MHD equations [128], a variation of the automatic flux
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limiting ZEUS-2D approach for radiation transport [129], and various interfaces to tabulated
equation-of-state, conductivity and material property data.

One of the simplest radiation transport approximations that can be employed is to simultaneously
solve two evolution equations for the radiation energy density E and radiative flux F:

aa—l;::—V-F-H]—cKpE (25)
1 oF 1
S5 = VP KeE (26)

with kp and K the Planck- and Rosseland- mean opacities, 1 the emissivity, and P the radiation
pressure tensor. We additionally invoke the Eddington approximation to assume an isotropic
radiation field and express the radiation pressure tensor P as simply %E . In this limit, it is
common to neglect the time evolution of the second radiative flux equation and assume the
steady-state limit of F = 3LKVE (the traditional diffusion approximation). That is not the approach
taken here, where we instead opt to explicitly integrate both equations using a standard leap-frog
integration technique. To ensure that the radiative flux asymptotes to reasonable limits, this
update over a simulation timestep dt is performed analytically:

Fn—H :Fne—chl_(l_e—cK dl)iVE 27)
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This approach allows for a seamless transition between the diffusion equation in an optically thick
plasma and a wave equation propagating through transparent regions. However, the use of the
Eddington approximation results in solutions that are essentially no better than a traditional
diffusion approximation. The advantage of this technique (a variation on “automatic flux
limiting” [[129]) is that it naturally limits propagation speeds to about the speed of light, avoiding
the need for flux limiters and providing a system of equations that can be integrated explicitly on
a timestep set by about the speed of light. Specifically, these equations limit propagation speeds
to ¢/+/3 (a consequence of assuming isotropic radiation fields). A modification to correct this,
known as the P1/3 approximation [130], introduces an additional factor into the flux update (b in

equation [28)):

n+1 _ pn_—b cx dt —bexdy €

F'™ =F"¢ (1—e )3KVE (28)
When b = 3, the free-space propagation speed will limit to the speed of light, but the correct
diffusion limit is still retained. While this approximation seemingly corrects an issue with
free-space propagation speeds, its broader utility is in highlighting how wave speed can be varied
without affecting the diffusion rate in more opaque plasmas. Since we opt to explicitly integrate
these equations, timesteps are set by speed of light crossing times over a computational zone.
This can be excessively restrictive since our HED problems of interest typically evolve on much
slower timescales. This modification thus provides a parameter to artificially reduce the
propagation speed (allowing for larger timesteps), while retaining the correct diffusion limit. This
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provides some additional flexibility to reduce simulation run-time while using explicit integration
techniques (although care must be taken to avoid nonphysical results). Explicit integration is
attractive for several reasons: First, it forgoes the need to use simulation-wide implicit integration
that typically relies on large, sparse matrix inversion techniques, which makes it much simpler to
efficiently distribute over massively parallel simulations (note that a guiding consideration in this
tabulated non-LTE approach is allowing for efficient implementation in massively parallel
simulations). Furthermore, since the timesteps used in simulations of magnetically driven
laboratory HED systems are typically dictated by the MHD (high Alfven speeds from high
magnetic fields in low density plasmas), radiation transport routines are often already forced to
operate on small timesteps anyway, so the burden of explicit integration is often not high. Finally,
small-timestep explicit integration can also simplify matter-radiation coupling by reducing
changes in temperatures and energy densities between updates of material properties, which can
reduce the need for non-linear iterative techniques to establish consistency between emission and
absorption terms.

Within this radiation transport method, coupling to a tabulated non-LTE model primarily requires
replacing opacities and emissivities with parameters that now vary in response to the changing
radiation field, and duplicating the above equations for enough frequency groups to broadly
characterize that radiation field. However, to understand how other material properties drawn
consistently from the same non-LTE model can be incorporated, and to appreciate some of the
present inconsistencies between models, we here describe the structure of the main timestep loop
of the underlying finite-volume Eulerian MHD code and its interface with existing LTE tables.
While the approach we describe may not reflect the approach taken in all HED or MHD codes, it
is representative of some of the issues frequently encountered.

Within the main timestep loop, the hydrodynamic timestep is first calculated using the minimum
computational zone size, the ion sound speed, and the Alfven speed. An additionally safety factor
of 0.5 is added to ensure stability. The ion sound speed calculation assumes an ideal gas and an
electron number density n, calculated from the mas density p and the tabulated average ionization
state Z* included with the tabulated electrical and thermal conductivities (commonly
Lee-More-Desjarlais, as described in section . Where such tables are unavailable, a
Thomas-Fermi model is used for Z*. This ionization state was also evaluated at the end of the
previous timestep. Since it derives from the conductivity model, this sound speed is not
guaranteed to be consistent with ¢, = (9P /dp)'/? evaluated from the equation of state. While the
ideal-gas ion sound speed evaluation is generally more robust than evaluating derivatives from the
equation of state table, it can result in conservatively small timesteps that can directly impact the
computational run time: if timesteps are factors of two too small, the simulation will take twice as
long to run as needed). Still, conservative timestep choices are typically preferable to having to
restart crashed simulations.

Next, transport coefficients are evaluated (electrical and thermal conductivities). These are
preferably taken from trusted tables (stored as functions of density and temperature). When a
2-temperature model (7, # T;) is needed, the tabulated thermal diffusion coefficients are
partitioned between electrons and ions assuming a Braginskii form of thermal diffusion
equations. Subsequent magnetic field correction factors are either taken from Braginskii [[131], or
from Epperlein and Haines [[132]]. These correction factors require electron and ion collision
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times and their associated coulomb logarithms, which we typically take from from Braginskii. In
some instances, to preserve at least partial consistency, the electron-ion collision time is
reverse-engineered from either the electrical or thermal LMD conductivities (again assuming a
Braginskii form of the equations). Opacities and emissivities are also drawn from pre-prepared
tables using the same material temperatures and densities as these transport coefficients. These
radiation parameters are typically generated from PROPACEOS [[133], with emissivities
evaluated in either the LTE (7, = T,) or the optically thin (7, = 0) limits.

Ideal MHD advection of the magnetic field is next performed on the hydrodynamic timestep.
After this, material pressures are evaluated, and velocities are updated from a combination of
pressure gradients and magnetic field accelerations. Here, the pressure is evaluated from the
material density and temperature using a trusted tabulatd equation of state (typically SESAME).
If separate electron and ion pressures are required, these are calculated by partitioning the
SESAME total pressure assuming an ideal gas, using the ionization state taken from the tabulated
LMD conductivity model. In addition to material pressure, an artificial viscous pressure is
calculated to ensure shocks are captured in this Eulerian simulation. A von-Neumann form of
artificial viscosity is used, which requires the ion sound speed (calculated in the same manner as
for the timestep).

A magnetic field diffusion update is then performed utilizing the tabulated electrical
conductivities. This is followed by calculation of heating terms (including ohmic, PdV and
viscous heating) immediately followed by a thermal diffusion update and the radiation transport
update with its associated energy exchange with the material. Note that magnetic field diffusion,
thermal diffusion, and radiation transport are sub-cycled on a smaller timestep than the baseline
hydrodynamic timestep. Following these energy equation updates, the material advection is
performed (operator split along the coordinate directions).

The final step is to take the updated densities and energy densities and calculate the material
temperatures. For a single material, this can take the form of a reverse lookup on the SESAME
equation of state table. These simulations allow for multiple materials tracked by different
material mass densities, while sharing a single total energy density, but for the multi-material
approach an iteration must be performed where co-located materials are assumed to have the
same temperature: The total energy density is calculated by summing the constituent energy
densities from their respective mass densities and equations of state, then a search is performed to
find the temperature that results in the code’s calculated total energy density. Once a temperature
is determined, the ionization state is referenced from the conductivity tables, and this Z* is used to
update the electron number densities.

While this approach is not universal, it gives some indication of the way HED simulations are
often forced to piece together material properties and transport coefficients from a variety of
sources to conduct viable design calculations. The effect of any inconsistencies between these
models is largely unknown. More crucially, many parameters may be expected to vary with the
radiation field present (for example as ionization states change in response to non-equilibrium
radiation fields). This dependency is typically not captured. The need for a more unified approach
is here self-evident.
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3.4.2. Radiation transport techniques coupled to non-LTE tables

Time-dependent radiation transport can be solved with many different levels of approximation. In
constructing a fast tabulated non-LTE MHD approach it is tempting to pair the non-LTE tables
with a simple radiation transport scheme to minimize the overall computational cost. This was the
approach taken above to work through MHD code implementation issues. While the simple
radiation transport methods provide workable testbeds to develop the tabular non-LTE methods
and have some applicability to problems of interest, they also reveal limitations that will
ultimately require a higher fidelity radiation transport scheme. To understand these limitations,
we couple the tabulated non-LTE approach into two time-dependent radiation transport schemes
applied to an idealized radiating cylinder test problem [7]].

The test problem consists of a 2 mm diameter cylinder of aluminum plasma at an electron
temperature of 500 eV, with an ion number density of 10>0/cc. We assume it to be infinitely long,
and hold its temperature and density fixed, allowing the radiation field within it to reach a steady
state. One of the radiation transport schemes we will compare is the automatic flux-limiting
radiation diffusion approximation described above. The other is a higher fidelity solution of the
time-dependent radiative transfer equation.

The solution to the time dependent transfer equations follows the method of Jiang et al. [[134],
with the evolution of the specific intensity described by:

ol d d d
E = —Ca(,uxl) - C@(:uyl) - ca_z (:UZI) (29)
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E:%—ml (30)
E:%/MQ 31)

Separate updates are performed for the transport of intensity (Eq. (29)) and absorption/emission
processes (Eq. (30)). Taking angular moments of the intensity to reconstruct the radiation energy
density (Eq. (31))) is then required for referencing the non-LTE tabulated data. Here, the radiation
intensity / is a function of time, spatial position and angle, with the angles discretized into a
specified number of directions. Each direction is uniquely defined by its direction cosines with
respect to the coordinate axis (uy, uy, and u,). For example, if 48 ray directions span a unit sphere,
there will be 48 equations for the different intensities associated with each of those directions. For
later examples, the transport equation is spatially discretized over a uniform 2D x-y grid, 10-mm
square, with 200 equally spaced computational cells in each direction. The test case places a
2-mm diameter cylinder of aluminum plasma at the center of this grid. Angular discretization
uses 48 directions, uniformly spaced around the azimuth in the plane of the simulation grid.
Multiple photon energy groups are assumed (that is, a separate set of all these equations is solved
for each photon energy group).
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In this implementation, for each timestep advance, opacities and emissivities are first evaluated as
a function of material temperature, density, and the local radiation field. Intensities are then
advanced in time by performing a locally implicit update from the emission and absorption terms
in Eq. (30). The intensity is then transported via a set of advection equations (Eq. (29))). Finally,
the radiation energy density is evaluated (Eq. (31))), for use in referencing opacities and
emissivities at the start of the next timestep.

The locally implicit update for emission and absorption terms is performed by analytically
advancing Eq. (30) over a timestep:

In+1 — e~ K dr n ] —e ¢K dt 32

4m<( ) (32)
In this update, the exponential terms are expanded as a Taylor series, retaining the first 5 terms,
and the result is limited to always be positive. This provides a fast evaluation and compiler

independence, and ensures the correct limit as K becomes small.

The transport equation (Eq. (29)) is advanced as a series of finite volume advection equations,
with fluxes of intensity calculated at cell faces using a simple first order donor cell upwind
scheme. For example, the x-direction update proceeds as:
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This scheme is more diffusive than the approach taken in [134], but is conservative and fast to
execute — an advantage, given the large number of equations being updated and the small
timesteps required (stability of the intensity advection requires Az < Ax/c). Directional splitting is
used, where the intensity associated with a given set of direction cosines is first updated by
advection in the x-direction, followed by advection in y.

Finally, the radiation energy density for each photon energy group is evaluated by taking the
angular moment of the intensity for that group. For the uniform azimuthal angle discretization
used in this 2D example, this amounts to simply averaging the intensities from all different
directions at each point in space (and multiplying by 47/c). These energy densities are required
to reference the tabulated non-LTE data. The plasma temperature and density are held fixed in
this test problem, with the radiation field rising from zero to assume a steady state. Opacities and
emissivities vary in response to the changing radiation field to converge on their steady state
values.

The non-LTE tables are referenced and interpolated following the procedures given in sections[3.2]
and [3.3] Material properties are tabulated as functions of ion density, electron temperature, and
radiation field for a modest number of frequency groups. As an example, a simple way to estimate
the emissivity of one of the frequency groups for a plasma at a given temperature and density
would be to first locate the temperature and density in the table and then return material properties
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at the tabulated radiation field that most closely approximates the input radiation environment in
the plasma. Given the coarse descriptions of the tabulated radiation fields, however, such simple
lookups are inadequate. Instead, a sophisticated interpolation scheme is required to return
accurate and smoothly varying quantities. As described in section [3.3] optimization of the
interpolation schemes is a work in progress, and so all of the following results should be taken
with the limitations of the given interpolation scheme in mind: that is, a better interpolation
scheme is likely to improve the (already fairly good) results.

The metric we use here to compare tabulated and simulated radiation fields is a simple opacity
weighting. For each photon energy group, a weighting function is defined which is the Planckian
opacity multiplied by the mean photon energy of that frequency group. This is normalized to
unity when summed over the frequency groups. The Planckian opacity used is that returned in the
zero-radiation field limit. This provides a weighting value for each photon energy group as a
function of material density and temperature. For each of the different tabulated radiation fields,
we then calculate the sum of this weighting function and the energy density in that frequency
group, providing a single number to characterizes the radiation field (referred to here as the
radiation reference). Over the course of a simulation, we can then calculate an equivalent
reference number as the sum over frequency groups of the weighting number multiplied by the
simulated radiation energy density in that frequency group. For a given temperature and density,
the simulation parameters needed can then be interpolated between the two closest adjacent
tabulated radiation fields based on these radiation reference numbers. It should be noted that, in
general, a simulation temperature and density point will not fall directly on tabulated values, so
this process is repeated for the nearest neighbor points to provide results that interpolate in
temperature density space as well.

Finally, since this approach uses a fairly low number (2-10) of coarsely binned frequency groups
to both characterize the radiation field and transport energy, details of the emergent spectra need
to be assessed in a post-processing step. Here, we use the complementary non-LTE tables of
spectrally resolved emissivities and opacities that are produced at the same time as the main
reference tables on the same temperature, density, and characteristic radiation field points. In
Gorgon, the emergent spectra are reconstructed by ray tracing through the simulation grid parallel
to the line-of-sight (x) axis for every point in y, and then summed over y. For each frequency
point v in the spectrum, each ray integrates the time-independent transfer equation

L= Iv(x_l)e’kmx + (JE/KE) (1 — eA%) as it crosses the uniform-Ax grid, using
frequency-dependent absorption opacities ky = ky/p and emissivities jy interpolated from the
spectrally resolved data tables. Here, the interpolation for the frequency-dependent quantities is
performed in the same manner as for the bulk material properties, using the same weighting
technique described above.

3.4.3. Application to a radiating cylinder

The transport and non-LTE table reference method described above is applied to a static
aluminum cylinder with a density of 10?2 ions/cc and 7, =500 eV, where the density and
temperature are held fixed and the radiation field is converged to its steady-state value. Two
photon energy groups are assumed, spanning 100-707eV (encompassing L-shell transitions) and
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707-5000 eV (encompassing K-shell transitions). The atomic model used to generate the tables is
the same highly simplified non-LTE model described in [7]], with a high ion temperature of 20
keV to account for the motional Doppler broadening typically seen in imploding Z-pinch
plasmas. The cylinder is placed in the center of a square grid in the x —y plane spanning -5 mm to
5 mm, evenly discretized into 200 computational cells in each direction. The cylinder axis of the
reference case is 1 cm along the z direction, but for this 2-D example the cylinder is assumed to
be infinitely long. The free-space mean free path is essentially infinite (assumed to be 5000 m).

Initially, the radiation energy densities in the problem are zero. With advancing timesteps, the
self-emission from ions at the fixed plasma temperature and density drives a spatially dependent
radiations field (larger at the center of the plasma than at its boundaries) and the system evolves in
time to reach a steady state. At these conditions, steady state in the R-MHD code is reached in

log & 10~!! seconds (a shorter timescale than the tabulated optically thin collisional equilibration
time Zeeq ~ 2 X 10710 g and longer than the radiative equilibration time 7.4 ~ 3 X 1012 5 for an
LTE plasma with 7, = T,). Since the angular discretization of this transport method tends to
prefer certain directions (most notably the infinite z direction), the angular resolution used (i.e the
number of equations solved) is adjusted to converge on a reasonable result for a cylinder with a
high aspect ratio (z > r).

Figure [3-5a shows the converged radiation energy density for the K-shell photon energy group at
three different angular resolutions (12, 24, and 48 directions spaced evenly around the azimuth).
Ray effects from finite angular resolution are pronounced in the free-space region surrounding the
plasma. Obvious errors may be incurred if radiation from this cylinder were heating material
surrounding it, which is potentially a concern since we are introducing an explicit coupling
between the radiation energy density and various material parameters. For the purposes of this
example, [3-5b shows lineouts from the 12 and 48 angle cases taken between ray directions, with
an additional lineout aligned with a ray direction for the 12-angle case. Black dashed vertical
lines denote the edge of the cylinder. The convergence of the radiation energy density within the
plasma region itself is very good ( 3% at the cylinder boundary), with transport differences largely
isolated to free space outside the source.

Our reconstruction of an emergent spectrum from the 48-angle calculation is shown in fig. [3-6j,
focusing on the Hey, and Ly aluminum lines. Finite-length and Lambertian (surface integration)
corrections are not included at this stage, so we are not attempting a direct quantitative
comparison with NRL benchmark results [7], but we can examine relative changes from different
non-LTE radiative coupling assumptions. The red lines show spectra from a calculation where
emissivities and opacities are generated in the zero-radiation field limit, illustrating the profound
effect of self-photopumping on the line intensities. The associated changes in the radially
dependent K-shell-group radiative energy density are shown in[3-6p, and the radially dependent
Plankian opacity absorption coefficients are shown in[3-6c. For problems of this type, these
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Figure 3-5 (a) steady-state K-shell group radiation energy density for a
uniform plasma cylinder of aluminum with n; = 10%° ions/cc and 7, =
500 eV [7] using 12, 24, and 48 rays for radiation transport. (b) lineouts
of radiation energy density from the 12-angle case alighed (red) and
between (black) rays, and from the 48-angle cases between rays (blue);
black dashed lines denote the edges of the plasma cylinder.

results illustrate the large differences in material parameters that can result from neglecting
feedback between the plasma and radiation field, and the correspondingly large differences that
can then result in the established steady-state radiation fields.

With respect to the transport method, we have shown that convergence of the free-space radiation
energy density distribution is achievable with high angular resolution. However, this comes at the
cost of dramatically increasing the number of equations being solved, and thus increasing the
computational expense of the simulations. Ideally, the tabular reference steps of this method
could be applied independently of the radiation transport scheme being used. In such a scenario,
the biggest gains to improving the feasibility of large scale non-LTE radiation transport
calculations would result from pairing the tabular approach with the simplest possible transport
scheme. In practice, this can be problematic. To illustrate the issues, we can contrast the approach
just described with the automatic flux-limiting diffusion solution previously discussed.

Neglecting for the moment the non-LTE feedback between plasma and radiation field, we can
examine a radiating cylinder in the limits of it being optically thin, or optically thick, and compare
the results from the two different transport methods. Here, we use only a single radiation group
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Figure 3-6 (a) Emergent He, and Ly, emission lines from the con-
verged 48-ray case described in fig. [3-5| (black) compared to a calcu-
lation that transports the optically thin (7, = 0) emission through the
same cylinder (red). (b) Radial dependence of the K-shell radiation en-
ergy density in the converged 48-ray and optically thin cases. (c) Radial
dependence of the K-shell Planckian absorption coefficients for the two
cases.

but stay with the same 2 mm-diameter radiating cylinder on a square, 10 mm, 200-cell simulation
grid. We again initialize the radiation energy density at zero, holding the material temperature and
density fixed so that the radiation field can evolve to a steady state. In the optically thick case, we
define a plasma electron temperature of 100 eV and a mean free path within the plasma of 10 um
(Iess than the 50 um simulation grid cell size). Here, we assume an opaque plasma in LTE at

T, =T, = 100 eV, deriving the emissivity from the opacity and the Planckian blackbody function
B: j(v)/k(v) = B(v). For the diffusion solution, the surrounding “free space” is assigned a mean
free path of 1 cm, while for the high-fidelity transfer equation solution, the free-space mean free
path is again essentially infinite (5000 m). Figure shows the magnitude of the radiative flux
between the two cases alongside lineouts along the x-axis through the center of the grid. These
lineouts are compared to the analytic solution to the flux expected as a function of radius from a
100 eV surface emitter.

Switching to an optically thin radiation source of the same dimensions and temperature, we set a
uniform plasma emissivity such that our 2 mm-diameter cylinder is volumetrically emitting

1 TW/cm. The mean free path is set everywhere to 1 cm in the diffusion case and 5000 m in the
radiative transfer case. Figure again shows comparison plots of the magnitude of the radiative
flux and lineouts compared to the analytic expectation.

In each of these limiting examples, both the transfer equation solution and the diffusion solution
produce equivalent results for the flux of radiative energy away from a cylindrical source. Both
methods are explicitly integrating equations on speed-of-light timescales, but where the transfer
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Figure 3-7 Left: Radiation fields from the diffusion and full radiative
transfer solutions for an opaque (LTE) plasma. Right: lineouts of the
radiation fields along the x axis from the two radiation transport ap-
proaches, compared with the analytic solution (red).

equation solves 48 equations, the diffusion solution solves 2. This represents more than an order
of magnitude difference in computational cost (significantly more in 3-D) making the diffusion
solution very attractive for this type of problem. Furthermore, the equivalence of the radiative
fluxes demonstrates how simple diffusion approximations can accurately transport energy in
situations where details of the directionality of the radiation are less important. However, if we
now scrutinize the equilibrium radiation energy densities reached in these two cases, significant
discrepancies do exist, as shown in fig. [3-9]

For the opaque cylinder, both solutions obtain the correct LTE radiation energy density within the
plasma as shown in[3-9p, but the drop-off in the surrounding free space differs. This effect is
more insidious in the transparent radiating cylinder shown in shown in [3-9b, where we contrast
the transfer equation solution with two diffusion solutions assuming different free-space mean
free paths (1/300 m and 1/200 m). In the transfer solution, the steady-state radiation field in free
space is such that the radiative flux is directed away from the source, given by F' = cE. This
simply states that the flux is propagating the radiative energy at the speed of light, as expected.
However, for the steady-state diffusion solution, the radiative flux corresponds to

F = —(c¢/3x)VE, so the gradient of the energy density that supports the flux is dictated by the
mean free path assigned to free space. The outermost boundary condition, combined with this
required free-space gradient, then dictates the energy density at the plasma surface, which in turn
dictates the energy density within the plasma. Said another way: in a diffusion approximation, the
correct transport of energy specifies what the gradient of the radiation energy density must be, so
its magnitude is not well constrained. Instead, it is set by a combination of the boundary condition
and the free-space opacity.

Some of this ambiguity can be removed by using an extrapolated length or extrapolated end-point
boundary condition (as used here). In this approach, which is commonly used to model moderator
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Figure 3-8 Top: Radiation fields from the diffusion and full radiative
transfer solutions for an optically thin plasma. Bottom: lineouts of
the radiation fields along the x axis from the two radiation transport ap-
proaches, compared with the analytic solution (red).

boundaries in neutron diffusion problems, the diffusive flux is assumed to extrapolate to zero at a
distance from the boundary set to be 0.7104 times the mean free path. This makes the boundary
value of the radiation energy density an unambiguous function of the free-space opacity.
However, it does not resolve the problem that the value chosen for the free-space opacity now
dictates the radiation energy density within the transparent plasma. The fact that a diffusion
approximation can be problematic for optically thin plasmas radiating into free space is hardly
surprising, since the assumption of an isotropic radiation field that underpins the diffusion
approximation clearly breaks down in this situation. It is, however, critical that if we primarily
care about the transport of energy through a distribution of plasma and out into free space, the
radiative flux is accurately recovered. As such, there are many situations where a diffusion
approximation can provide very reasonable results at low computational cost.

In traditional calculations, where plasma parameters are functions of only density and
temperature, a diffusion approximation can accurately transport energy that heats or cools a
material. Unfortunately, for our non-LTE radiation transport application, calculating the non-LTE
emissivity and opacity coefficients requires knowledge of the absolute magnitude of the radiation
field using low-fidelity transport methods like the diffusion approximation may incur errors. For
transparent plasmas, these errors could be significant — however in that case, the coupling
between the radiation field and plasma may be less important. For plasmas of moderate optical
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Figure 3-9 (a) Radial dependence of the radiation energy density in an
opaque (LTE) cylinder using the diffusion approximation (black) and
full radiation transport (red) (b) Same, but for the optically thin case
with two different assumptions for the free-space mean free paths in
the diffusion approximation.

depth, the errors are less pronounced. To emphasize this point, we return to the aluminum
cylinder transport test case, coupling the diffusion transport method to the non-LTE tables. Figure
[3-10@ shows the equilibrium K-shell radiation energy density from the transfer equation solution
compared to the diffusion solution, again using two different free-space mean free paths (as for
the transparent plasma case). Also shown are the K-shell plasma absorption coefficients. Since
this plasma has a moderate optical depth (mean free path of ~ 0.4 mm and peak line-center
optical depth of T ~ 100), the radiation energy density is maintained by the plasma instead of just
the diffusion-limited rate at which radiation can be transported. As such, discrepancies between
the transfer equation solution and diffusion solution are smaller (<10% on axis). The
corresponding differences in the non-LTE equilibrium opacities and emissivities are then
negligible, as illustrated in fig[3-10p.

The comparisons shown emphasize that accurately capturing non-LTE physics is intertwined with
the accuracy of the radiation transport method — that is, the accuracy with which the radiation
energy densities are calculated. This is dependent on the type of underlying radiation transport
scheme as well as the angular resolution of a given scheme. It is tempting to regard parameters
derived from atomic physics or material models as values that a simulation can simply utilize:
data that is agnostic to the algorithm into which it is dropped. However, when plasma parameters
become a function of the radiation field, an additional burden is placed on accurately calculating
that radiation field. Simple diffusive transport methods may be sufficient for opaque plasmas, or
plasmas of moderate optical depth. However, as a radiating plasma becomes more transparent, the
diffusion approximation can incur significant errors. When coupled to tabulate non-LTE data,
these errors may have an outsized effect as they feed back into other plasma parameters. The two
transport schemes developed here, both coupled to the non-LTE tables developed for this LDRD,
provide a toolset that can be used to further explore the limits of simpler transport algorithms in
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Figure 3-10 Returning to the uniform aluminum cylinder test case: (a)
Radial dependence of the radiation energy density using the full ra-
diation transfer solution (black) compared with the diffusion approx-
imation with two different assumptions for the free-space mean free
paths. (b) A comparison of the radially dependent absorption coeffi-
cients from the same calculations.

modeling non-LTE plasmas.

3.4.4. MHD applications, consistency, mixtures, and stability

Despite some shortcomings of the radiation-group diffusion approximation for capturing
non-LTE processes, it is robust and fast to run. When prudent choices are made for boundary
conditions and/or free space mean free paths , the resulting radiation fields used for interpolation
on non-LTE tables can be quite reasonable. An informed radiation-group diffusion approach is
thus sufficient to test and develop techniques for incorporating tabular non-LTE physics into
broader resistive-MHD calculations. And the lessons learned here can later be transferred to
simulations using higher fidelity (and more expensive) transport algorithms.

Once we have relatively reliable estimates of the radiation fields, we can reference the full extent
of tabulated non-LTE data described in Chapters [2] and [3] within a more complete R-MHD code.
Here, a pre-processing step on the non-LTE tables was found to be helpful in referencing and
checking tabulated data: pior to starting a simulation, the table is broken up into a selection of
sub-tables loosely organized by the physics module they will be used in: EOS, transport, and
radiation physics. The radiation field weighting numbers used in the table lookup are also
pre-computed and stored in their own table. While the ultimate intention is to unify all of the
support models to use the self-consistent non-LTE data produced by the atomic-scale codes
described in this LDRD, we find that the SCRAM- and SCFS-based tables used to develop our
tabular strategy are often not sufficiently accurate (see the light gray lines in figs. and [2-3]as
exemplars). Thus, for many applications it is desirable to swap in existing tabulated data. For
example, some applications rely on specific EOS or conductivity models. Subdividing the
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SCRAMY/SCES tables makes it easier to be selective on which tables to include, whilst reducing
redundant memory storage and constructing smaller arrays that are faster to search through.

Extending the use of the non-LTE tables to incorporate fully consistent EOS and transport data
will become more feasible with tables generated from the DFT-AA code described in Chapter 2]
especially when those data are adjusted to match reference data and selected DFT-MD or TDDFT
calculations (as the current trusted tables have been). The the various points within a calculation
where material or transport parameter references are made are described above. At its simplest,
these reference calls can be made directly to the non-LTE tables. Most of the material and
transport parameter references are made at the start of the simulation timestep loop, so can simply
be made using the radiation field present at the end of the previous timestep.

The notable exception to this involves assessing the plasma temperature: The primary variables
tracked within a calculation are density and material energy density. Assessing the plasma
temperature then requires working out which temperature results in an energy density consistent
with that present in a simulation. The tables list quantities of interest as a function of temperature
and density, but for a given temperature and density, the energy density returned now depends on
the radiation field. As described previously, an iterative procedure is used to search through
temperature space to find the consistent energy density. This search now must be modified as the
weighting numbers used to evaluate a radiation reference number are themselves a function of
density and temperature. As we go through successive temperatures in the search routine, the
radiation field weighting numbers are changing. Thus the radiation reference needs to be
continually re-evaluated to perform the table lookup. This is straightforward — and when
implemented can be robust — but it does increase the complexity and time taken by the EOS
reconciliation step. This partly drove the need to break up the main non-LTE table into a set of
targeted sub-tables for faster/simpler reference. Newton-Raphson style iterations are appealing to
speed up this lookup process, but the extra degree of freedom introduced by the radiation field
make these methods less reliable in converging on the consistent temperature. A brute force table
search on a diminishing change in temperature is found to be more robust (but more costly). Here,
robustness is preferable, as temperature is used in referencing many subsequent parameters and
errors in temperature can quickly terminate a simulation.

An additional modification to the non-LTE table lookup accounts for the presence of multiple
materials (mixtures) within a simulation. For a given simulation, the SCRAM/SCEFS tables for
different materials presently need to be generated with the same photon energy group structure on
the same temperature and density grid. Care must be taken when multiple materials are used
because the total number of radiation reference fields that SCRAM computes may differ between
materials. This sets the order of interpolation. At a given location in a simulation, the photon
energy group weights are first referenced separately for each material. These are then combined
into a single set of group weights by weighting each individual material value with its mass
fraction at that location. A radiation reference number is then computed using these weights and
the radiation energy densities present in the simulation. This reference number is then used to
interpolate parameters of interest based on the radiation reference field for each material
separately. This is repeated for each of the 4 temperature/density points surrounding the target
density and temperature. Interpolation in density/temperature space is then performed for each
separate material before the resulting quantities are combined into a single value. For simplicity, a

80



mass fraction weighting is presently used to combine different material values, although this
needs to be revisited.

Finally, we remark on the stability of the implementation of non-LTE material and radiation
models. A desirable aspect of a self-consistent non-LTE implementation is incorporating the
feedback between the material equation of state, material conductivity, and the evolving radiation
field. Pulsed power-driven experiments can, however, create unique conditions that complicate
how this feedback is implemented. We are often interested in cylindrical systems that are
accelerated towards their axis of symmetry by a j X B force resulting from an applied current.
Taking for example an argon gas puff radiation source, the current first begins to flow in
low-density material on the outermost surface of a cylinder of argon gas; the resulting magnetic
force is directed radially inwards to compresses material; and that material begins to radiate as it
is accelerated to high velocity. Ultimately, the material stagnates on its axis of symmetry,
thermalizing its accumulated kinetic energy to produce a high-temperature, high-density, strongly
radiating column. The current driving these implosions is mainly carried in a layer on the
outermost surface that is subject to the rapid development of magneto-Rayleigh-Taylor
instabilities. This unstable current carrying plasma surface is surrounded by a region of current
free “vacuum,” and MHD modeling therefore requires modeling the plasma at a vacuum-plasma
interface where material is transitioning to a very low density. This presents a problem for most
MHD algorithms. The typical approach is to define a density threshold, or “florr” (normally about
10~ g/cc), below which heating and acceleration terms within a plasma are turned off. Electrical
resistivities are also pushed high enough to prevent material carrying a meaningful amount of
current. Choices in exactly how this is done vary between codes and can substantially affect the
predictions of a given code.

A non-LTE treatment adds an additional complication, since low-density material can now
respond directly to non-locally driven variations in the radiation field. Radiation passing through
does not need to be directly absorbed by a low-density plasma for changes in material pressures
and ionization states to result. These changes can then directly alter plasma dynamics, heating
rates, and electrical conductivities in the vacuum-plasma transition region where MHD codes
already struggle. Simulation results then become prone to non-physical oscillations in
temperature and pressure that couple through the radiation field. In many HED systems, this
would amount to some undesirable noise in low-density material that is inconsequential to the
plasma dynamics being studied — that is, to fluctuations that lack the energy to meaningfully
impact denser plasma. However, in an MHD simulation, oscillations driven at the vacuum-plasma
interface can influence the distribution of current and quickly feed back into the broader MHD
solution.

In many respects, capturing the feedback between the plasma and radiation field is the purpose of
including a self-consistent NLTE model. However, our implementation has so far assumed this
feedback is instantaneous for all plasma densities. In reality, a tenuous, low-density plasma will
take a finite time to respond to changes in a radiation field. To capture this, an additional radiation
equilibration time, T, is tabulated as part of the non-LTE data output that can be referenced in the
same way as other variables. To utilize this finite equilibration time in a simulation, an additional
set of radiation energy densities are defined. Referred to as the material radiation energy
densities, these are calculated as:
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Enat = Enae—dt [Treg+ E(1 —texte—dt [Tyeq) (35

Where E,,,; is the material radiation energy density and E is the primary radiation energy density
that the simulation already solves for. This equation is repeated for each of the photon energy
groups used in a calculation. The material field now asymptotes to the primary radiation field over
a characteristic timescale set by the equilibration time. The update of equation [35]is performed
immediately after the primary radiation fields are updated at each simulation timestep. When
radiation is advected by opaque media, both of the energy densities are advected in the same way.
When equilibration times are short, the material radiation field becomes a copy of the primary
radiation field. Otherwise, a lag is introduced before changes to the primary radiation fields can
affect the material fields. For the purposes of all material references from tabulated data, this new
material radiation energy density is now used. For transport, absorption and emission processes
the primary fields are still solved for as before. This approach effectively decouples the material
reference steps from rapid changes in the radiation field. Feedback between radiation and material
is no longer instantaneous but occurs on a physically motivated timescale that captures that rate at
which a plasma can realistically respond. This approach has been found to successfully stabilize
the low-density vacuum-plasma transition issues highlighted above and is key to implementing
this non-LTE tabulated radiation treatment in multi-physics R-MHD calculations. Further testing
of this scheme and detailed comparisons with existing non-LTE radiation treatments in
simulations of pulsed power-driven experiments is the subject of ongoing work.

4. POST-PROCESSING

Spectroscopic analysis is an important tool for REHEDS plasma diagnostics that relies on
accurate atomic-scale models to predict detailed and reliable emission and absorption spectra.
Traditionally, spectroscopic analysis in an inverse problem: we measure an emission, absorption,
scattering, or fluoresence spectrum and ask what it can tell us about the source plasma that
produced it. For example, observing He-like Kr emission from a MagLIF target whose D, fuel
was doped with Kr tells us something definitive about the temperature of the fuel conditions at
stagnation, since ionizing Kr to He-like configurations requires exceeding a certain temperature.
Measuring He-like Fe emission from the same target tells us that there is some amount of mixing
between the cold confining Be liner (with known Fe impurity fractions) and the hot fuel [[135]].
And measuring fluorescence emission from near-neutral Fe in the same target tells us something
about the conditions of the bulk/unmixed liner at the time of stagnation [[100]. Together — and
with additional data from neutron and time-resolved x-ray power diagnostics — these observations
can significantly constrain our understanding of the MagLIF plasma at stagnation. Similarly,
combining analysis of L- and K-shell emission spectra with power and imaging diagnostics from
an imploding wire array can tell us a lot about implosion velocities and temperature gradients
around the time of peak emission [[120]. We can use these spectroscopic inferences about plasma
conditions to help assess the predictive power of our R-MHD simulations by comparing the
inferred plasma properties to timing, temperatures, densities, and mix parameters extracted from
the simulations. However, there are often questions about both 1) the uniqueness of the inferred
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parameters from experimental data and 2) the suitability of the extraction methods from
simulations to provide equivalent parameters (e.g. emissivity weighting functions).

In principle, we can avoid the questions associated with both model inversion and data extraction
by directly comparing experimental data to synthetic observables produced by post-processing
our simulations. This requires not only accurate and detailed atomic-scale model predictions of
observables at local conditions and flexible tabulation schemes that capture a wide range of local
conditions, but also the ability to generate integrated synthetic data that incorporate target-scale
phenomena including the effects of non-local radiation transport, significant spatial and temporal
gradients, and even the instrumental responses of the various detectors.

Thus, our ability to perform integrated forward calculations that produce detailed synthetic data is
a key component of assessing predictive capability for REHEDS simulations. This chapter
describes two efforts performed under the LDRD to leverage the significant advances described
above in 1) the accuracy and internal consistency of atomic-scale models and 2) the development
and implementation of a generalized scheme for tabular non-LTE to help advance our third
research focus: 3) to produce useful tools that generate synthetic data suitable for direct
comparison with experimental measurements.

First, we describe a 1-D cylindrical radiative transport and post-processing tool that uses the
tables described in section [3.2]to generate self-consistent radiation fields and synthetic source
output spectra. This tool (which goes beyond the original scope of the LDRD) captures non-local
radiation effects and gradients from simplified representations of Z-pinch plasmas, enables us to
test interpolation and radiative transport schemes, and independently generates self-consistent
non-LTE spectra suitable for comparison to processed experimental data. Next, we describe a new
approach to comprehensive 3-D modeling that can link directly to R-MHD output, generate
source spectra with (for now) simple line-of-sight transport on the non-LTE lookup tables, and
produce synthetic detector data for power, imaging, and spectroscopic diagnostic using rigorous
ray-tracing and instrument response models. Together with the internal post-processing
capabilities of Gorgon (described in section these tools provide several powerful options for
practical testing and utilization of the LDRD’s fundamental achievements in atomic-scale
modeling and non-LTE tabulation.

4.1. Cylindrical plasma model with self-consistent radiation transport

In this section, we describe a 1-D code developed under the LDRD that reads in non-LTE tables
and simplified plasma conditions, performs interpolation and self-consistent radiative transport
calculations, and generates synthetic emission spectra suitable for direct comparison with
processed experimental data. Since the natural geometry of most Z-pinch REHEDS target
plasmas is cylindrical, we restrict the code to cylinders, distilling the often complex spatial
gradients of a Z plasma to azimuthally and axially averaged values. Our work here is modeled
after the tabular non-LTE capabilities described in [[120], but is much more efficient and slightly
more general, as it can model photoionized and fluorescing plasmas as well as optically thick line
radiation sources (although it so far excludes the Doppler velocity shifts considered in [[120]).
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The input file specifies a cylinder height 4, radius r, the plasma material (non-LTE table name),
and the electron temperature and electron (or ion) density gradients as a function of the radius.
For now, the code is restricted to single material tables, though its extension to internally
calculated mixtures should be straightforward (see section [3.4)). The input file also specifies a
number of radial divisions, n, that, along with the radius, determine the spatial resolution (cell
size) of the imposed cubic Cartesian volume elements. Finally, it specifies choices for a (very)
limited number of interpolation and non-local radiation transfer options.

The code then reads in both the coarse-radiation-bin main tables for the given material and the
accompanying tables of high-resolution emission and absorption spectra, and stores those data in
flexible allocatable arrays. It sets up volume elements (cells) along the radius of the plasma,
assigns temperatures and densities to each cell, and interpolates the 7. = O points of the non-LTE
tables on 7, and p (or n,.) to estimate the emission and absorption properties of each cell. This
gives an initial estimate for the radiative properties of the cylindrical plasma.

If the self-consistent radiation field loop is not invoked, the code can now generate radially
resolved and/or spatially integrated synthetic source spectra by transporting 7, = 0 interpolations
of the detailed (frequency-resolved) emissivities jy and absorption coefficients ky along detector
lines of sight in the x-direction (perpendicular to the axial z-direction) accumulating intensities /y
from the back (i = —n,) to the front (detector side, i = n,) of the cylinder:

Io= i Te WAy (i kY (1 — ehvAr), (36)

For optically thick plasmas, however, this simple approach can be catastrophically wrong, since it
accounts only for the absorption of photons and ignores the photopumping excitation that
necessarily accompanies each absorption event (see fig. [3-6). Thus, we must move away from the
T, = 0 assumption and perform self-consistent radiation transport calculations that account for the
effects of the incident radiation fields on each cell from all other cells in the plasma.

As described in section [3.4] the angular resolution of the radiation transport algorithm is a key
determinant of a transport calculation’s accuracy, especially at the edges of the plasma and just
outside the plasma boundaries. In this simplified post-processing code, however, we consider
incident radiation from only the 6 angles aligned with rays perpendicular to the face of each cubic
spatial cell. In the directions perpendicular to the z-axis, we compute the accumulated incident
radiation on each cell inward from the plasma boundary, using the radiative transfer expression
for I given above with Ax = Ay. We also include self-photopumping within each cell, using
Axgerf = %Ax To mitigate the overweighting of the +z-directions for long cylinders with high
aspect ratios (h >> r), we average the mean chord of the plasma sky at each radius to obtain a Az
that is 4/2 only in the limit of a squat cylinder (“pillbox”) and approaches V/2r for the cell at the
center of a long cylinder (“pencil”). This is a simplified “long characteristics” treatment of
radiation transport. m Here, the transport is performed on the coarse radiation bins using the

16We have also attempted a “short characteristics” treatment of radiation transport, similar in spirit to the diffusion
approximation described in section[3.4] where the input radiation to each cell is calculated only from itself and the
immediately adjacent cells. However, we found a a strong (and unsurprising) dependence of that method on the
cell size and have not yet implemented the characteristic mean free paths described in section so we do not
report those results here.
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opacity factors f; described in section [3.2{to help capture line-dominated radiation transport.

Given these rough but reasonable representations of the radially dependent incident radiation
fields, we can recompute the coarse-binned emissivities and absorption coefficients by
interpolating the non-LTE tables on the radiation field (as well as temperature and density). This
gives us new emissivities and absorption coefficients that, in turn, affect the calculation of the
incident radiation field on each cell. To reach the self-consistent steady-state solution, we iterate
the procedure until the coarse-binned radiation fields converge to a constant value. When
convergence is achieved, we can proceed with the line-of-sight transport described above,
interpolating the high-resolution emissivities and absorption coefficients on temperature, density,
and the converged radiation field to obtain both radially resolved and surface-integrated source
emission spectra that are suitable for direct comparisons with experiment. These spectra will
include the effects of non-local radiation transport as well as line-of-sight absorption and even
fluorescence through radial temperature and density gradients.
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Figure 4-1 (a) emergent K-shell emission spectra from our simple cylin-
drical radiation transport tool using non-LTE tables and two different in-
terpolation methods (black and black dashed) compared with a bench-
mark calculation [7] (solid blue) of a uniform plasma cylinder of alu-
minum with n; = 10?° ions/cc and 7, = 500 eV. Also shown are the
uniform-plasma 7, = 0 and LTE limits (red and red dashed) and the
escape-factor method (blue dashed) (b) The radial dependence of the
K-shell group radiation energy density from the cylindrical tool for the
same case, with the two interpolation methods, compared to calcula-
tions from Gorgon.
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We use this simple 1-D cylindrical radiation transfer model to test both the table interpolation and
radiation transfer schemes. As in section[3.4] our test case is the benchmark K-shell aluminum
cylinder described in Apruzese et al. [7]]. Here, a uniform cylinder of aluminum with 2 =1 cm,
r=1mm, n; = 10%%cc, T; = 20 keV (to mock up Doppler broadening from an imploding plasma),
and 7, = 500 eV is radiating with its converged (steady-state) radiation field. In the benchmark
calculations, a very simple non-LTE atomic model with only about 10 electronic states is fully
coupled to a high-resolution multi-frequency and multi-angle radiation transport algorithm. That
is, for each cell in the plasma, the detailed spectrum of incident radiation is calculated and used to
drive the full (if simple) collisional-radiative atomic kinetics calculation. In the benchmark
calculation, the plasma is divided into logarithmically spaced regions of the peak-line optical
depth, T, so that both high-opacity and low-opacity regions are well modeled. Despite the simple
atomic kinetics, the sophisticated radiation transport makes the benchmark model a non-trivial
effort. It predicts high radiation fields in the center of the plasma that drive photoexitation of He-
and H-like ions as well as photoionization processes, increasing both the excited-state populations
and the the H-like population relative to their optically thin values. In the low-opacity regions at
the plasma edges, the radiation field has much less impact. This radial intensity gradient leads to
profound line-center absorption (self-reversal) signatures in both the He- and H-like lines.

The benchmark calculation serves as an excellent test case for both our tabular non-LTE approach
and our radiation transfer algorithms, because we can build non-LTE tables that use the same
simplified atomic physics as were used in the benchmark calculations. Figure [d-Tj shows the
emergent K-shell spectrum from the benchmark calculation along with the predictions of three
uniform-plasma approximations and our simple cylindrical model with n, = 50 and the two
interpolation schemes described in section [3.3] While the 7, = 0 uniform-plasma approximation
(solid red lines) (c.f- fig. [3-6) and the LTE approximation (dashed red lines) predict line
intensities that are orders of magnitude away from the benchmark result in critical regions (as
shown in the log-intensity inset), the escape-factor method accounts reasonably well for
photoexcitation and photoionization. It gives integrated line intensities within a factor of two of
the benchmark calculation, but without self-reversal in the detailed spectra. The cylindrical model
with tabular data and radiation transport recovers line-center absorption and, more importantly for
REHEDS applications, gives integrated line intensities within a factor of two of the benchmark
and reasonable H-like/He-like line ratios using either of the two integration schemes described in
section [3.3]It is important to emphasize that the linear radial (and 7) grid of the simple model has
much less fidelity than the logarithmic T grid of the benchmark calculation, that the 6-angle
approximation of the simple model’s radiation transport is about 10 times coarser than the
benchmark model’s angular resolution, and that the coarse-binned frequency structure of our
tabulation scheme is thousands of times coarser than the high-frequency radiation transfer method
of the benchmark calculation, so the reasonable agreement here is encouraging.

Figure d-Tb compares the K-shell-group radiation field intensity predicted from the simple
converged cylindrical radiation transport model to the steady-state results from Gorgon’s test of
the same benchmark case. Here, Gorgon used similar non-LTE tables, a slightly finer radial grid
structure, a much finer angular resolution, and a similar k-weighted interpolation scheme. Several
things are notable: First, given our relaxed factor-of-two metrics for what counts as adequate for
fast non-LTE calculations, both interpolation schemes give reasonable agreement with the Gorgon
result. This implies that the Gorgon predictions for the spectrum shown in fig. [3-6 would be as
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reasonable as those of the simple transport model shown in fig. — certainly they have the
same relatively even H-like/He-like ratios. Surprisingly, however, the implementation of the
k-weighted interpolation in the simple model gives worse agreement with the k-weighted result
from Gorgon, while the matrix interpolation method matches the radial radiation fields from
Gorgon quite well. Since Gorgon showed little sensitivity to the number of angles at the plasma
center, this is not likely due to the angular resolution. Nor do the results of the simple model
change much with an increase in radial resolution. We will investigate this further in future
work.

For now, these and other calculations with our non-LTE tables and the simple cylindrical radiation
transport model have shown us that the non-LTE tables can provide much better accuracy that
either the 7, = 0 or LTE approximations for optically thick plasmas, but that the results are fairly
sensitive to the radiation transfer scheme, the precise tabular structure, and — critically — to the
accuracy of the interpolation method.

4.2, X-ray instrument modeling for direct post-processing

A fast, accurate, and consistent post-processor that can generate synthetic data suitable for direct
comparison with experimental data is essential for accurate interpretation of experiments and is a
critical piece of the experimental design cycle. In HED experiments, we produce dynamic 3-D
plasmas; however, unfortunately, we cannot diagnose these experimental 3-D plasmas directly.
Instead, we field various x-ray diagnostics (e.g., imagers, spectrometers, and power diagnostics),
measure x-rays emitted from these 3-D objects where the information is partially integrated
(spatially, spectrally, and temporally), and try to understand the experimental plasmas indirectly
through various x-ray diagnostics. Recently, multi-objective data analyses through Bayesian or
chi-square analyses are becoming popular because one can constrain 3-D plasma more rigorously
and consistently than by analyzing each one of them separately [[136]. However, this is possible
only when we have access to a fast, accurate, and consistent post-processor. The accuracy of the
post-processor determines the accuracy of our Bayesian or chi-square analysis. Fast calculations
are needed since such analyses perform so many forward x-ray-data calculations. Model
consistency between various x-ray diagnostics is essential because inconsistency would introduce
biases into the analysis and prevent us from providing reliable analysis uncertainty.

Post-processors that provide synthetic data are also a critical part of the experimental design
cycle, fundamentally improving experimental design and optimizing data collection. A
contemporaneous SNL LDRD led by Patrick Knapp, “Developing and Applying Quantifiable
Metrics for Diagnostic and Experiment Design on Z” (project: 222431) aims to develop a
capability for optimizing diagnostic configurations using Bayesian optimization. If successful,
this technique can significantly reduce experimental trials and errors and come up with optimal
experimental configurations prior to the first experiments. However, their approach employs
multi-objective Bayesian analyses, and thus speed, accuracy, and consistency of any
post-processing component are of paramount importance.

Developing a fast, accurate, and consistent post-processor is challenging for multiple reasons.
First, x-rays emerging from a 3-D plasma are a result of radiation transport along the diagnostic
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lines of sight. How photons are emitted (emissivity) and absorbed (opacity) at each point in a
non-LTE source plasma depends on the photon frequency and local temperature, density and
radiation field. Second, x-ray data have to be modeled in consistent ways. Actual X-ray
diagnostics consist of multiple components such as apertures, crystal, detector, filters, etc, and a
consistent and accurate treatment of these components can be challenging. Currently,
x-ray-diagnostic models are understood on a case-by-case basis, lacking consistency across
various x-ray diagnostics. Third, we must make the tool user-friendly and flexible so that the tool
will be actually used by scientists who may not be experts in radiation transport or diagnostic
design. For example, the post-processor has to be flexible in the plasma geometry (i.e.,
temperature, density, plasma composition and their spatial variations), types of input (i.e.,
HYDRA, GORGON, simplified plasma models, etc), diagnostic lines of sight, and types of x-ray
diagnostics. Fourth, these calculations become even more complex when the local radiation field
are informed by non-local radiation transport; this requires either input from a rad-hydro code that
performs full radiation transport or a self-consistent calculation of the local radiation fields as
described in Section {. 1| for a simple cylindrical geometry.

In this LDRD, we developed a versatile post-processor by extending a C++ general x-ray
transport model, RADIATOR, developed by T. Nagayama for his Ph.D. work [137], wrapping it
into Python, and co-developing each x-ray diagnostic model with the Knapp LDRD. The first
challenge, to track line-of-sight emission and absorption for plasmas in LTE, is overcome using
the quick table-lookup on temperature and density for local emissivity and opacity developed in
RADIATOR. The second challenge, incorporating the elements of actual diagnostics, was
addressed by hosting a series of meetings to discuss x-ray data modeling and, resulting in the
derivation of a general formula that can model various x-ray data in absolute units [13]. The third
challenge, to design a widely usable tool, is addressed by wrapping RADIATOR into python,
adding flexibility to read in various hydrodynamic simulation outputs with Polymorphism. The
speed of C++ codes and user-friendliness of Python made the tool efficient, flexible, and very
easy to use. The tool was modified and incorporated into the Knapp LDRD python tool for
Bayesian analyses. The fourth challenge, to incorporate self-consistent non-local radiation
transport for non-LTE plasmas, is underway: we have developed and tested key capabilities that
will allow us to extend our model to full non-LTE.

Here, we highlight key achievements: (1) efficient and user-friendly architecture, (i1) flexible
plasma input formats, (iii) derivation of a general formula for consistent x-ray data modeling, and
(iv) designing non-invasive extensions towards developing a fully non-LTE post-processor. One
of the main achievements is (iii) derivation of a general formula for x-ray diagnostic instrument
response for data modeling, which has been submitted to the Review of Scientific Instruments;
see [[13]] for full detail.

i) Efficient and user-friendly architecture

Efficiency and user-friendliness are essential for our tool to have a long-lasting impact on future
research at SNL. This is achieved by wrapping C++ objects (efficiency) into Python
(user-friendliness). C++ provides compiled objects, which run 10-100x faster than scripting
language like Python. C++ is so-called object-oriented programming. Complex programs are
organized into well-defined objects with distinct roles. On the other hand, Python is famous for its
user-friendliness and rich and easy-to-maintain libraries. The Knapp LDRD has also developed
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general tools in Python, so that wrapping RADIATOR in Python makes our tools accessible to a
broad base of potential users and ensures compatibility with other tools.

i1) Flexible plasma input format

Our input tool is made compatible with various radiation hydrodynamic simulation output such as
Gorgon 2D, Gorgon 3D, Hydra 2D, Hydra 3D, and a few other custom temperature, density, and
composition formats. This is performed by a feature of object-oriented programming called
Polymorphism. The main part of the program uses a class called volume to get temperature,
density, and composition at (X,y,z) using a function get-condition(X,y,z). This class is an abstract
class, meaning that its behavior is not defined in this class. It only defines the function names;
their actual behaviors (or implementations) are defined in its child classes. Thus, we create its
child classes called Gorgon2D, Gorgon3D, etc and define geometry-dependent
get-condition(x,y,z) functions inside these child classes. We also developed a generic 2D
cylindrical and 3-D Cartesian classes by working closely with Michael Glinsky, who had already
developed python tools to read in HYDRA 2-D and 3-D simulation output. Thus, we can read in
HYDRA outputs through his tool and these generic 2-D and 3-D volume child classes. The main
program can use get-condition(x,y,z) function without even knowing what the geometry is. We
can isolate hydrodynamic-simulation output-format issues to the child classes of volume and
separate it from the rest of the coding. With this Polymorphism, we can easily make our
post-processor compatible with other hydrodynamic simulation models.

ii1) Derivation of a general formula for various x-ray data modeling

One challenge we face in developing a fast, accurate, and consistent post-processor is that, as far
as we know, there is no universal recipe that works to predict the output signals of x-ray data
collected by the wide range of diagnostic instruments used on a facility like Z. Thus, we don’t
know how consistent the assumptions and limitations are between two or more x-ray diagnostics.
This lack of general understanding of x-ray diagnostics can hinder people from developing good
insight into x-ray diagnostics, and the lack of consistent treatment across x-ray diagnostics
introduces unknown uncertainty into multi-objective data analysis [136]. We convened a series of
meetings with x-ray diagnostic specialists at SNL and successfully derived a general formula that
can model various x-ray diagnostics in absolute units. The resulting model would work as x-ray
data modeling (forward) or x-ray data processing (inverse). It clarifies implicit assumptions in
standard approaches and revealed some inaccuracies in common approaches. Here, we briefly
summarize these findings; more details are given in [[13].

There are two different types of challenges in developing a general model of instrumental
response for X-ray data: (i) geometrical effects and (i1) efficiencies or responses of each
component. Photons exiting the source plasma, I; (photons/s/sr/cm?/eV), go through the
diagnostic and produce detector irradiance, I; (photons/cm? or something similar). This
conversion happens due to partial integration of /; with the influence of three geometrical effects:
geometrical dilution of the flux, limited view through the apertures, and the impact of an optic and
its geometry. Once we understand these geometrical effects correctly, we face another challenge:
the accuracy of various efficiencies and responses such as filter transmission, crystal reflectivity,
and detector response. In other words, correct treatment of geometrical effects is necessary but
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not sufficient for developing a valid model; the model further requires accurate inputs (i.e.,
efficiencies and responses) for the computed x-ray data to be quantitatively accurate.

While both aspects are challenging, developing correct understanding of geometrical effects is
more fundamental and of paramount importance for three reasons. First, accurate input would be
useless without a correct model. Second, good insights into x-ray diagnostics are essential for
diagnostic optimization and correct data interpretation; this can be developed only through correct
understanding of the geometrical effects. Third, general understanding of the geometrical effects
can provide a consistent approach over multi-objective data analysis.

After series of discussions with x-ray diagnostic specialists (M. A. Schaeuble, J. R. Fein, G. P.
Loisel, M. Wu, P. F. Knapp, T. J. Webb, W. Lewis, J. Schwarz, R. A. Vesey, and E. Harding), we
were able to derive that many x-ray diagnostics including x-ray imagers (TIPC, MLM, etc),
spectrometers (TIXTL, TREX, CRITR, etc), and power diagnostics (PCD, SiD, etc) can be
modeled in absolute units based on the following formula (see [[13] for more detail):

Id (x”,y”) = Gx” f f fo// ¥ I (E,x’,y’)R¢x// (E)Fx// (E)dx’dy’dE

where G [st/cm3] is a detector-position-(x”)-dependent geometrical dilution, I(E,x’,y’) is
emergent source spectral radiance [photons/s/sr/cms?/eV, Ry (E) is spectral-weighting curve due
to crystal reflectivity, and Fy»(E) is detector-position-dependent efficiencies such as filter
transmission, detector response, etc. The integration range A~ is the partial source area seen
from detector position (x”,y”) through apertures. After the integrations, this expression returns
the detector irradiance in photons/cmz.

The derivation reveals a general picture about conversion from source spectral radiance
(photons/s/sr/cmf/eV) to detector irradiance (photons/cmﬁ or something similar). 1/sr/cmf in the
source radiance is converted to 1/cm[21 in the detector irradiance through the geometrical dilution
of the photon flux, G (sr/cm?l), and the integration over the source area seen through the apertures
(cm?). The conversion works for pinhole imagers, power diagnostics, and various 1-D
slit-resolved spectrometers (e.g., convex/elliptical and reflective/transmissive crystals). Our
model naturally accounts for crystal spectral broadening and removes the 1/eV units from the
source through integration of E. The derivation suggests that the commonly used crystal
reflectivity and spectral broadening widths defined in radians may not be the most rigorous or
insightful representation of reflectivity. The common approach could also underestimate the
reflectivity and width by a factor of two near the reflectivity edges. We also find that a commonly
used, simple method for processing spectral data can introduce inaccuracy not only in the
absolute signal level but also in the relative spectral shapes, as illustrated for TIXTL
spectrometers in Fig. The inaccuracy is introduced by the neglect of space-dependent
geometrical dilution and incorrect use of crystal reflectivity.

While quantitative accuracy still requires accurate inputs (e.g., filters transmissions, crystal
reflectivity, and detector response), the general recipe described here helps develop a good insight
into x-ray diagnostics. This rigorous understanding of x-ray diagnostics is essential even for
correctly interpreting calibration measurements such as crystal reflectivity and detector responses.
The new model reveals implicit assumptions in common approaches. It is useful for developing
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efficient and accurate data modeling (I; — 1) and/or processing (I; — I;) for new x-ray
diagnostics. The systematic treatment will also help multi-objective data analyses to return
reliable analysis uncertainties.

Brown et al
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Figure 4-2 (a) The red and green are the SNL Z-pinch spectra pro-
cessed with Brown’s model [Brown et al] and this work. They show
excellent agreement both in spectral shape and magnitude. We are still
investigating the source of 10-15% disagreement at > 8 A. (b) Magenta
is source spectral radiance with the simple processing method often
used at SNL. The resulting spectrum is incorrect not only in magnitude
roughly by a factor of 64 but also in spectral shape.

1v) Extensions towards full non-LTE

Finally, we have developed four key functions that are necessary for a fully non-LTE
post-processor: (i) read in non-LTE emissivity and opacity tables, (ii) perform radiation transport
along multiple lines of sight to compute local radiation field, (iii) perform non-linear interpolation
to lookup non-LTE emissivity and opacity based on a given local temperature, density, and
radiation field, and (iv) iterate to determine local radiation spatial distributions and non-LTE
emissivity and opacity spatial distributions for emergent intensity calculations. These functions
were developed and tested to reproduce the proof-of-principle calculations described in Section
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While some of these need to be extended for arbitrary geometry, testing the fundamental
algorithms in the simpler geometry allows us to focus on issues purely related to geometry and

efficiency for extending the general post-processor to have the non-LTE option. This work will
continue under the Knapp LDRD.
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5. CONCLUSION

This LDRD successfully advanced and augmented several critical existing modeling capabilities
(DFT-AA and TDDFT), developed and implemented two new modeling capabilities (tabular
non-LTE and post-processing), and investigated promising new first-principles methods for
collisions (see Appendix). These capabilities have already been used in several REHEDS
applications both internally and externally, which is partially reflected in the project’s publication
record of collaborative efforts: (Kraus et al. [18], Strehlow et al. [19], Hu et al. [20]], Beier et al.
[21]], Jiang et al. [22], Kononov et al. [23]], Ramakrishna et al. [24, 25] ). There are well defined
follow-on research directions and follow-on funding to begin executing on them.

Promising future directions for our first research focus area, internally consistent atomic-scale
modeling, involve exploring more accurate extensions of or alternatives to TDDFT for calculating
equilibrium and non-equilibrium properties, as well as continuing to benchmark and refine our
DFT-AA methods against more sophisticated models on a broader space of conditions, including
comparisons to new observables and finding novel points of contact with higher levels of theory.
In particular, properties related to equilibration processes deserve deeper exploration. We know
that collision rates are crucial in determining both equilibrium observables (e.g., conductivities
and stopping powers) as well as mechanistic details relevant to establishing equilibrium from a
non-equilibrium state. Using this observation to establish a point of contact between DFT-AA and
TDDFT may give us more direct methods for improving both. This line of research has already
led to multiple publications: Gomez et al. [8,19, [10]], Callow et al. [[11], and several more are
submitted or close to submission: Baczewski et al. [[12], Kononov et al. [[14], Hentschel et al.
[15], Kononov and Baczewski [16]. In addition to these significant new approaches to dynamic
collision and scattering from the DFT-AA model, we plan to publish on our significant advances
in self-consistent multiconfguration emission and opacity spectra and our new approach to
ion-Stark line broadening.

Our second research direction, developing schemes for tabular non-LTE, has also made
significant progress. We have devised a tabular approach for external radiation fields that
encapsulates a very wide range of physically plausible radiation fields, including optically thick,
fluorescence, and photoionized plasmas. For each of these, we have developed tailored
interpolation methods and are working towards improvements of our trial “universal”
interpolation schemes. We have also extended our tabular non-LTE capabilities to provide
reasonable estimates for detailed fluorescence emission spectra driven by non-thermal (“hot™)
electrons, a capability that we hope will contribute to Nichelle Bennett’s new LDRD on
hybrid-PIC-MHD and non-thermal radiation sources. We have implemented these tables in one
radiation-magnetohydrodynamics code, Gorgon, where we have addressed several fundamental
issues attending non-LTE radiation transport including a novel approach to the stability of the
radiation-material energy coupling. We are actively engaged in collaborations with other code
developers at Sandia and with scientists at other NNSA laboratories to test and refine our tabular
non-LTE approach, and anticipate additional publications on several of these topics.

Finally, we have developed two independent post-processing tools: one that provides
self-consistent non-LTE source radiation for Z-relevant plasmas with simple cylindrical
geometries, and one that rigorously models the instrument response functions of many actual
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diagnostics on Z Nagayama et al. [13]. Both of these tools are already in active use by REHEDS
scientists outside of this LDRD, with especially significant applications to radiation effects
sciences and deep connections to the data science LDRD led by Patrick Knapp. We expect that
this aspect of our work will have increasing programmatic impact as we continue to advance the
technical readiness levels of the DFT-AA model and our non-LTE tables.

This project has also strengthened working collaborations within 1600 (1680 and 1640), within
Sandia (1600 and 1400), within the DOE/NNSA laboratories (SNL, LLNL, LANL, and LLE),
with several universities (Cornell, UNM, UIUC, UT Austin), and with the broader international
high-energy density community (including AWE, CEA, and CASUS). We are grateful for and
delighted by the opportunities afforded by this funding and look forward to continuing the
development and application of the capabilities described in this report.
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APPENDIX A. EXPLORATIONS OF NEW METHODS FOR
CALCULATING COLLISION RATES

This Appendix describes investigations of new first-principles methods for analyzing
electron-electron and electron-phonon collisions. This was performed under a mid-year SAA
contract placed under this LDRD.

A.1. Overview

In what follows, we study the ground state electronic structure, temperature-dependent optical
response, and electronic relaxation mechanisms of beryllium. These studies are conducted with a
variety of tools from first principles multi-atom electronic structure theory. Our interest in
beryllium is motivated by both its use in experiments at the Sandia Z facility as well as its low Z
(Zyue = 4). This allows us to efficiently study a system that has both a relatively shallow K-shell
and nearly-free electrons near the chemical potential at solid densities, while minimizing
concerns about errors due to pseudization of the core orbitals. Thus it is of practical interest and a
useful starting point for explorations of new computational methods.

A.2. Convergence analysis for the ground state electronic structure

In our study of crystalline beryllium (Be), we perform first-principles density functional theory
(DFT) [29} 30]] using the Vienna Ab-Initio Simulation Package (VASP) [39,141,(149]]. The starting
point for these calculations is capturing the crystal structure of solid Be and we do so using a
2-atom primitive unit cell from Materials Project [151]] and perform convergence tests to
determine the density of the k-point grid used in representing the first Brillouin zone and energy
cutoff of the plane-wave basis set [153] that suffices to accurately represent the ground state
electronic structure. To assess the impact of approximations used in the modeling of the
electron-electron interaction we use both the LDA [30] and PBE [150] exchange-correlation
functionals. From our convergence tests, we conclude that k-point grids more dense than

15 x 15 x 15 and energy cutoff values greater than 600 eV lead to well-converged total energies
per atom of —3.77 eV/atom and —4.20 eV/atom for the PBE and LDA exchange-correlation
functionals respectively. These convergence results, along with accounting for computational
expense, lead us to use a 15 x 15 x 15 k-point grid and 800 eV cutoff energy for both LDA and
PBE self-consistent calculations. Using the Murnaghan equation of state [154], the a, and ¢,
lattice constants for Be were found to be 2.231 and 3.525 A respectively for the LDA
exchange-correlation functional. The same method was used for the PBE functional, which leads
to lattice constants of 2.264 and 3.574 A.

The subsequent electronic structure calculations were performed using the converged charge
density and calculated lattice constants found for the given exchange-correlation functional. We
explore the ground state electronic structure of Be by computing the electronic band structure
along high-symmetry points along with the electronic density of states as shown in fig. [A-T| We
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Figure A-1 Electronic band structure and DOS calculated with LDA
(solid) and PBE (dashed) exchange-correlation functionals. The energy
zero is set to the Fermi energy.

conclude from this figure that within the 20 eV energy range from —10 to 10 eV, the electronic
structure predicted by LDA and PBE agree very well. One of our primary goals is to benchmark
our results against an average atom (DFT-AA) model that uses LDA, and we will use LDA in all
subsequent DFT-MD calculations.

A.3. Temperature-dependent optical response

After studying the ground state electronic structure of our system, we turned our attention to the
optical properties of our model of Be and calculated the imaginary part of its macroscopic
dielectric function. This is proportional to the optical absorption spectrum and is closely related
to the optical conductivity, both of which can also be studied using DFT-AA techniques. Because
we are ultimately interested in studying warm dense Be, we model thermalized electrons by using
Fermi smearing in VASP to set electron temperatures of 0.5, 1.0, and 3.0 eV. These calculations
were done with 64 total bands, 4 valence and 60 conduction, on a 43 x 43 x 43 k-point grid with
an energy cutoff of 800 eV; the charge density was taken from the converged self-consistent
calculation.

Fig. shows the computed results for the temperature-dependent optical response function. In
this figure we see three different photon energy ranges of interest: 0 to 6.5, 6.5 t0 9.5, and 9.5 to
10.0 eV. In the lowest energy range, we observe that the strength of optical transitions is strongly
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Figure A-2 (a) Imaginary part of the macroscopic dielectric function at
temperatures of 0.5, 1.0, and 3.0 eV. (b) Imaginary part of the macro-
scopic dielectric function including the Drude term at temperatures of
0.5,1.0, and 3.0 eV.

dependent on the temperature of the system. However, for photon energies above 6.5 eV, this is
no longer the case. Between photon energies of 6.5 and 9.5 eV, the moderate-temperature

(1.0 eV) optical spectrum becomes dominant, and between photon energies of 9.5 to 10.00 eV, the
high temperature (3.0 eV) curve has the strongest transitions. The behavior in the first region is
due to the fact that as temperature increases, there is less occupation of valence bands and more
occupation of conduction bands near the Fermi level, thus leading to a lower transition probability.
Transitions at higher photon energies become more likely at higher temperature since the Fermi
smearing leads to more partially occupied initial states that allow the transitions at those energies.
Although these optical spectra adequately describe the optical properties of warm dense Be at
energies = 2 eV, they do not show the full picture for lower energies. Since Be is metallic, various
bands cross the Fermi energy and thus intraband transitions can occur and must be included in the
optical properties of Be — this was not accounted for in the optical spectra in fig. [A-2h.

We included intraband transitions by utilizing the Drude model of electrical conduction [155]],
where the intraband transitions depend on the electron relaxation time. We used a relaxation time
of 10 fs as an input parameter in our VASP calculations. Since there was no experimentally
determined relaxation time available for Be, our choice of 10 fs was based on values found from a
first-principles study of metallic relaxation times within the Drude model [[156]. Fig.
compares the optical spectra as a function of electron temperature with and without intraband
transitions included. At low photon energies, below ~ 1 eV, the intraband transitions dominate
the optical response independent of temperature. This result is expected due to the large number
of transitions within bands that require only a small quantity of energy. As photon energy
increases from 1 to 4 eV, the curves with intraband transitions still dominate. However, there are
not as many available intraband transitions in this energy range, so the Drude term has a much
more modest effect on the optical spectra in this regime. Finally, when photon energies exceed 4

113



eV, intraband transitions become negligible and the spectra with and without these intraband
transitions coincide.

As shown in Eq. (T1) , the imaginary part of the dielectric function can be used to calculate
optical conductivity. Fig.[A-3|shows a comparison between the optical conductivity calculated
using DFT-AA and DFT-MD methods for three different electron temperatures, where we see
good agreement between the two methods at nonzero frequency values. The disagreement at very
low frequency may be explained by the difficulty to converge the k-point grid in DFT-MD for low
frequency dielectric function values.

(@) 100 (b) 100

Figure A-3 A comparison of the real part of the optical conductivity
between DFT-AA (solid lines) and DFT-MD (dashed lines) for different
electron temperatures (a) 0.5, (b) 1.0, and (c) 3.0 eV.

Our study of the optical properties of warm crystalline Be demonstrates the temperature
dependence of the optical spectra at visible and UV photon energies and the importance of
properly modeling the optical transitions in metals by including the relaxation time to account for
intraband transitions that occur at low photon energies. However, the Drude model of intraband
transitions is a highly simplified picture relying on a single, constant relaxation time for all
electrons. In reality, relaxation times will depend on excitation energy, temperature, and/or the
extent to which the material is in thermodynamic equilibrium. Furthermore, the relative
importance of electron-electron and electron-ion relaxation mechanisms in warm dense matter is
not well understood. We investigate these questions in the following sections.

A.4. First-principles calculations of electron-electron collisions

The above study of the optical properties of warm crystalline Be gives some insight into how Be
responds to photons with different energies, but it invokes a limited description of electron
relaxation and it does not offer much insight into what happens to the electrons after excitation.
We obtain a better understanding of how excited electrons behave by investigating electron
scattering; specifically, we independently study electron-electron (e-e) and electron-phonon
(e-ph) interactions. We focus on e-e interactions in this section and describe our work on e-ph
interactions in section

Our first-principles approach for computing e-e scattering lifetimes follows a framework
developed by Kratzer and Zahedifar [158]] that we recently applied to a similar study of e-e
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lifetimes in ambient aluminum [23]]. The scattering rate is taken to be proportional to the
imaginary part of the electronic self-energy:

[k = —2Im{XZ(g,x)} /A,

where I, is the e-e scattering rate, X is the self-energy, and €, is the quasiparticle energy for the
state nk [158]]. While X(g,x) and corresponding I',;x can be obtained from a computationally
expensive GW calculation [[157]], here we apply a more efficient method that computes X(€,)
from a GoW calculation. The GoW calculation involves a complex shift 1] in the Kramers-Kronig
transformation [[159, 160]], and we find that an unusually small value of 1 is needed to accurately
resolve the the self-energy near the Fermi energy (see inset of fig.[A-4). Fig.[A-4] further
demonstrates k-point grid convergence in our GoW calculations, and we use a 7 x 7 x 7 K-point
grid and the smallest value of 1 = 0.01 eV for the ultimate e-e lifetime extraction.
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Figure A-4 The scaled imaginary part of the self-energy obtained from
GoW calculations with increasingly dense k-point sampling. The inset
shows the scaled imaginary self-energy near the Fermi energy for the
7 x T x 7 k-point grid with different 1 values.

After obtaining adequately converged self-energies, we consider the scattering rate
—2Im{X(g,x)} for the first conduction band at the I" point over an energy range between 0 and
10 eV, and we fit this data to the form predicted by Landau’s theory of the Fermi liquid:

/(€ — Er)? [158]. This fit then predicts hot electron lifetimes as

37 fs eV2
(Snk - EF)2 .
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Figure A-5 The electron-electron lifetimes obtained from the fit to Lan-
dau’s theory of the Fermi liquid for the first conduction band at the I
k-point.

Fig.[A-5|shows the energy-dependent behavior of the e-e lifetimes 7,y for crystalline Be. We see
that excited electrons near the Fermi energy are long-lasting, with lifetimes on the order of a few
hundred femtoseconds or more before scattering with another electron. Our calculations also
predict that electrons further from the Fermi energy scatter at a much higher rates since the e-e
lifetimes are on the order of a few tens of femtoseconds and diminish with increasing energy.
This method for calculating e-e lifetimes is especially promising for highly excited systems
because the computational cost compared to the traditional approach of performing a full GW
calculation is greatly reduced. This increased computational efficiency will be key for studying
e-e lifetimes at energies far from the Fermi energy in highly excited systems.

A.5. First-principles calculations of electron-phonon collisions

As discussed in the previous section, we explored the scattering processes from both e-e and e-ph
interactions. We studied these two processes independently because as currently implemented,
the methods used can only capture either e-e or e-ph scattering, not both. Our study of e-ph
scattering, unlike e-e, was done by using the open-source software PERTURBO [1635]] to
numerically solve the Boltzmann transport equation (BTE),

afnk(rvt)

T - _[Vrfnk(l‘ut) * Vnk +ﬁ_lkank(rat) F] +I[f’lk]7 (38)
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where f,x are occupations of electronic orbitals indexed by n and k, v, are the band velocities, F
is a drift term from external fields, and / is the collision integral currently containing only
electron-phonon scattering processes. In PERTURBO version 1.0, simplifications are made to the
BTE to reduce computational cost. First, f,x are assumed to have no spatial dependence because
the fields vary slowly and the material is homogeneous, simplifying the BTE to

—af”ka(tr’t> = — A "Vicfou (1) - F] + [ ] (39)

Also, the F term vanishes because it is assumed that there is no external field, further simplifying
the BTE to

afnk<rat) o

o = I[fnk]- (40)
QE — QE - Wannier90
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Figure A-6 A diagram of the workflow for simulating e-ph scattering
using PERTURBO.

To perform e-ph carrier dynamics calculations in PERTURBO, we start from a first-principles
DFT-MD calculation using Quantum Espresso [[161}, [162]]. After k-point and plane-wave energy
cutoff converge tests, we performed a self-consistent calculation using a 20 x 20 x 20 k-point grid
and an energy cutoff of 80 Ry to obtain the ground-state charge density. We then used this
ground-state configuration as input for density functional perturbation theory (DFPT) [164] to
perform a phonon calculation in Quantum Espresso. The same 20 x 20 x 20 k-point grid was
used, while a coarser 4 x 4 x 4 q-point grid was used due to the high computational expense of
DFPT calculations. The DFPT calculations provide e-ph matrix elements entering into the
evaluation of /[f,k|. However, for accurate transport and dynamics calculations, PERTRUBO
requires e-ph matrix elements from much denser k and q-point grids which we obtain by utilizing
Wannier interpolation using the Wannier90 code [163]]. The outputs from our Quantum Espresso
phonon calculation and the Kohn-Sham eigenvalues and wavefunctions calculated from a
nonself-consistent (nscf) calculation using a 20 x 20 x 20 k-point grid were used to construct
maximally localized Wannier Wavefunctions (WF). The KS wavefunctions were initially
projected onto the s and p orbitals of Be, resulting in a a total of eight wannierized wavefunctions.
The spread of the WFs was then minimized until the difference in WF spread from one step to the
next was 1 x 10~ or less for four consecutive iterations. Using the results from the DFT-MD and
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DFPT calculations, PERTURBO calculates the e-ph matrix elements from the coarse

20 x 20 x 20 k and 4 x 4 x 4 q-point grids. These e-ph matrix elements and the rotation matrices
from the Wannier90 calculation are then used to find the e-ph matrix elements in the real space
WF basis; this is then interpolated to find the e-ph matrix elements on ultra-fine k and q grids. A
diagram of this workflow is shown in fig.

PERTURBO allows the study of carrier dynamics by imposing an initial distribution for
occupations of excited electron orbitals, such as a Gaussian, and then computing the relaxation
dynamics by solving Eq. (1)), where the right side represents the collision integral /| f,]:

Aflrs)  2m 1

2
EPVE Emn k,q X 88nk_ﬁc‘)v — &mk XFem
N vy I oo ) 3 A~ Enkra) .

+8(8nk + ﬁ(ovq - 8mk+q) X Fabs]'

Here, Ng is the number of g-points in the summation, gmnv(K,q) are the e-ph matrix elements, €,
is the electron quasiparticle energy for an electron at band »n and k-point Kk, and /iyq is the energy
of the phonon with mode v and q-point q. F,, and F_, describe phonon emission and

absorption:

Forp = fnk(l _fmk—I—q)(NVq + 1) _fmk-i-q(l _fnk)qu
Fabs = fnk(l _fmk+q)qu _fmk+q(1 _fnk)(qu+ 1):

where f and Nyq are the electron and phonon occupations, respectively, and the phonon
occupations are kept fixed throughout the simulation.

(42)

The dynamics simulations in PERTURBO were originally intended to be performed on cold
semiconductors where the calculation for the electrons in the conduction bands and holes in the
valence bands are performed separately. For electron dynamics simulations in semiconductors,
the conduction bands included in the simulation are unoccupied besides the relaxing electrons
from the excitation. These excited electrons then relax to the conduction band minimum since
there are no empty states below that, and a similar principle applies to valence bands in hole
dynamics simulations. An electron dynamics simulation for Be in PERTURBO would treat all the
conduction bands included in the calculation as completely empty, which is incorrect, since as a
metal Be has conduction bands crossing the Fermi energy with nonzero electron occupancy which
would not be included in the PERTURBO simulation.

We address this problem by modifying the PERTURBO source code to include a new initial
distribution option which we call the Gaussian plus Fermi distribution where we add a
Fermi-Dirac distribution to the Gaussian excitation. The Fermi-Dirac distribution is constrained
by setting the electron temperature of interest to determine the width of the Fermi function and the
Fermi energy of the system, which can be found from the DFT-MD calculation done prior to the
dynamics simulation. The addition of the Fermi-Dirac distribution to the Gaussian distribution for
the initial occupations allows PERTURBO to solve the BTE and relax the excited electrons in a
physically meaningful way. Since there is now a barrier that models where the conduction bands
included in the calculation are already occupied, at zero temperature, electrons are no longer able
to relax into states below the Fermi energy, thus properly modeling a metallic system.

We studied the electron dynamics from e-ph scattering in Be after we excited the system with a
Gaussian pulse centered at 9.6 eV, about 0.5 eV above the Fermi energy, and a smearing
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parameter of 40 meV, which is both the electron temperature and the Gaussian width. The energy
range of our simulation was 8.6 to 10.2 eV and the two bands within this energy range were
included in our calculation. The phonon and electron temperatures were set to 25.25 and 40 meV,
respectively. We solved Eq. (@1)) numerically using the Euler method with a time step of 1 fs. We
ran simulations using these input parameters with five different k-point grids: from 50 x 50 x 50
up to 90 x 90 x 90 to test k-point convergence. The calculated electron distributions as a function
of energy and time shown in fig. do not show obvious differences among the k-point grids.
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Figure A-7 The electron distribution as a function of time after an initial

Gaussian excitation centered at 9.6 eV for different k-point grids as

indicated.

To get more quantitative information about the k-point convergence of our simulations, we
compared the results of each calculation to that of our calculation with the most dense grid. Since
the energies sampled depend on the k-point grid, all of the electron distribution data was linearly
interpolated so that the two sets of data can be compared as a function of energy and time. Fig.
shows the relative difference between the linearly interpolated coarse k-point grid electron
distribution and the 90 x 90 x 90 interpolated electron distribution. We see that as the k-point
grids become more dense, the relative differences approach zero. Although our 90 x 90 x 90
calculation is not completely converged, we are satisfied with this grid due to the trade-off
between simulation accuracy and the computational cost of denser k-point grids.

The selection of k-point grid, along with the time-evolution algorithm and time step, impacts the
stability of the simulation over time. Ideally, the carrier concentration remains constant
throughout the PERTURBO simulation. We can compute the carrier concentration by integrating
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Figure A-8 The relative difference between four coarser k-point grids
and the most dense 90 <90 %90 k-point grid. The relative difference was
calculated for every 25 fs time step.

the carrier population,

f(Evt):Zkfnk(t)a(gnk_E)a (43)

over energy. From our results reported in Table where we report the ratio between the
smallest and largest carrier concentrations found during the 500 fs simulation, we find that our
choice of integrator and time step results in a stable simulation since the values are near one. We
also see that as the k-point grid becomes more dense, the carrier concentration gets closer to
becoming a constant.

Table A-1 The ratio between the smallest and largest carrier concentra-
tions found over the 500 fs simulation time for different k-point grids.
k-point grid ~ ratio

50x50x50 0.99947
60x60x60 0.99971
70x70x70  0.99985
80x80x80 0.99992
90x90x90 0.99995

Our k-point grid selection of 90 x 90 x 90 has shown convergence and that it produces a stable
simulation. Our goal is to use the data from these electron dynamics calculations to determine
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values of interest such as the relaxation time after an excitation, and ongoing work continues in
this direction.

A.6. Summary

We have presented a variety of first-principles calculations representative of capabilities that were
being pursued under this LDRD. We first considered conventional electronic structure and optical
response calculations, which are necessary precursors to the later calculations, but not new
capabilities for our group. We then showed preliminary work establishing a capability within our
group for explicitly capturing both electron-electron and electron-phonon relaxation mechanisms
at a multi-atom first-principles level of theory. Our results are encouraging and we will continue
to integrate PERTURBO calculations in work beyond this LDRD.

121



DISTRIBUTION

Hardcopy—Internal

1 Person 01xxx XXXX

Email—Internal (encrypt for OUO)

Technical Library 01177 libref@sandia.gov

122



123



Sandia
National
Laboratories

Sandia National Laboratories is a
multimission laboratory managed
and operated by National
Technology & Engineering
Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s National
Nuclear Security Administration
under contract DE-NA0003525.




	Acknowledgements
	Introduction
	Internally consistent atomic-scale modeling
	Introduction to the Average-Atom Model
	Equations of State
	Static Transport Coefficients
	Dynamic Response Functions
	Stopping Powers
	Radiative Properties
	Non-Equilibrium Average Atom
	Line shapes
	Balrog: an improved standard model
	Test Shape: a new approach to ion-Stark broadening


	Non-LTE tables and R-MHD implementation
	Non-LTE Atomic Models
	Non-LTE Tables
	Non-LTE table interpolation
	Non-LTE implementation in GORGON
	Background description of existing methods
	Radiation transport techniques coupled to non-LTE tables
	Application to a radiating cylinder
	MHD applications, consistency, mixtures, and stability


	Post-processing
	Cylindrical plasma model with self-consistent radiation transport
	X-ray instrument modeling for direct post-processing

	Conclusion
	References
	Appendix Explorations of new methods for calculating collision rates
	Overview
	Convergence analysis for the ground state electronic structure
	Temperature-dependent optical response
	First-principles calculations of electron-electron collisions
	First-principles calculations of electron-phonon collisions
	Summary


