

Indirectly-Directed Evolution

Eric J. Ackerman
Mgr. Nanobiology Dept.

PRESENTED BY

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2018 Nobel Prize for Directed Evolution

Synthetic Biology

- Well-recognized threats via genetic engineering tools; e.g., CRISPR, delivery vectors
- Detection of genetic manipulations via horizontal gene transfer
 - Varies from easy to very difficult via forensic analyses

What is indirectly-directed evolution?

Manipulate upstream vectors/gene pools to create biothreats in target species

- **Introduce (mixture of) partially engineered non-pathogenic viruses/microbes/insects etc. into ecosystem**
- **Primed to evolve into threat**
- **Difficult to assign attribution because actual target is a different species**
- **Evidence of (years-earlier) manipulation in initial species likely will be non-existent**

Identify Suitable Target and Pools of 'Infectious' of Transferring Organisms

Pools: Phage/viruses, microbes, worms, flies, birds, frogs, animals, . . .

**Targets: Animals, humans, entire ecosystems
(trophic cascades)**

'Surgical' Genetic Engineering vs. Mutagens

- **CRISPR, nanoencapsulation technologies**
 - **Modify selected gene/genes likely to evolve into threats**
 - e.g., resurrect dead pox close to smallpox
 - **Create error-prone polymerases in carefully targeted organisms; apply selective pressures**
- **Simple chemical or radiation (e.g., UV) mutagens**

All approaches likely require large numbers, so utilize large pools within ecosystem and create selective advantages to boost mutagenesis, where possible.

Rural areas vulnerable.

Impacts: Positive

- **Increased scientific understanding**
 - Ecosystem connections/resiliency
 - Remediation
 - Horizontal gene transfers
- **Agriculture and medical defenses**
 - Drought, cold, floods, diseases

Impacts: Negative

- **Devastating effects**
 - **Ecosystems**
 - **Crops (e.g., grapes, corn, wheat) or animals**
 - **Vital ecosystem targets (bees, bats, birds, etc.)**
- **Centuries to recover?**

Defenses?

- **Case dependent**
 - Causes of many diseases already known but little protection available despite awesome power of synthetic biology; e.g., Huanglongbing, Zika, Ebola, etc.
 - Vital ecosystem targets (bees, bats, birds, amphibians)
 - Rapid selective-breeding programs so compensating mutations arise

Summary

- **Threat from indirectly-directed evolution**
 - More subtle than directly attacking target
 - Potentially devastating to human and non-human targets
 - Difficult to detect: unidentified perpetrator because genetic manipulations camouflaged by ‘pool’ species and time
 - With well-chosen initial targets, attack need not require synthetic biology
 - Defenses difficult