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ABSTRACT
Disastrous consequences can result from defects in manufactured parts—particularly the high 
consequence parts developed at Sandia.  Identifying flaws in as-built parts can be done with non-
destructive means, such as X-ray Computed Tomography (CT).  However, due to artifacts and 
complex imagery, the task of analyzing the CT images falls to humans.  Human analysis is inherently 
unreproducible, unscalable, and can easily miss subtle flaws.  We hypothesized that deep learning 
methods could improve defect identification, increase the number of parts that can effectively be 
analyzed, and do it in a reproducible manner.  We pursued two methods: 1) generating a defect-free 
version of a scan and looking for differences (PandaNet), and 2) using pre-trained models to 
develop a statistical model of normality (Feature-based Anomaly Detection System: FADS).  Both 
PandaNet and FADS provide good results, are scalable, and can identify anomalies in imagery.  In 
particular, FADS enables zero-shot (training-free) identification of defects for minimal 
computational cost and expert time.  It significantly outperforms prior approaches in computational 
cost while achieving comparable results. FADS’ core concept has also shown utility beyond anomaly 
detection by providing feature extraction for downstream tasks.
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EXECUTIVE SUMMARY

Problem
Disastrous consequences can result from defects in manufactured parts—particularly the high 
consequence parts developed at Sandia.  For limited use components, such as body armor or 
explosives, the ability to predict failure of as-built parts would save lives, drastically improve 
efficiency, and increase confidence in performance.  Currently, many single use components are 
validated with lot testing, which is wasteful. Furthermore, lot testing gives statistical evidence about 
how parts of a particular manufacturing run can be expected to perform, but it does not take into 
account attributes (e.g., cracks or shape) of an individual item to predict its performance.

Background
Analyzing images, such as non-destructive X-ray CTs, for flaws provides a valuable alternative to lot 
testing.  However, no generally accepted method exists for identifying defects and anomalies in 
scans.  For X-ray CT, the primary difficulty arises from the image artifacts created during the 
reconstruction process.  Because of these artifacts, simple heuristic algorithms (such as thresholding 
to determine material type) often fail to produce useful results for CT scans.  These artifacts also 
complicate downstream tasks, such as anomaly detection and component identification.  As a result, 
human subject matter experts (SMEs) must identify and categorize outlying scans as either 
anomalous or normal.  With some applications needing consistent assessments over multiple years 
or decades, this human dependency makes the process costly and unreproducible, thereby limiting 
potential applications.

Deep learning models have achieved human level (or superior) performance on diverse image 
datasets and tasks [1]–[5].  This includes generating high-resolution complex images[6]–[8].  Deep 
learning models can also classify complicated images[6]. Both of these capabilities have been 
exploited for anomaly detection[9]–[13].

We have shown that a generative approach can create realistic nominal images for a given input in a 
computationally efficient manner for a variety of image modalities, in both 2 and 3-D[14].  We 
implemented a generative network called PandaNet which can localize potential anomalies across a 
variety of datasets, both public and internal to Sandia.

Additionally, we explored classification approaches and devised a novel method based on the 
intermediate features created by pre-trained convolutional neural networks (CNNs).  We call this 
method Feature-based Anomaly Detection System (FADS)[15].  Its major advantage is that it 
requires zero training, unlike most other classification approaches.  This makes it practical both for 
low-compute settings and for users without prior deep learning knowledge.

Our contributions

 A novel CNN architecture (PandaNet) that outputs a normal version of a query image that 
supports 2 and 3-D data with arbitrary input channels

 FADS, a novel method using pre-trained networks to identify anomalous images 

o Does not require expensive updating of model weights

o Preparation requires only a single pass of the normal images through a pre-trained 
model 

o Can be applied to any input format for which a pre-trained model is available
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 A novel method of increasing CNNs’ accuracy by eliminating the effect of object orientation 
in images

 A GUI tool which allows users to apply FADS to their own datasets is being developed
Conclusion
This LDRD sought to demonstrate a means of automatically detecting defects through imagery of 
various types.  In this report and the prior works cited, we detailed two methods for detecting 
anomalies in a fast, scalable, and reproducible manner: PandaNet and FADS.

PandaNet[14] improved upon the performance of AnoGAN[12].  While we believe FADS shows 
more promise for defect and anomaly detection, PandaNet also improved the quality of image 
reconstructions and showed that a novel second reconstruction loss was beneficial.

FADS[15] brings several major advances to anomaly detection.  First, it employs pre-trained models 
and requires zero additional training (i.e., no fine-tuning). This reduces both the computational cost 
and the expertise necessary to develop a top-quality model for detecting anomalies in images.  These 
attributes allow anyone to use FADS for anomaly detection, particularly since we have developed a 
GUI for the algorithm.  Second, we can cluster similar images (or CT slices) together using the 
algorithm’s output for each image; this does not require prior knowledge about the images or their 
similarities.  Third, our experiments show FADS can perform well with little normal data.

Several Sandia projects have incorporated FADS since it was developed less than a year and half 
ago. FADS produces features for one of the Voronoi applications, and other possible uses are being 
explored.  The JARVIS project has employed FADS to identify anomalous activity in video and is 
experimenting with clustering activities in videos using FADS.  FADS also enabled a clustering 
approach for CT scan slices and provided the initial testing ground for a novel rotation-invariant 
approach to neural networks.

After three years, the prospects for automatic defect detection are strong.  We have developed new 
approaches (and accompanying software). Sandia researchers have already embraced these 
approaches and we believe they will empower a large number of ND applications in years to come.
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ACRONYMS AND TERMS

Acronym/Term Definition
AE Autoencoder

AUROC Area Under the Receiver Operator Curve

CAMI Credible, Automated Meshing of Images

CNN Convolutional Neural Network

COTS Commercial Off The Shelf

CT Computed Tomography

DL Deep Learning

FADS Feature-based Anomaly Detection System

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GUI Graphical User Interface

LDRD Laboratory Directed Research and Development

Localization Identifying regions of an input that contributed to a model’s answer

ML Machine Learning

ND Nuclear Deterrence

NN Neural Network

ROC Receiver Operator Curve

r-vector Normalized measure of anomalousness as compared to the normal dataset

SME Subject Matter Expert

VAE Variational Autoencoder
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1. INTRODUCTION

1.1. Background
Non-destructive imaging techniques, such as X-ray CT, provide a valuable tool for ensuring quality 
in manufacturing.  However, no generally accepted method exists for identifying defects and 
anomalies from scans.  For X-ray CT, the primary difficulty arises from the image artifacts created 
during the reconstruction process.  In X-ray CT, multiple X-rays images are taken from many angles 
around the object of interest.  The X-ray CT reconstruction process produces a 3-D representation 
of the object from these images.  During this, dense regions (from high Z material, e.g. most metals) 
can cause shadow-like artifacts that extend across the reconstruction[16].  Because of these artifacts, 
simple heuristic algorithms (such as thresholding to determine material type) often fail to produce 
useful results for CT scans.  These artifacts also complicate downstream tasks, such as segmentation 
and anomaly detection.  As a result, human subject matter experts (SMEs) must identify and 
categorize outliers as anomaly or nominal.  With some applications needing consistent assessments 
over multiple years or decades, this human dependency makes the process costly, unreproducible, 
and limits potential applications.

Deep learning models have achieved human level (or superior) performance on diverse image 
datasets and tasks [1]–[5].  This includes generating high-resolution complex images from 
constrained domains[6]–[8].  Deep learning models can also classify complicated images[6]. Both of 
these capabilities have been exploited for anomaly detection[9]–[13].

We have shown that a generative approach can create realistic nominal images for a given input in a 
computationally efficient manner for a variety of image modalities, in both 2 and 3-D[14].  We 
implemented a generative network called PandaNet which can localize potential anomalies across a 
variety of datasets, both public and internal to Sandia.

Additionally, we explored classification approaches and devised a novel method based on the 
intermediate features created by pre-trained convolutional neural networks (CNN).  We call this 
method Feature-based Anomaly Detection System (FADS)[15].  While it no longer matches state-of-
the-art accuracy for the anomaly detection benchmark dataset, MVTec Anomaly Detection dataset 
(MVTecAD)[17], it retains a major advantage over newer methods in that it requires zero training.  
This makes it practical both for low compute settings and for users without prior deep learning 
knowledge.

1.2. Our contributions
 A novel CNN architecture (PandaNet) that outputs a close nominal version of a query image 

(Subsection 2.1.1)

o Supports 2-D and 3-D data with arbitrary input channels

o Demonstrated a new cyclic loss improvement applicable to any autoencoder

 A novel method using pre-trained networks to identify anomalous images directly 
(Subsection 2.1.2)

o Does not require updating model weights

o Preparation instead consists of a single forward pass of the nominal images through 
a pre-trained CNN 
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o Can be applied to any input form that has a pre-trained model available

 A novel method of making a CNN layer rotation invariant (Subsection 3.4)

 A GUI tool which allows users to apply FADS to their own datasets is being developed 
(Subsection 3.1)

o No computer vision/deep learning experience required

o Support for images and video

o Local and server supported workflows

 Makes use of available GPUs to improve speed but they are not required
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2. PRIOR PUBLICATIONS AND RELATED WORK

2.1. Prior publications
Here we list work and give a brief summary of work detailed in prior publications.

2.1.1. Generative (PandaNet)

Figure 1 PandaNet architecture[14].  During training, the encoder learns to take a nominal image i 
to an output latent space Z while a decoder learns to reconstruct the image output as i’.  The 

discriminator is tasked with identifying whether i or i’ is the real image.  Since the generator and 
discriminator have opposite goals, gradients from the discriminator to the generator are inverted.  

Additional mean absolute losses are calculated between i and i’ as well as between Z and Z’.

Generative approaches learn to produce a defect-free image which is similar to an input image.  By 
comparing this generated nominal image to the original input image, we can highlight potential 
anomalies by simply taking the difference between the two.  Schlegl et al. [12] first demonstrated this 
using a GAN.  Donahue et al. [18] applied this approach to Sandia datasets. Building on this work, 
we created a faster approach to generating closest nominal images.  The architecture for this new 
approach is shown in Figure 1.  See Potter et al. [14] for complete details.

2.1.2. Classification (FADS) 
Ruff et al.[19, p.] 
demonstrate deep 
one-class 
classification, a 
classification-based 
approach to 
identifying 
anomalies.  They 
train a network to 
place nominal 
images into a small 
region of feature 

i’i
Encoder DecoderZ Encoder Z’

Discriminator

Invert gradient

Set of nominal images

Figure 2 FADS uses pre-
trained model to extract 
features of images to 
learn a statistical measure 
of anomalousness
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space.  While this works somewhat, the network is prone to mode collapse: i.e., predicting the same 
output regardless of input.

We adapt this concept to use pre-trained convolutional neural networks and the entirety of the 
convolutional feature space for anomaly detection[15].  By passing an image through this network 
and recording the activations, we obtain a rich set of features without costly training (see Figure 2). 
We calculate the mean and standard deviation of a set of nominal image activations to establish a 
baseline. For a new image, we can produce a normalized vector (the r-vector) which represents how 
many standard deviations the image’s activations vary from the nominal set’s mean.  Large 
deviations are indicative of abnormal behavior.  See Garland et al[15] for complete details

2.2. Related work
Anomaly detection has widespread applications in such diverse areas as credit card fraud 
detection[20], medical diagnosis [11], [12], and manufacturing.  For a more in-depth review, please 
refer to [21]–[23].

Our generative methods (see Section 2.1.1) rely on an adversarial approach called a Generative 
Adversarial Network (GAN)[24], as described in the original AnoGAN[12] and f-AnoGAN[11] 
papers.  AnoGAN uses a generative model to identify anomalous sections of a 2-D medical scan in 
an unsupervised manner.  The technique requires iterative backpropagation during query time which 
leads to slow performance.  F-AnoGAN adds an encoder which learns a direct mapping from input 
image to latent space.  This considerably shortens inference time by eliminating the backpropagation 
requirement.

When limited training data is available, deep learning practitioners commonly compensate by 
utilizing a neural network that has been trained on some auxiliary task(s) for which large datasets are 
available [25].  The pre-trained model might undergo a final fine-tuning[26], [27] (a short training 
process updating all or a portion of network weights) or be used as-is[28].  Such transfer learning has 
succeeded in the natural language processing[29]–[31] and image domains [32]–[34].  

As described in Section 2.1.2, the deep one class classification method trains a CNN to output 
nominal images to a small portion of the feature output hyperspace centered around some point 
C[19].  A query image is passed through the CNN, and the output vector’s distance from C is used 
to determine whether the image is considered anomalous.  Unfortunately, the network may map all 
output vectors near C regardless of the input image.  Various regularization techniques have been 
proposed to solve this problem[19], [35], [36].
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3. METHODS
Please see Potter et al.[18] for details on PandaNet methods and Garland et al.[15] for details on 
FADS.  FADS pre-trained models were obtained from PyTorch’s[37] model hub unless otherwise 
noted.

3.1. FADS GUI
To improve the usability of FADS, we are developing a web application which will enable anyone, 
regardless of their level of deep learning (DL) expertise, to apply the FADS algorithm to their own 
data.  To this audience, the intricacies of the algorithm itself are unimportant and should be 
abstracted away. They just want to run the model and be able to easily interpret the results. The 
graphical user interface allows us to show the user which pixels in an image caused the FADS 
algorithm to categorize the image as anomalous. We identify these localized anomalies by using 
guided backpropagation to minimize the r-vector.

Figure 3 illustrates the layout of the user-interface. The user indicates in windows (a) and (b) which 
data to use for training and testing: either selected local files or files on a given path (which may be 

Figure 3 shows the "Training using your Images" tab of the user-interface. a) Where the user 
can drag and drop or go into their directories to find training and testing data. b) Where the 
user can instead insert a local or remote directory path to pull their data. c) Where the user 
can input a filename to cache the nominal statistics. d) Percentile target selection for 
localization. e) Where the test image localizations and frame localizations are displayed. f) 
Where the playable video of the localized frames would be displayed if initial data was video.
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on a remote server). If the user desires to save the mean and standard deviation of the nominal 
dataset’s activations in order to skip training in the future, they may give a filename at (c). This will 
cache the nominal statistics to a Python pickle file. The user can change the percentile1 target 
visualization hyperparameter at (d). The user would then press the “submit” button and the FADS 
algorithm will run. At (e), the localization of anomalousness alongside their respective test image 
inputs are displayed. If the input was a video, (e) will show the localizations for each individual 
frame of the testing frames of the video. If the input was a video, (f) is where the playable video of 
the anomaly localized frames is displayed and can be played right from the user interface.

We chose Gradio[38] as the web application to host our user interface. It is an open-source Python 
library specifically for machine learning models that can run on the local machine or a remote server.

Figure 4 shows the FADS GUI workflow. The user inputs their training and testing data and 
chooses a percentile target which is used to determine anomalousness. For images, the training and 
testing data get copied from their original location and then put together into new training and 
testing folders. Because the training or testing data could come from multiple sources, we create new 
folders to aggregate the training and testing data. For video, the process is the same except that we 

take a certain percentage of the initial frames as training data and the rest of the frames as testing 
data. The rest of the process is identical. Next, the data is resized to a size specified in a configure 
file and is then ready for FADS to calculate the r-vector.  

This work is very early and will likely change as feedback is gathered from use.

3.2. JARVIS
The Justified Anomaly Recognition in Video Surveillance (JARVIS) project, sponsored by NA-241, 
develops image analysis tools for International Atomic Energy Agency (IAEA) safeguards 
inspectors. JARVIS particularly emphasizes unsupervised and computationally efficient approaches, 

1 Percentile of the r-vector values to use as the threshold for determining anomalouslness.  Percentile takes the location 
at x% of the overall sorted list of values (e.g., 100% would be max, 50% median, 0% min).

Images 
(test/train)

Percentile 
target

[nominal 
statistics]

User Inputs

Backend

Preprocess image 
data Guided 

backpropagation
to localize

Calculate 
nominal 
statistics Calculate

r-vector

User Interface

Display Anomaly 
localization

Figure 4 Program structure of FADS GUI
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given limits on the time and resources available to inspectors. The JARVIS team applied the 
FADS[15] algorithm initially developed for 2-dimensional data to individual frames from IAEA 
surveillance cameras. The JARVIS team also extended FADS to be able to use CNNs pre-trained on 
video datasets.

3.3. Clustering
The FADS[15] r-vector output has utility beyond anomaly detection.  Initial work suggests that the 
features can be directly incorporated into other ML methods as a quick, computationally efficient 
feature extractor.  For example, we clustered the r-vectors from each slice of a CT scan via k-
means[39].  This provided insight into the structure of the component (along an axis) without 
requiring any prior knowledge about said structure.

3.4. Rotation invariance
Some of the categories in the MVTecAD[17] dataset (most notably the screw category) contain 
images taken from multiple angles.  Comparing the features output for the screw category, we found 
that the separation between the nominal and anomaly class means was smaller than the standard 
deviation for both classes and smaller than the minimum distance for any image from the class 
mean.  Additionally, an appropriate hyperplane could perfectly separate the two classes.  These two 
facts, plus our knowledge of the data, suggested that rotation was actually one of the largest factors 
to feature variance.

The networks used for FADS[15] are all CNNs.  Specifically, FADS considers the activations of the 
convolutional layers.  Each convolutional layer has a set of weights (typically in a 3×3 grid).  That set 
of weights is multiplied by each block of the input image’s channels or the previous layer’s feature 
maps, and the sum for each location becomes the input for the next layer to use.  Depending on the 
weights, the activation may or may not respond differently to horizontally and vertically aligned 
inputs (see Figure 5a versus Figure 5b). This difference in response means the CNN will behave 
differently depending on the input orientation.  This can cause FADS to label rotated image as 
anomalous incorrectly or to extend the statistics for normality, reducing the algorithm’s sensitivity.

We devised an approach to address this issue. We pass the image through the CNN twice: once 
using the default weights and once with weights transposed (or, equivalently, first rotating the input 

a) b) c)
Figure 5 Convolutional filter examples a) An example of a convolution that will respond only to 

changes in the x direction.  After transposition, it will respond only to y direction. b) An example 
of convolution that will be the same after transposition.  c) By taking the vector norm of the “x” 
and “y” aligned activations, we get a measure that is independent of the rotation of the input.
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image and then the output feature maps). This produces a vector for each point in the feature map.  
If we calculate the vector norm for each of these vectors, we get a rotation-independent activation 
or at least an approximation to one. 

NOTE: For easier implementation, we transpose the image instead of the 
weights and then transpose the resultant feature map (to bring the two maps back into 
alignment).  Mathematically, the two approaches are equivalent.

We tested multiple ways to integrate this approach into the FADS algorithm:

1. Rotation-invariant output by itself (i.e., replacing the r-vector)

2. Normal output and rotation-invariant output combined by aggregation

3. Normal output and rotation-invariant output combined by concatenation

We discuss the results of these approaches in subsection 4.3.
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4. RESULTS

4.1. JARVIS
The JARVIS team applied FADS to a set of safeguards surveillance camera footage received from 
the IAEA. This dataset consists of images from a single camera collected over 22 days. Most images 
show a large red container on the right side. The nominal set contained clips selected at regular 
intervals over two consecutive days during which the red container did not move, although other 
activity occurred in the room. The test set contained clips from two consecutive days during which 
the container was moved; the movement occurred at the end of the first day and continued through 
the beginning of the second. JARVIS researchers selected clips from the beginning and end of these 
two days, ensuring the test dataset included frames with and without the red container in its usual 
position. The nominal dataset contained 1504 images and the test dataset contained 3000 images.

The ten frames in the test dataset which FADS scored as least anomalous relative to the nominal set 
all show the red container in its usual position. In all ten frames which scored as most anomalous, 
the red container has been moved out of view. When researchers reviewed the 30 most anomalous 
frames, two show the container in the usual position. The algorithm likely considered these 
anomalous because the overhead crane was in motion. This result underscores the importance of a 
large and diverse nominal set: if we want the algorithm to consider crane motion normal, we should 
ensure the nominal set includes several images with the crane in motion.

4.2. Clustering
We analyzed a CT 
image of shaped charge 
using the clustering 
approach described in 
Section 3.3; Figure 6 
depicts the results.  We 
ran the FADS 
algorithm on the 2D 
images representing 
slices along the scan’s z-
axis (left to right). We 
clustered the resulting 
r-vectors using k-
means[39] with k=7.  
Colored lines in Figure 
6 show the portion of 
the scan assigned to 
each cluster.  For this example, the clustering corresponds to different relevant regions of the object.

4.3. Rotation invariance
Datasets may contain images with different orientations. FADS[15] aims to provide results that do 
not depend on a uniform orientation. For example, images in the MVTecAD[17] “screw” show 
screws in varying orientations: i.e., some images show the tip of the screw pointing to the right, 
some images show it pointing to the bottom of the image, etc.

Figure 6 Clustering against each slice of a CT scan.
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We measure FADS’ performance in identifying anomalies with the Area Under Receiver Operator 
Curve (AUROC).  The Receiver Operator Curve (ROC) plots the true positive rate versus false 
positive rate as a threshold is varied.  In an ideal case, the AUROC would be 1 indicating a perfect 
ability to separate anomaly from nominal classes.  A guessing version would have an AUROC of 0.5.

Using ensembles2 of FADS r-vectors from various models, at different scales, and with and without 
rotation invariance, we tested samples across all MVTecAD categories. To understand potential 
performance improvements, we designed baseline studies using the pre-trained CNNs ResNet18 
and ResNet152.  

Initial results show mixed benefit from inclusion of rotation invariance (Table 1).  No method 
shows a clear win over others for all categories.

Data trends:

 Ensembles at image scales of 256 and 512 do well

 Those including ResNet152 also show good performance

 ResNet18 has generally poor performance, but it is significantly improved by combining 
“vanilla” and rotation-invariant methods

 Some categories are effectively solved with an AUROC of nearly 1 (hazelnut, leather, tile, 
wood)

 Many categories show significant hits to performance at high (1024) and low (128) 
resolutions

Comparing averages over methods using either only rotation invariance, only vanilla, or only both, 
we see a slight improvement for using both together, but it is not a significant change.  Performance 
in some categories significantly improve with rotation invariance (e.g., bottle, carpet, and grid), some 
categories see declines (e.g., capsule, pill), and rotation invariance has no effect on others.  As a 
result, we can make no clear recommendation as to whether to apply rotation invariance to a new 
dataset.

2 Ensembles are a collection of ML models used together to improve accuracy, reduce dependence on hyperparameter 
selection, or provide a measure of uncertainty.
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Table 1 FADS ensemble AUROC results for MVTecAD categories.  Ensembles were varied across 
scale (128, 256, 512, 1024), rotation invariance (with – rotinv, without - vanilla, both), and model 

(ResNet18 and ResNet152).  Any variance not mentioned in the name is included (e.g., ensemble-
RN152 includes all combinations of scale, rotation invariance that use ResNet152).  Ensembles 
have individual r-vectors concatenated before checking using the maximum to determine image 

anomalousness.

bottle

cable

capsule

carpet

grid

hazelnut

leather

m
etal nut

pill

screw tile

toothbrush

transistor

w
ood

zipper

average

ensemble-everything 0.965 0.882 0.873 0.989 0.942 0.995 0.997 0.964 0.904 0.784 0.996 0.928 0.922 0.979 0.680 0.920

ensemble-RN152 0.911 0.879 0.888 0.989 0.942 0.994 0.997 0.965 0.902 0.788 0.996 0.950 0.917 0.971 0.677 0.918

ensemble-RN18 0.975 0.897 0.869 0.958 0.893 0.980 0.994 0.907 0.884 0.794 0.991 0.869 0.855 0.989 0.804 0.911

ensemble-rotinv 0.952 0.893 0.861 0.990 0.952 0.989 0.996 0.951 0.858 0.788 0.997 0.933 0.891 0.976 0.718 0.916

ensemble-vanilla 0.952 0.876 0.928 0.984 0.937 0.995 0.995 0.966 0.931 0.796 0.995 0.903 0.923 0.994 0.699 0.925

ensemble-rotinv-RN152 0.927 0.893 0.877 0.990 0.952 0.989 0.996 0.953 0.859 0.795 0.997 0.933 0.885 0.969 0.689 0.914

ensemble-vanilla-RN152 0.856 0.875 0.928 0.984 0.937 0.993 0.995 0.964 0.929 0.790 0.994 0.922 0.922 0.995 0.727 0.921

ensemble-rotinv-RN18 0.965 0.846 0.842 0.966 0.855 0.980 0.996 0.827 0.869 0.700 0.991 0.925 0.851 0.992 0.882 0.899

ensemble-vanilla-RN18 0.973 0.894 0.887 0.947 0.840 0.973 0.989 0.920 0.871 0.781 0.994 0.847 0.851 0.996 0.767 0.902

ensemble-scale-128 0.922 0.915 0.765 0.904 0.708 0.983 1.000 0.907 0.856 0.608 0.996 0.911 0.899 0.994 0.823 0.879

ensemble-scale-256 0.926 0.951 0.916 0.981 0.908 0.996 1.000 0.976 0.889 0.725 0.997 0.825 0.919 0.972 0.865 0.923

ensemble-scale-512 0.959 0.911 0.907 0.981 0.920 0.989 0.999 0.976 0.905 0.775 0.996 0.936 0.897 0.989 0.735 0.925

ensemble-scale-1024 0.948 0.831 0.866 0.918 0.957 0.961 0.981 0.870 0.852 0.811 0.980 0.953 0.855 0.994 0.633 0.894

ensemble-scale-rotinv-128 0.957 0.911 0.722 0.928 0.741 0.986 1.000 0.916 0.798 0.643 0.996 0.914 0.868 0.994 0.824 0.880

ensemble-scale-rotinv-256 0.972 0.919 0.898 0.986 0.896 0.989 1.000 0.946 0.842 0.733 0.997 0.825 0.881 0.969 0.936 0.919

ensemble-scale-rotinv-512 0.960 0.895 0.892 0.984 0.944 0.987 0.997 0.987 0.898 0.742 0.997 0.922 0.848 0.989 0.756 0.920

ensemble-scale-rotinv-1024 0.918 0.858 0.852 0.903 0.942 0.963 0.974 0.892 0.814 0.794 0.973 0.972 0.862 0.979 0.702 0.893

ensemble-scale-vanilla-128 0.860 0.887 0.780 0.882 0.683 0.985 1.000 0.903 0.869 0.523 0.992 0.900 0.911 0.996 0.799 0.865

ensemble-scale-vanilla-256 0.883 0.947 0.901 0.953 0.906 0.998 0.998 0.974 0.888 0.700 0.997 0.831 0.942 0.993 0.845 0.917

ensemble-scale-vanilla-512 0.948 0.930 0.915 0.964 0.908 0.981 1.000 0.970 0.916 0.798 0.994 0.906 0.909 0.989 0.787 0.928

ensemble-scale-vanilla-1024 0.925 0.809 0.920 0.896 0.937 0.966 0.984 0.863 0.898 0.798 0.979 0.919 0.808 0.996 0.672 0.891

Average over ensembles using 
only rotation invariance

0.950 0.888 0.849 0.964 0.898 0.983 0.994 0.925 0.848 0.742 0.993 0.918 0.869 0.981 0.787 0.906

Average over ensembles using 
only vanilla

0.914 0.888 0.894 0.944 0.878 0.984 0.995 0.937 0.900 0.741 0.992 0.890 0.895 0.994 0.757 0.907

Average of ensembles using 
both

0.944 0.895 0.869 0.960 0.896 0.985 0.995 0.938 0.885 0.755 0.993 0.910 0.895 0.984 0.745 0.910
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5. PROJECT METRICS

5.1. Publications
 Potter et al. Automatic detection of defects in high reliability as-built parts using x-ray CT, Applications 

of Machine Learning 2020 [2]
 Garland et al., Feature anomaly detection system (FADS) for intelligent manufacturing, (in review, 

preprint [3])

5.2. Presentations
 Applications of Machine Learning 2020
 Seagate-Minnesota AI/ML Virtual Distinguished Speaker Series (invited)
 ASME VVUQ 2022 Symposium

5.3. Career development
 Anthony Garland converted from postdoc
 Interns supported:

o Undergraduate
 Abigail Pribisova
 Aniket Pant
 Mike Adams
 JayCe Leonard

o Graduate
 Soroush Famili

5.4. Partnerships
 We shared PandaNet and FADS software with members of org 5522 in an ongoing 

partnership to advance anomaly detection at Sandia
 The JARVIS project is using FADS for video analysis and is exploring use of FADS to 

cluster activity trends automatically into a human recognizable format
 The Voronoi LDRD using FADS for feature extraction and is exploring the use of 

clustering for semi-supervised segmentation
 We have shared FADS GUI software with 7637 in an ongoing partnership to help them 

identify potential defects in custom cables

5.5. Life after
A number of proposals, potential applications, and actual applications have been built across the 
labs:

 Working with 1819 on identifying potential defects in a COTS ND component continuing
 Working with 9748 to verify vaccination proof submissions continuing
 Working with 2323 to identify defects in connector assemblies agreement being drafted
 Working with 7642 to aid processing CT data for COTS components waiting on data
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 Working with 7568 to identify anomalies and predict performance on an NG component 
waiting on data

 Both Kansas City and Sandia manufacturing have expressed interested in using FADS within 
their product lines open talks

 Proposal with 1851 to apply FADS to CT data proposal
 A&L proposal to identify aging in energetic materials with 7555 proposal
 INWAP proposal with 5571 to study the potential defect detection benefits of FADS 

compared to solely human examination proposal



25

6. CONCLUSION
This LDRD sought to demonstrate a means of automatically detecting defects through imagery of 
various types.  In this report and the prior works cited, we detailed two methods for detecting 
anomalies in a fast, scalable, and reproducible manner: PandaNet and FADS.

PandaNet[14] improved upon the performance of AnoGAN[12].  While we believe FADS shows 
more promise for defect and anomaly detection, PandaNet also improved the quality of image 
reconstructions and showed that a novel second reconstruction loss was beneficial.

FADS[15] brings several major advances to anomaly detection.  First, it employs pre-trained models 
and requires zero additional training (i.e., no fine-tuning). This reduces both the computational cost 
and the expertise necessary to develop a top-quality model for detecting anomalies in images.  These 
attributes allow anyone to use FADS for anomaly detection, particularly since we have developed a 
GUI for the algorithm.  Second, we can cluster similar images (or CT slices) together using the 
algorithm’s output for each image; this does not require prior knowledge about the images or their 
similarities.  Third, our experiments show FADS can perform well with little nominal data.

Several Sandia projects have incorporated FADS since it was developed 18 months ago. FADS 
produces features for one of the Voronoi applications, and other possible uses are being explored.  
The JARVIS project has employed FADS to identify anomalous activity in video and is 
experimenting with clustering activities in videos using FADS.  FADS also enabled a clustering 
approach for CT scan slices and provided the initial testing ground for a novel rotation-invariant 
approach to neural networks.

After three years, the prospects for automatic defect detection are strong.  We have developed new 
approaches (and accompanying software). Sandia researchers have already embraced these 
approaches and we believe they will empower a large number of ND applications in years to come.
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