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ABSTRACT

Disastrous consequences can result from defects in manufactured parts—particularly the high
consequence parts developed at Sandia. Identifying flaws in as-built parts can be done with non-
destructive means, such as X-ray Computed Tomography (CT). However, due to artifacts and
complex imagery, the task of analyzing the CT images falls to humans. Human analysis is inherently
unreproducible, unscalable, and can easily miss subtle flaws. We hypothesized that deep learning
methods could improve defect identification, increase the number of parts that can effectively be
analyzed, and do it in a reproducible manner. We pursued two methods: 1) generating a defect-free
version of a scan and looking for differences (PandaNet), and 2) using pre-trained models to
develop a statistical model of normality (Feature-based Anomaly Detection System: FADS). Both
PandaNet and FADS provide good results, are scalable, and can identify anomalies in imagery. In
particular, FADS enables zero-shot (training-free) identification of defects for minimal
computational cost and expert time. It significantly outperforms prior approaches in computational
cost while achieving comparable results. FADS’ core concept has also shown utility beyond anomaly
detection by providing feature extraction for downstream tasks.
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EXECUTIVE SUMMARY

Problem

Disastrous consequences can result from defects in manufactured parts—particularly the high
consequence parts developed at Sandia. For limited use components, such as body armor or
explosives, the ability to predict failure of as-built parts would save lives, drastically improve
efficiency, and increase confidence in performance. Currently, many single use components are
validated with lot testing, which is wasteful. Furthermore, lot testing gives statistical evidence about
how parts of a particular manufacturing run can be expected to perform, but it does not take into
account attributes (e.g., cracks or shape) of an individual item to predict its performance.

Background

Analyzing images, such as non-destructive X-ray CTs, for flaws provides a valuable alternative to lot
testing. However, no generally accepted method exists for identifying defects and anomalies in
scans. For X-ray CT, the primary difficulty arises from the image artifacts created during the
reconstruction process. Because of these artifacts, simple heuristic algorithms (such as thresholding
to determine material type) often fail to produce useful results for CT scans. These artifacts also
complicate downstream tasks, such as anomaly detection and component identification. As a result,
human subject matter experts (SMEs) must identify and categorize outlying scans as either
anomalous or normal. With some applications needing consistent assessments over multiple years
or decades, this human dependency makes the process costly and unreproducible, thereby limiting
potential applications.

Deep learning models have achieved human level (or superior) performance on diverse image
datasets and tasks [1]—[5]. This includes generating high-resolution complex images[6]—[8]. Deep
learning models can also classify complicated images[6]. Both of these capabilities have been
exploited for anomaly detection[9]—[13].

We have shown that a generative approach can create realistic nominal images for a given inputin a
computationally efficient manner for a variety of image modalities, in both 2 and 3-D[14]. We
implemented a generative network called PandaNet which can localize potential anomalies across a
variety of datasets, both public and internal to Sandia.

Additionally, we explored classification approaches and devised a novel method based on the
intermediate features created by pre-trained convolutional neural networks (CNNs). We call this
method Feature-based Anomaly Detection System (FADS)[15]. Its major advantage is that it
requires zero training, unlike most other classification approaches. This makes it practical both for
low-compute settings and for users without prior deep learning knowledge.

Our contributions

e A novel CNN architecture (PandaNet) that outputs a normal version of a query image that
supports 2 and 3-D data with arbitrary input channels

e FADS, a novel method using pre-trained networks to identify anomalous images
o Does not require expensive updating of model weights

o Preparation requires only a single pass of the normal images through a pre-trained
model

o Can be applied to any input format for which a pre-trained model is available



e A novel method of increasing CNNs’ accuracy by eliminating the effect of object orientation
1n images

e A GUI tool which allows users to apply FADS to their own datasets is being developed
Conclusion

This LDRD sought to demonstrate a means of automatically detecting defects through imagery of
various types. In this report and the prior works cited, we detailed two methods for detecting
anomalies in a fast, scalable, and reproducible manner: PandaNet and FADS.

PandaNet[14] improved upon the performance of AnoGAN][12]. While we believe FADS shows
more promise for defect and anomaly detection, PandaNet also improved the quality of image
reconstructions and showed that a novel second reconstruction loss was beneficial.

FADSJ15] brings several major advances to anomaly detection. First, it employs pre-trained models
and requires zero additional training (i.e., no fine-tuning). This reduces both the computational cost
and the expertise necessary to develop a top-quality model for detecting anomalies in images. These
attributes allow anyone to use FADS for anomaly detection, particularly since we have developed a
GUI for the algorithm. Second, we can cluster similar images (or CT slices) together using the
algorithm’s output for each image; this does not require prior knowledge about the images or their
similarities. Third, our experiments show FADS can perform well with little normal data.

Several Sandia projects have incorporated FADS since it was developed less than a year and half
ago. FADS produces features for one of the Voronoi applications, and other possible uses are being
explored. The JARVIS project has employed FADS to identify anomalous activity in video and is
experimenting with clustering activities in videos using FADS. FADS also enabled a clustering
approach for CT scan slices and provided the initial testing ground for a novel rotation-invariant
approach to neural networks.

After three years, the prospects for automatic defect detection are strong. We have developed new
approaches (and accompanying software). Sandia researchers have already embraced these
approaches and we believe they will empower a large number of ND applications in years to come.



ACRONYMS AND TERMS

Acronym/Term Definition
AE Autoencoder
AUROC Area Under the Receiver Operator Curve
CAMI Credible, Automated Meshing of Images
CNN Convolutional Neural Network
COTS Commercial Off The Shelf
CT Computed Tomography
DL Deep Learning
FADS Feature-based Anomaly Detection System
GAN Generative Adversarial Network
GPU Graphics Processing Unit
GUI Graphical User Interface
LDRD Laboratory Directed Research and Development
Localization Identifying regions of an input that contributed to a model’s answer
ML Machine Learning
ND Nuclear Deterrence
NN Neural Network
ROC Receiver Operator Curve
r-vector Normalized measure of anomalousness as compared to the normal dataset
SME Subject Matter Expert
VAE Variational Autoencoder
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1. INTRODUCTION

1.1. Background

Non-destructive imaging techniques, such as X-ray CT, provide a valuable tool for ensuring quality
in manufacturing. However, no generally accepted method exists for identifying defects and
anomalies from scans. For X-ray CT, the primary difficulty arises from the image artifacts created
during the reconstruction process. In X-ray CT, multiple X-rays images are taken from many angles
around the object of interest. The X-ray CT reconstruction process produces a 3-D representation
of the object from these images. During this, dense regions (from high Z material, e.g. most metals)
can cause shadow-like artifacts that extend across the reconstruction[16]. Because of these artifacts,
simple heuristic algorithms (such as thresholding to determine material type) often fail to produce
useful results for CT scans. These artifacts also complicate downstream tasks, such as segmentation
and anomaly detection. As a result, human subject matter experts (SMEs) must identify and
categorize outliers as anomaly or nominal. With some applications needing consistent assessments
over multiple years or decades, this human dependency makes the process costly, unreproducible,
and limits potential applications.

Deep learning models have achieved human level (or superior) performance on diverse image
datasets and tasks [1]—[5]. This includes generating high-resolution complex images from
constrained domains[6]—[8]. Deep learning models can also classify complicated images[6]. Both of
these capabilities have been exploited for anomaly detection[9]—[13].

We have shown that a generative approach can create realistic nominal images for a given inputin a
computationally efficient manner for a variety of image modalities, in both 2 and 3-D[14]. We
implemented a generative network called PandaNet which can localize potential anomalies across a
variety of datasets, both public and internal to Sandia.

Additionally, we explored classification approaches and devised a novel method based on the
intermediate features created by pre-trained convolutional neural networks (CNN). We call this
method Feature-based Anomaly Detection System (FADS)[15]. While it no longer matches state-of-
the-art accuracy for the anomaly detection benchmark dataset, MVTec Anomaly Detection dataset
(MVTecAD)[17], it retains a major advantage over newer methods in that it requires zero training.
This makes it practical both for low compute settings and for users without prior deep learning
knowledge.

1.2. Our contributions

e A novel CNN architecture (PandaNet) that outputs a close nominal version of a query image
(Subsection 2.1.1)

o Supports 2-D and 3-D data with arbitrary input channels

o Demonstrated a new cyclic loss improvement applicable to any autoencoder

e A novel method using pre-trained networks to identify anomalous images directly
(Subsection 2.1.2)

o Does not require updating model weights

o Preparation instead consists of a single forward pass of the nominal images through
a pre-trained CNN

11



o Can be applied to any input form that has a pre-trained model available
A novel method of making a CNN layer rotation invariant (Subsection 3.4)

A GUI tool which allows users to apply FADS to their own datasets is being developed
(Subsection 3.1)

o No computer vision/deep learning experience required
o Support for images and video

o Local and server supported workflows

Makes use of available GPUs to improve speed but they are not required

12



2. PRIOR PUBLICATIONS AND RELATED WORK

2.1. Prior publications

Here we list work and give a brief summary of work detailed in prior publications.

2.1.1.  Generative (PandaNet)

Decoder Encoder z

Invert gradient

-

Set of nominal images

Discriminator

Figure 1 PandaNet architecture[14]. During training, the encoder learns to take a nominal image i
to an output latent space Z while a decoder learns to reconstruct the image output as i’. The
discriminator is tasked with identifying whether i or i’ is the real image. Since the generator and
discriminator have opposite goals, gradients from the discriminator to the generator are inverted.
Additional mean absolute losses are calculated between i and i’ as well as between Z and Z’.

Generative approaches learn to produce a defect-free image which is similar to an input image. By
comparing this generated nominal image to the original input image, we can highlight potential
anomalies by simply taking the difference between the two. Schlegl et al. [12] first demonstrated this
using a GAN. Donahue et al. [18] applied this approach to Sandia datasets. Building on this work,
we created a faster approach to generating closest nominal images. The architecture for this new
approach is shown in Figure 1. See Potter et al. [14] for complete details.

2.1.2.  Classification (FADS)

Ruffetal[19,p] ~ -HER & BESEEN SNaMES S
demonstrate deep B Hg%ﬁ; =E==E=

one-class EErEER ZENEeN

classification, a EES-DN e e =gﬁ=a =E=!E%

classification-based SRR R e
approach to \ o _

identifying e B Figure 2 FADS uses pre-

trained model to extract
| features of images to
’ { e learn a statistical measure
: % =" of anomalousness

anomalies. They
train a network to
place nominal
images into a small
region of feature
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space. While this works somewhat, the network is prone to mode collapse: i.e., predicting the same
output regardless of input.

We adapt this concept to use pre-trained convolutional neural networks and the entirety of the
convolutional feature space for anomaly detection[15]. By passing an image through this network
and recording the activations, we obtain a rich set of features without costly training (see Figure 2).
We calculate the mean and standard deviation of a set of nominal image activations to establish a
baseline. For a new image, we can produce a normalized vector (the r-vector) which represents how
many standard deviations the image’s activations vary from the nominal set’s mean. Large
deviations are indicative of abnormal behavior. See Garland et al[15] for complete details

2.2. Related work

Anomaly detection has widespread applications in such diverse areas as credit card fraud
detection|20], medical diagnosis [11], [12], and manufacturing. For a more in-depth review, please
refer to [21]—[23].

Our generative methods (see Section 2.1.1) rely on an adversarial approach called a Generative
Adversarial Network (GAN)[24], as described in the original AnoGAN]J12] and f~-AnoGAN]J11]
papers. AnoGAN uses a generative model to identify anomalous sections of a 2-D medical scan in
an unsupervised manner. The technique requires iterative backpropagation during query time which
leads to slow performance. F-AnoGAN adds an encoder which learns a direct mapping from input
image to latent space. This considerably shortens inference time by eliminating the backpropagation
requirement.

When limited training data is available, deep learning practitioners commonly compensate by
utilizing a neural network that has been trained on some auxiliary task(s) for which large datasets are
available [25]. The pre-trained model might undergo a final fine-tuning[26], [27] (a short training
process updating all or a portion of network weights) or be used as-is[28]. Such transfer learning has
succeeded in the natural language processing[29]—[31] and image domains [32]—[34].

As described in Section 2.1.2, the deep one class classification method trains a CNN to output
nominal images to a small portion of the feature output hyperspace centered around some point
C[19]. A query image is passed through the CNN, and the output vector’s distance from C is used
to determine whether the image is considered anomalous. Unfortunately, the network may map all
output vectors near C regardless of the input image. Various regularization techniques have been
proposed to solve this problem[19], [35], [36].

14



3. METHODS

Please see Potter et al.[18] for details on PandaNet methods and Garland et al.[15] for details on
FADS. FADS pre-trained models were obtained from PyTorch’s[37] model hub unless otherwise
noted.

3.1. FADS GUI

To improve the usability of FADS, we are developing a web application which will enable anyone,
regardless of their level of deep learning (DL) expertise, to apply the FADS algorithm to their own
data. To this audience, the intricacies of the algorithm itself are unimportant and should be
abstracted away. They just want to run the model and be able to easily interpret the results. The
graphical user interface allows us to show the user which pixels in an image caused the FADS
algorithm to categorize the image as anomalous. We identify these localized anomalies by using
guided backpropagation to minimize the r-vector.

Figure 3 illustrates the layout of the user-interface. The user indicates in windows (a) and (b) which
data to use for training and testing: either selected local files or files on a given path (which may be

Train using your Images

0.9

Submit

Figure 3 shows the "Training using your Images™ tab of the user-interface. a) Where the user
can drag and drop or go into their directories to find training and testing data. b) Where the
user can instead insert a local or remote directory path to pull their data. c) Where the user
can input a filename to cache the nominal statistics. d) Percentile target selection for
localization. e) Where the test image localizations and frame localizations are displayed. f)
Where the playable video of the localized frames would be displayed if initial data was video.
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on a remote server). If the user desires to save the mean and standard deviation of the nominal
dataset’s activations in order to skip training in the future, they may give a filename at (c). This will
cache the nominal statistics to a Python pickle file. The user can change the percentile! target
visualization hyperparameter at (d). The user would then press the “submit” button and the FADS
algorithm will run. At (e), the localization of anomalousness alongside their respective test image
inputs are displayed. If the input was a video, (e) will show the localizations for each individual
frame of the testing frames of the video. If the input was a video, (f) is where the playable video of
the anomaly localized frames is displayed and can be played right from the user interface.

We chose Gradio[38] as the web application to host our user interface. It is an open-source Python
library specifically for machine learning models that can run on the local machine or a remote server.

Figure 4 shows the FADS GUI workflow. The user inputs their training and testing data and
chooses a percentile target which is used to determine anomalousness. For images, the training and
testing data get copied from their original location and then put together into new training and
testing folders. Because the training or testing data could come from multiple sources, we create new
folders to aggregate the training and testing data. For video, the process is the same except that we

User Inputs f \

--------
- B A
Images (ITTTLTELEE et

"""" \"EE
statistics] HH
H User Interface )

Calculate

Preprocess image )
nominal

data Guided

statistics Calculate

backpropagation
r-vector propag

to localize

k Backend )

Figure 4 Program structure of FADS GUI

take a certain percentage of the initial frames as training data and the rest of the frames as testing
data. The rest of the process is identical. Next, the data is resized to a size specified in a configure
file and is then ready for FADS to calculate the r-vector.

This work is very early and will likely change as feedback is gathered from use.

3.2. JARVIS

The Justified Anomaly Recognition in Video Surveillance (JARVIS) project, sponsored by NA-241,
develops image analysis tools for International Atomic Energy Agency (IAEA) safeguards
inspectors. JARVIS particularly emphasizes unsupervised and computationally efficient approaches,

! Percentile of the r-vector values to use as the threshold for determining anomalouslness. Percentile takes the location
at x% of the overall sorted list of values (e.g., 100% would be max, 50% median, 0% min).
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given limits on the time and resources available to inspectors. The JARVIS team applied the
FADSJ15] algorithm initially developed for 2-dimensional data to individual frames from IAEA
surveillance cameras. The JARVIS team also extended FADS to be able to use CNNs pre-trained on
video datasets.

3.3. Clustering

The FADS[15] r-vector output has utility beyond anomaly detection. Initial work suggests that the
features can be directly incorporated into other ML methods as a quick, computationally efficient
feature extractor. For example, we clustered the r-vectors from each slice of a CT scan via k-
means[39]. This provided insight into the structure of the component (along an axis) without
requiring any prior knowledge about said structure.

3.4. Rotation invariance

Some of the categories in the MVTecADJ[17] dataset (most notably the screw category) contain
images taken from multiple angles. Comparing the features output for the screw category, we found
that the separation between the nominal and anomaly class means was smaller than the standard
deviation for both classes and smaller than the minimum distance for any image from the class
mean. Additionally, an appropriate hyperplane could perfectly separate the two classes. These two
facts, plus our knowledge of the data, suggested that rotation was actually one of the largest factors
to feature variance.

The networks used for FADS|[15] are all CNNs. Specifically, FADS considers the activations of the
convolutional layers. Each convolutional layer has a set of weights (typically in a 3X3 grid). That set
of weights is multiplied by each block of the input image’s channels or the previous layer’s feature
maps, and the sum for each location becomes the input for the next layer to use. Depending on the
weights, the activation may or may not respond differently to horizontally and vertically aligned
inputs (see Figure 5a versus Figure 5b). This difference in response means the CNN will behave
differently depending on the input orientation. This can cause FADS to label rotated image as
anomalous incorrectly or to extend the statistics for normality, reducing the algorithm’s sensitivity.

We devised an approach to address this issue. We pass the image through the CNN twice: once
using the default weights and once with weights transposed (ot, equivalently, first rotating the input

-1 0 1 -1 -1 -1
-4 0 4 -1 8 -1
-1 0 1 -1 -1 -1

)

a) b) c)

Figure 5 Convolutional filter examples a) An example of a convolution that will respond only to

changes in the x direction. After transposition, it will respond only to y direction. b) An example

of convolution that will be the same after transposition. c) By taking the vector norm of the “x”
and “y” aligned activations, we get a measure that is independent of the rotation of the input.
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image and then the output feature maps). This produces a vector for each point in the feature map.
If we calculate the vector norm for each of these vectors, we get a rotation-independent activation
or at least an approximation to one.

NOTE: For easier implementation, we transpose the image instead of the
weights and then transpose the resultant feature map (to bring the two maps back into
alignment). Mathematically, the two approaches are equivalent.

We tested multiple ways to integrate this approach into the FADS algorithm:
1. Rotation-invariant output by itself (i.e., replacing the r-vector)
2. Normal output and rotation-invariant output combined by aggregation
3. Normal output and rotation-invariant output combined by concatenation

We discuss the results of these approaches in subsection 4.3.

18



4, RESULTS

41. JARVIS

The JARVIS team applied FADS to a set of safeguards surveillance camera footage received from
the IAEA. This dataset consists of images from a single camera collected over 22 days. Most images
show a large red container on the right side. The nominal set contained clips selected at regular
intervals over two consecutive days during which the red container did not move, although other
activity occurred in the room. The test set contained clips from two consecutive days during which
the container was moved; the movement occurred at the end of the first day and continued through
the beginning of the second. JARVIS researchers selected clips from the beginning and end of these
two days, ensuring the test dataset included frames with and without the red container in its usual
position. The nominal dataset contained 1504 images and the test dataset contained 3000 images.

The ten frames in the test dataset which FADS scored as least anomalous relative to the nominal set
all show the red container in its usual position. In all ten frames which scored as most anomalous,
the red container has been moved out of view. When researchers reviewed the 30 most anomalous
frames, two show the container in the usual position. The algorithm likely considered these
anomalous because the overhead crane was in motion. This result underscores the importance of a
large and diverse nominal set: if we want the algorithm to consider crane motion normal, we should
ensure the nominal set includes several images with the crane in motion.

4.2, Clustering

We analyzed a CT
image of shaped charge
using the clustering
approach described in
Section 3.3; Figure 6
depicts the results. We
ran the FADS
algorithm on the 2D
images representing
slices along the scan’s z-
axis (left to right). We
clustered the resulting
r-vectors using k-
means|[39] with k=7.
Colored lines in Figure
6 show the portion of
the scan assigned to
each cluster. For this example, the clustering corresponds to different relevant regions of the object.

Figure 6 Clustering against each slice of a CT scan.

4.3. Rotation invariance

Datasets may contain images with different orientations. FADS[15] aims to provide results that do
not depend on a uniform orientation. For example, images in the MVTecAD[17] “screw” show
screws in varying orientations: i.e., some images show the tip of the screw pointing to the right,
some images show it pointing to the bottom of the image, etc.
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We measure FADS’ performance in identifying anomalies with the Area Under Receiver Operator
Curve (AUROC). The Receiver Operator Curve (ROC) plots the true positive rate versus false
positive rate as a threshold is varied. In an ideal case, the AUROC would be 1 indicating a perfect
ability to separate anomaly from nominal classes. A guessing version would have an AUROC of 0.5.

Using ensembles? of FADS t-vectors from vatrious models, at different scales, and with and without
rotation invariance, we tested samples across all MVTecAD categories. To understand potential
performance improvements, we designed baseline studies using the pre-trained CNNs ResNet18
and ResNet152.

Initial results show mixed benefit from inclusion of rotation invariance (Table 1). No method
shows a clear win over others for all categories.

Data trends:
e Ensembles at image scales of 256 and 512 do well
e Those including ResNet152 also show good performance

e ResNetl8 has generally poor performance, but it is significantly improved by combining
“vanilla” and rotation-invariant methods

e Some categories are effectively solved with an AUROC of nearly 1 (hazelnut, leather, tile,
wood)

e Many categories show significant hits to performance at high (1024) and low (128)
resolutions

Comparing averages over methods using either only rotation invariance, only vanilla, or only both,
we see a slight improvement for using both together, but it is not a significant change. Performance
in some categories significantly improve with rotation invariance (e.g., bottle, carpet, and grid), some
categories see declines (e.g., capsule, pill), and rotation invariance has no effect on others. Asa
result, we can make no clear recommendation as to whether to apply rotation invariance to a new
dataset.

2 Ensembles are a collection of ML models used together to improve accuracy, reduce dependence on hyperparameter
selection, or provide a measure of uncertainty.
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Table 1 FADS ensemble AUROC results for MVTecAD categories. Ensembles were varied across
scale (128, 256, 512, 1024), rotation invariance (with — rotinv, without - vanilla, both), and model
(ResNet18 and ResNet152). Any variance not mentioned in the name is included (e.g., ensemble-
RN152 includes all combinations of scale, rotation invariance that use ResNet152). Ensembles
have individual r-vectors concatenated before checking using the maximum to determine image

anomalousness.
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ensemble-everything
ensemble-RN152
ensemble-RN18

0.965 0.882 0.873 0.989 0.942 0.995 0.997 0.964 0.904 0.784 0.996 0.928 0.922 0.979 0.680
0.911 0.879 0.888 0.989 0.942 0.994 0.997 0.965 0.902 0.788 0.996 0.950 0.917 0.971 0.677

0.975 0.897 0.869 0.958 0.893 0.980 0.994 0.907 0.884 0.794 0.991 0.869 0.855 0.989 0.804

0.918

0.911

ensemble-rotinv

ensemble-vanilla

0.952 0.893 0.861 0.990 0.952 0.989 0.996 0.951 0.858 0.788 0.997 0.933 0.891 0.976 0.718
0.952 0.876 0.928 0.984 0.937 0.995 0.995 0.966 0.931 0.796 0.995 0.903 0.923 0.994 0.699

0.916
0.925

ensemble-rotinv-RN152
ensemble-vanilla-RN152

0.927 0.893 0.877 0.990 0.952 0.989 0.996 0.953 0.859 0.795 0.997 0.933 0.885 0.969 0.689
0.856 0.875 0.928 0.984 0.937 0.993 0.995 0.964 0.929 0.790 0.994 0.922 0.922 0.995 0.727

0.914
0.921

ensemble-rotinv-RN18

ensemble-vanilla-RN18

0.965 0.846 0.842 0.966 0.855 0.980 0.996 0.827 0.869 0.700 0.991 0.925 0.851 0.992 0.882
0.973 0.894 0.887 0.947 0.840 0.973 0.989 0.920 0.871 0.781 0.994 0.847 0.851 0.996 0.767

0.899
0.902

ensemble-scale-128
ensemble-scale-256
ensemble-scale-512

ensemble-scale-1024

0.922 0.915 0.765 0.904 0.708 0.983 1.000 0.907 0.856 0.608 0.996 0.911 0.899 0.994 0.823
0.926 0.951 0.916 0.981 0.908 0.996 1.000 0.976 0.889 0.725 0.997 0.825 0.919 0.972 0.865
0.959 0.911 0.907 0.981 0.920 0.989 0.999 0.976 0.905 0.775 0.996 0.936 0.897 0.989 0.735
0.948 0.831 0.866 0.918 0.957 0.961 0.981 0.870 0.852 0.811 0.980 0.953 0.855 0.994 0.633

0.879
0.923
0.925
0.894

ensemble-scale-rotinv-128
ensemble-scale-rotinv-256
ensemble-scale-rotinv-512

ensemble-scale-rotinv-1024

0.957 0.911 0.722 0.928 0.741 0.986 1.000 0.916 0.798 0.643 0.996 0.914 0.868 0.994 0.824
0.972 0.919 0.898 0.986 0.896 0.989 1.000 0.946 0.842 0.733 0.997 0.825 0.881 0.969 0.936
0.960 0.895 0.892 0.984 0.944 0.987 0.997 0.987 0.898 0.742 0.997 0.922 0.848 0.989 0.756

0.918 0.858 0.852 0.903 0.942 0.963 0.974 0.892 0.814 0.794 0.973 0.972 0.862 0.979 0.702

0.880
0.919
0.920

0.893

ensemble-scale-vanilla-128
ensemble-scale-vanilla-256
ensemble-scale-vanilla-512

ensemble-scale-vanilla-1024

0.860 0.887 0.780 0.882 0.683 0.985 1.000 0.903 0.869 0.523 0.992 0.900 0.911 0.996 0.799
0.883 0.947 0.901 0.953 0.906 0.998 0.998 0.974 0.888 0.700 0.997 0.831 0.942 0.993 0.845
0.948 0.930 0.915 0.964 0.908 0.981 1.000 0.970 0.916 0.798 0.994 0.906 0.909 0.989 0.787

0.925 0.809 0.920 0.896 0.937 0.966 0.984 0.863 0.898 0.798 0.979 0.919 0.808 0.996 0.672

0.865
0.917
0.928

0.891

Average over ensembles using
only rotation invariance

Average over ensembles using
only vanilla

Average of ensembles using
both

0.950 0.888 0.849 0.964 0.898 0.983 0.994 0.925 0.848 0.742 0.993 0.918 0.869 0.981 0.787

0.914 0.888 0.894 0.944 0.878 0.984 0.995 0.937 0.900 0.741 0.992 0.890 0.895 0.994 0.757

0.944 0.895 0.869 0.960 0.896 0.985 0.995 0.938 0.885 0.755 0.993 0.910 0.895 0.984 0.745
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5. PROJECT METRICS

5.1. Publications
o Potter et al. Automatic detection of defects in high reliability as-built parts using x-ray CT, Applications
of Machine Learning 2020 [2]

o Garland et al., Feature anomaly detection system (FEADS) for intelligent manufacturing, (in review,
preprint [3])

5.2. Presentations

e Applications of Machine Learning 2020
e Scagate-Minnesota AI/ML Virtual Distinguished Speaker Seties (invited)
e ASME VVUQ 2022 Symposium

5.3. Career development

e Anthony Garland converted from postdoc

e Interns supported:
o Undergraduate
= Abigail Pribisova
= Aniket Pant
=  Mike Adams
= JayCe Leonard
o Graduate

= Soroush Famili

54. Partnerships
e We shared PandaNet and FADS software with members of org 5522 in an ongoing
partnership to advance anomaly detection at Sandia

e The JARVIS project is using FADS for video analysis and is exploring use of FADS to
cluster activity trends automatically into a human recognizable format

e The Voronoi LDRD using FADS for feature extraction and is exploring the use of
clustering for semi-supervised segmentation

e We have shared FADS GUI software with 7637 in an ongoing partnership to help them
identify potential defects in custom cables

5.5. Life after

A number of proposals, potential applications, and actual applications have been built across the
labs:
e Working with 1819 on identifying potential defects in a COTS ND component continuing
e Working with 9748 to verify vaccination proof submissions continuing
e Working with 2323 to identify defects in connector assemblies agreement being drafted
e Working with 7642 to aid processing CT data for COTS components waiting on data
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Working with 7568 to identify anomalies and predict performance on an NG component
waiting on data

Both Kansas City and Sandia manufacturing have expressed interested in using FADS within
their product lines open falks

Proposal with 1851 to apply FADS to CT data proposal
A&L proposal to identify aging in energetic materials with 7555 proposal

INWAP proposal with 5571 to study the potential defect detection benefits of FADS
compared to solely human examination proposal
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6. CONCLUSION

This LDRD sought to demonstrate a means of automatically detecting defects through imagery of
various types. In this report and the prior works cited, we detailed two methods for detecting
anomalies in a fast, scalable, and reproducible manner: PandaNet and FADS.

PandaNet[14] improved upon the performance of AnoGAN[12]. While we believe FADS shows
more promise for defect and anomaly detection, PandaNet also improved the quality of image
reconstructions and showed that a novel second reconstruction loss was beneficial.

FADS|15] brings several major advances to anomaly detection. First, it employs pre-trained models
and requires zero additional training (i.e., no fine-tuning). This reduces both the computational cost
and the expertise necessary to develop a top-quality model for detecting anomalies in images. These
attributes allow anyone to use FADS for anomaly detection, particularly since we have developed a
GUI for the algorithm. Second, we can cluster similar images (or CT slices) together using the
algorithm’s output for each image; this does not require prior knowledge about the images or their
similarities. Third, our experiments show FADS can perform well with little nominal data.

Several Sandia projects have incorporated FADS since it was developed 18 months ago. FADS
produces features for one of the Voronoi applications, and other possible uses are being explored.
The JARVIS project has employed FADS to identify anomalous activity in video and is
experimenting with clustering activities in videos using FADS. FADS also enabled a clustering
approach for CT scan slices and provided the initial testing ground for a novel rotation-invariant
approach to neural networks.

After three years, the prospects for automatic defect detection are strong. We have developed new
approaches (and accompanying software). Sandia researchers have already embraced these
approaches and we believe they will empower a large number of ND applications in years to come.
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