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ABSTRACT 
Single photon detection (SPD) plays an important role in many forefront areas of fundamental 
science and advanced engineering applications. In recent years, rapid developments in 
superconducting quantum computation, quantum key distribution, and quantum sensing call for 
SPD in the microwave frequency range. We have explored in this LDRD project a new approach to 
SPD in an effort to provide deterministic photon-number-resolving capability by using topological 
Josephson junction structures. In this SAND report, we will present results from our experimental 
studies of microwave response and theoretical simulations of microwave photon number resolving 
detector in topological Dirac semimetal Cd3As2. These results are promising for SPD at the 
microwave frequencies using topological quantum materials. 
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1. INTRODUCTION 
A single photon detector (SPD) can register a quantum object at an extremely minuscule energy 

scale, for example on the order of 10-23 joule for a 10 GHz microwave photon. It has found 

increasingly important applications in many forefront areas of fundamental science and advanced 

engineering, ranging from studying the galaxy formation through the cosmic infrared 

background to entanglement of superconducting qubits, single molecular spectroscopy, and 

remote sensing. Most existing SPD’s are simple click detectors and can only detect either zero or 

more than zero photons in a multiplexed configuration, being incapable to provide deterministic 

photon number resolution of a light source. To solve this long-standing problem, a radically new 

approach is required for high-speed deterministic photon-number-resolving SPD particularly in 

the infrared and microwave frequency range.  

 

We have explored in this LDRD project a new approach to SPD in an effort to provide 

deterministic photon-number-resolving capability by using topological Josephson junction (JJ) 

structures. In this SAND report, we will present results from our experimental studies of 

microwave response and theoretical simulations of microwave photon number resolving detector 

in topological Dirac semimetal Cd3As2. These results are promising for SPD at the microwave 

frequencies using topological quantum materials. As a result, nine new peer reviewed 

publications were generated (with three additional manuscripts under review) during this LDRD, 

highlighting the importance of this field of study. 
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2. MICROWAVE RESPONSE IN A TOPOLOGICAL 
SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE 

 

SPD has found increasingly important applications in many forefront areas of fundamental 

science and advanced engineering applications, ranging from studying the galaxy formation 

though cosmic infrared background to entanglement of superconducting qubits, single molecular 

spectroscopy, and remote sensing [1,2]. In recent years, the rapid developments in 

superconducting quantum computation, high fidelity quantum measurement, quantum key 

distribution, and quantum network call for SPD in the microwave frequency range [3]. The 

current SPD scheme has good sensitivity for photons in the high frequencies range (e.g., visible 

light). However, their sensitivity decreases drastically for low-frequency, low energy, microwave 

photons. As a result, the detection of single photons at this low frequency is highly prone to error 

from classical noise.  

 

Graphene single photon detectors (i.e., graphene superconducting JJs) have emerged as one new 

platform to meet the needs of detecting single microwave photons [4,5]. It is capable of 

performing SPD over a wide frequency range, particularly at the infrared and microwave 

frequencies due to its linear energy dispersion relationship. Like graphene, the helical surface 

states in Cd3As2, a Dirac semimetal [6-8], also possess Dirac linear dispersion relationship. As a 

result, Cd3As2 is also sensitive to low-frequency microwave photons. Compared to graphene, 

Cd3As2 may be even more promising for microwave photon detection [9] based on the following 

reasons. First, a higher electron mobility has been reported. Indeed, a mobility as high as 107 

cm2/Vs has recently been reported in Dirac semimetal Cd3As2 single crystals [10]. Second, they 

can be readily grown by many conventional growth techniques, such as vapor transport [11], 

MBE (Molecular beam epitaxy) [12], PLD (pulsed laser deposition) [13] techniques; this enables 

their facile integration into any optical device structures, such as microwave cavities. Third, the 

unique electronic and optical properties in Cd3As2 may allow for polarization-resolved photon 

detection [14]. Fourth, superconductivity in Cd3As2 thin films [15] and the supercurrent states in 

Cd3As2-based JJs via the superconducting proximity effect [16-18] have been demonstrated, 

receptively. This may make the adoption of the well-developed single photon detection schemes, 

such as superconducting nanowires and transition edge sensors [2], possible in the Cd3As2 
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material system. Final, the helical surface states in topological semimetals, when combined with 

conventional superconductors, can host Majorana zero modes, which can be used to construct 

topological qubits. New single photon detection scheme utilizing Majorana zero modes have also 

been proposed recently [19]. Together, the microwave single photon detection capability and 

qubit operation is predicted to lead to high-fidelity quantum computation [20].  

 

In this section, microwave response in this proximity induced superconducting state is presented 

in a superconducting quantum interference device (SQUID) structure fabricated on Cd3As2, as 

shown in the inset of Figure 1(a). In our SQUID device, a large photo response is observed at 

various microwave frequencies ranging from 0.5 to 10 GHz. Our results are published in 

Scientific Reports 11, 8615 (2021). 

 

Device and Methods: 

The mechanical exfoliation method is used to obtain flat and shiny Cd3As2 thin flakes from the 

initial bulk ingot materials. Information about the Cd3As2 polycrystalline ingots can be found in 

Ref. [16]. The thickness of the resulting exfoliated Cd3As2 flakes is approximately 200nm. To 

fabricate the alminimum-Cd3As2-almuninum SQUID, a two-step process is employed. First, a 

Cd3As2 flake is deposited on a Si/SiO2 substrate (with SiO2 thickness of 1 µm). Then, e-beam 

lithography is used to define the aluminum (Al) electrodes. The thickness of resultant Al 

electrodes is 300 nm.  A low-frequency (~ 11 Hz) phase-sensitive lock-in amplifier technique, 

with an excitation current of 10 nA, is used to measure the sample resistance. To measure the 

differential resistance, a large direct current (up to ± 2µA) is added to the 10 nA a.c. current. The 

entire device is immersed in cryogenic liquid; all measurements are carried out at the cryogenic 

temperature of ~ 0.25K.  
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Figure 1: (a) The temperature dependence of the junction resistance in a superconducting quantum interference 
device (SQUID). The insert shows the SQUID device fabricated on a Cd3As2 thin flake. Th scale bar is 1 µm. (b) 
The current-voltage (I-V) curve measured in the SQUID. The critical current is ~ 1 µ A. (c) The two-dimensional 
color plot of I-V traces as a function of magnetic fields at 0.44K. The red color represents a positive Vdc, blue for 
negative Vdc. The green area represents the supercurrent regime. (d) The schematic setup (dimension not to scale) 
used to examine microwave response 
 
Results and Discussion: 

Figure 1a shows the temperature dependence of the SQUID resistance Rxx. At high temperatures, 

the Rxx is nearly constant. The drop at T ~ 1.2K is due to the onset of the superconductivity in the 

aluminum electrodes. Rxx continues to decrease slowly from 1.2K to ~ 0.55K. After 0.55K, Rxx 

drops precipitately and reaches a zero-resistance state at T ~ 0.35K. We thus take 0.55K as the 

superconducting transition temperature (Tc). Direct current-voltage (I-V) measurements in this 

junction is shown in Figure 1b. For large d.c. currents IDC, the I-V curve follows a linear 

dependence. From the slope of this straight line, a normal state resistance of Rn ≈ 75 Ω can be 

deduced. Extrapolating the line to zero Vdc, we obtain an excess current of ~ 0.08 µA. Assuming 

the two JJs in the SQUID are identical and taking into account the superconducting gap of ∆ = 
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1.75kBTc, we can estimate the barrier strength Z ~ 1 in our SQUID, based on the calculations in 

the paper by Flensberg et al [21,22]. Correspondingly, the junction transparency T = 1/(1+Z2) is 

estimated to be ~ 0.5. In the small IDC regime of |IDC| < 1 μA, the voltage across the junction Vdc 

is zero, demonstrating the robust supercurrent states. The critical current is approximately 1µA.  

 

Figure 1c shows the magnetic field dependence of the I-V data in this SQUID. Periodic 

oscillations of the critical current are clearly seen, as expected for a conventional SQUID. The 

period is estimated to be ~ 1.8 mT. This corresponds to an effective SQUID area of ~ 1.1 µm2, as 

illustrated by the dashed square in the inset of Fig. 1a. We note that in a small SQUID the 

effective area is often larger than the middle open area, due to the flux compression effect by the 

surrounding electrodes [23]. Another feature in Fig. 1c is the envelop of the oscillatory pattern 

being modulated by the Fraunhofer diffraction pattern of the single JJ in the SQUID.  

 

To examine the microwave response in our SQUID device, a setup shown schematically in 

Figure 1d is utilized. An Agilent 83592B sweep generator is used to generate microwave 

photons, which are conducted through a semirigid coax cable. The end of coax cable is located 

about 5 mm above the sample surface. The microwave power is tuned at room temperature; the 

exact microwave power at the end of coax cable is not known.  
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Figure 2: (a)-(c) The differential resistance measured at three selected microwave frequencies, 0.5, 7, and 10 GHz. 
At each frequency, the microwave power is also varied. (d)-(f) The zero-bias resistance as function of microwave 
power at 0.5, 7, 10 GHz, respectively.  
 
The differential resistance dV/dI as a function of d.c. current bias (IDC) in this SQUID is 

measured and reported in Figures 2a, 2b, and 2c; it has been collected at the three selected 

microwave frequencies of 0.5, 7, and 10 GHz, respectively. Additionally, the microwave power 

was varied at each frequency. The SQUID shows a large response at both the zero and also the 

finite d.c. bias. In this paper, we will focus on the microwave response at the zero-bias current. 

Other features, such as the Shapiro steps [24] at non-zero d.c. bias, merits more detailed studies 

and will be discussed elsewhere.  

 

A general trend is seen when the resistance as a function of microwave power for each 

microwave frequency is plotted, see Figures 2d-f. At low microwave powers, the resistance is 

approximately zero. With further increase in microwave power, resistance becomes non-zero and 

starts increasing.  We note here that the onset microwave power (in dBm) for non-zero dV/dI is 

different for different microwave frequencies, e.g., -33 dBm for f = 0.5 GHz and -16 dBm for f = 

7 GHz. This is mainly due to different power attenuations at different frequencies through the 

semi-rigid coax cable we used in the measurements.   

 
Figure 3: The effective junction temperature as a function of microwave power at 0.5 (a), 7 (b), and 10 (c) GHz. 
 
Overall, the microwave power dependence of the zero-bias resistance shows a similar trend to its 

temperature dependence, seen in Fig. 1a. The zero-bias resistance is zero at low microwave 

powers (versus zero resistance at low temperatures). After an onset microwave power, the zero-

bias resistance increases with increasing microwave power. This, again, is like the temperature 

dependence, in which the resistance increases with increasing temperature after a critical 

temperature. The similarity suggests that the increase of zero bias resistance probably is of a 
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bolometric origin, i.e. due to the increasing temperature upon microwave photon absorption. 

Based on this assumption, it is possible to deduce the effective electron temperature at various 

microwave powers by relating the resistance value with the temperature dependence from Fig. 

1a.  

 

It is important to note that this procedure works well for mid-range microwave powers, where 

the resistance is finite and has not reached the normal state resistance. For lower microwave 

powers, the resistance is zero thereby rendering it difficult to determine the effective electron 

temperatures. For higher microwave powers, or higher electron temperatures, the resistance 

change is gradual, and the error bar is relatively large. In Figure 3, a plot shows the effective 

electron temperature as a function of mid-range microwave power (in a logarithmic scale). It is 

clearly shown that the effective temperature increases roughly linearly with increasing 

microwave power (in the logarithmic scale). 

 

The above result, i.e., effective temperature increasing with increasing photon energy, is 

promising for microwave photon detection. Indeed, with further optimization of microwave 

coupling structure, for example through utilization of a meander line [25], quarter wave 

resonator [4], or log periodic antennas [26], measurements can be done at much lower 

microwave power level, which may provide more support for single photon detection with 

number resolving [9, 27] capability. Compared to other superconducting photon detectors, such 

as transition edge sensors (TESs), the photon detection in this device is done by the zero-bias 

resistance, thus avoiding a large source-drain current needed, for example, in a TES structure 

[28]. Consequently, issues caused by the large source-drain current, such as the flicker noise, are 

greatly reduced.  

 

Conclusion: 

In summary, a large microwave response has been observed in a superconducting quantum 

interference device fabricated on Dirac semimetal Cd3As2 thin flakes, in which the temperature 

dependence and microwave power dependence of the junction resistance are studied. The 

effective temperature of the junction device under microwave radiation increases with increasing 
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microwave power (in the logarithmic scale). This result may pave the way of single photon 

detection at the microwave frequency in topological quantum materials.   
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3. MICROWAVE PHOTON NUMBER RESOLVING DETECTOR USING 
THE TOPOLOGICAL SURFACE STATE OF SUPERCONDUCTING 
CADMIUM ARSENIDE 

 
I. INTRODUCTION 

Photon number resolving detectors have been explored significantly over the past decades [1-3] 

due to the dire need for resolving the number of photons in applications such as the security of 

quantum communications [4, 5] and the sensitivity of quantum sensing [6]. As photon-based 

quantum computing advances, precise resolution of photon number detection is increasingly 

important. Microwave photons are the backbone of prolific transmon quantum computation, and 

therefore, detection of the microwave photons is tremendously important in the current quantum 

computing paradigm [7]. Several non-number-resolving techniques to detect microwave photons 

have been developed, including the circuit QED technique [8], dressed-state superconducting 

quantum circuit [9], current-biased JJ [10], and the dark-state detector [11]. It is well-known that 

building a parallel detection system, first splitting the light path using beam splitters and then 

using non-number-resolving detectors in each parallel path, may provide a probabilistic photon 

number resolving detection, which is further limited due to the loss associated with 

parallelization. In contrast, a single photon-number resolving detector with a deterministic 

photon number resolution would provide a immense advantage particularly in photonic quantum 

computers by reducing the error-correcting overhead. To the best of our knowledge, a single-

device photon-number resolving detector that can simultaneously detect multiple incoming 

photons at microwave frequency has not been reported so far. 

  

Here, we propose a photon-number resolving detector operating at microwave frequencies, based 

on the topological surface states of cadmium arsenide (Cd3As2). Semimetals such as graphene 

provide an ideal detecting material for microwave photons due to their zero band gap. Recently, 

Dirac and Weyl semimetals with Dirac cone dispersion have gained prominence due to high 

mobility [12], along with the fact that they can be synthesized through conventional techniques 

[13-15]. Particularly, Cd3As2 displays proximity-induced bulk superconductivity at low 

temperatures, and the electronic structures of the bulk and the topological surface states are 

decoupled. Maintaining the Cd3As2 semimetal material at a very low temperature is necessary for 

an efficient photon-induced electron excitation to a conduction band just above the Fermi level 
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due to the low photon energy. The bulk state enters a superconducting state at a sufficiently low 

temperature, opening a band gap beyond the microwave photon energy. Fortunately, the 

topological surface state of Cd3As2 is not affected by the temperature, continuing to provide a 

gapless Dirac cone. We use this topological surface state as a photon absorber. Once the photon 

is absorbed, a rapid rethermalization in band population occurs with a new elevated temperature 

corresponding to the absorbed photon energy. We then utilize the fact that the redistributed 

electron population transfers its energy to the bulk's phonon modes via a surface electron-bulk 

phonon coupling, thus increasing the bulk's temperature. The elevated bulk temperature then 

reduces the conductance of the superconducting bulk electron state, which is measured and used 

to eventually indicate the number of photons absorbed. Results are published in Phys. Rev. 

Research 3, 023046 (2021).  

 

 
 
Figure 1: Basic layout for the Cd3As2 photon number resolving device. At low temperatures, the bulk becomes 
superconducting due to the material's proximity to superconducting aluminum, while the (112) surface retains a 
graphene-like dispersion. A photon (depicted by the arrow) is absorbed by the surface electrons. The change in bulk 
resistivity (measured by the electrodes at zero bias) is used to determine the temperature increase. Note that the Al 
bars are positioned in the out-of-plane direction with respect to the Cd3As2 material. 
 

 

II. PHOTON ABSORPTION IN TOPOLOGICAL SURFACE STATE 

The setup for the device is depicted in Fig. 1. The system is based on a Cd3As2 crystal inside a 

low-temperature refrigerator with a baseline temperature below the bulk superconducting critical 
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temperature. Recent experimental findings have demonstrated that Cd3As2 features a topological 

surface state on the (112) surface with a linear band crossing around the Dirac points [16, 17]. 

This graphene-like surface state band structure at low energy can be attributed to the fact that 

sites consisting of stacked As and Cd atoms approximately form a honeycomb superlattice on the 

(112) surface [13]. As with graphene, the dispersion relationship can be expressed as the 

following linear function of the wavevector k when the Fermi level is at the Dirac point: 

 

 
 

where ħ is the Planck constant, c and v represent the conduction and valence bands, respectively, 

and vF denotes the Fermi velocity, which is approximately 106 m/s. [16, 18]. At low 

temperatures, if the material is in proximity to superconducting aluminum (Al), the surface state 

electrons are decoupled from the bulk state, and the bulk becomes superconducting below 0.7 K 

while the surface retains its semimetallic property [19]. We measure the superconducting gap 

frequency fgap near zero temperature (T = 21 mK) and at T = 0.39 K from Figs. 2(a) and 1(d) of 

Yu et al. [19]. For the case of near-zero temperature, the gap is measured as 0.113 meV 

(corresponding to a frequency of 27 GHz), while at 0.39 K, the gap amounts to 0.088 meV 

(corresponding to 21 GHz). The resulting band structures for the superconducting bulk and the 

topological surface state are compared in Fig. 2. Note that this proximity-induced 

superconducting gap is smaller than the gap predicted from BCS theory [20], which would equal 

about 50 GHz for a critical temperature around 0.7 K. Nonetheless, even for temperatures as high 

as 0.35-0.45 K, photons of microwave frequency below approximately 20 GHz will be absorbed 

solely by the surface state. Since we are primarily interested in microwave photons of frequency 

5-10 GHz, this satisfies our goal of using the surface as the absorber and the bulk as the 

thermometer.  

 

In order to derive the absorption probability, we consider the physical manifestation of the Dirac 

cone on the nature of the Bloch states. As in graphene, each electronic state in the vicinity of a 

Dirac point can be conceptualized as a massless Dirac fermion with a well-defined momentum  

ħk, where k represents the wavevector of the electronic state in the reciprocal space for which the  
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Figure2: Band structures for the superconducting bulk (purple curves) and the topological surface state (blue 
straight lines). Note that a gap of frequency fgap is opened in the bulk, while the surface state remains gapless, thus 
restricting the absorption of photons at microwave frequency fp to the surface state. 
 

Dirac point is the origin. Therefore, the absorption coefficient for Cd3As2 will equal the 

corresponding value for graphene [21]: 

 

 
 

where e is the charge of an electron, ε0 is the vacuum permittivity, c the speed of light, and 

f(E;T) denotes the Fermi-Dirac electron occupation probability at energy E for temperature T. 

Note that the absorption coefficient (as a function of photon frequency) is invariant with respect 

to the Fermi velocity. This is because the interband dipole matrix element (corresponding to the 
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absorption probability for a single electronic state) increases with the Fermi velocity, while the 

density of states decreases with it, eventually canceling each other's effect. At high frequencies 

(ħω >> kBT), the absorption coefficient (i.e., the quantum efficiency for a single pass through a 

single Cd3As2 crystal) is approximately invariant with frequency, equaling a constant value of 

e2/(4ħε0c) = 2.3%. On the other hand, at low frequencies on the scale ħω ≤ kBT, the coefficient 

becomes attenuated, reaching a minimum value of zero as the Dirac cone is approached. We will 

use an upper bound base-line temperature of 0.45 K, which will set the minimum quantum 

efficiency for photons of a given frequency interacting with a single crystal. For microwave 

frequencies ranging from 5-10 GHz, Eq. (2) implies a single-crystal quantum efficiency ranging 

from 0.3-0.6%. build credible real use cases of the proposed scheme. In the final section, we 

summarize our results and suggest the path toward building a photon-number resolving detector 

with near-unity efficiency on a chip. 

 

III. TEMPERATURE INCREASE VS. ABSORBED PHOTON NUMBER 

Having determined the probability that the topological surface state absorbs a photon from an 

incoming field, our next step is to determine how the absorption of a single photon increases the 

temperature of the 3D bulk sample. When a photon excites an electron to the conduction band, a 

rapid rethermalization of the Fermi-Dirac distribution through electron-electron interaction 

ensues, leading to an electron temperature above the lattice temperature. For undoped monolayer 

graphene, which features a band structure approximately identical to that for the Cd3As2 surface 

state, this process occurs in tens of picoseconds for cryogenic baseline temperatures [22]. The 

carrier rethermalization is followed by heat transfer from the collection of electrons to the lattice 

via electron-acoustic phonon interaction, until a thermal equilibrium is reached between the 

electron temperature and the lattice temperature. Generally, the interaction between electrons and 

acoustic phonons is much slower than the electron-electron interaction [23-25]. Afterward, the 

Fermi-Dirac distribution for the electron bands and the Bose-Einstein distribution for the phonon 

branches will comply with the same temperature. 

 

We now determine the temperature increase due to the absorption of a photon of frequency ω by 

calculating the portion of the imparted energy that is eventually converted to bulk lattice 

vibrations (i.e., the phonon modes) and to the surface electron modes, and by deriving the heat 
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capacity of the two systems. We will make two important assumptions here: first, that the 

electron-electron interaction rate dominates over the radiative loss rate of the electrons (which 

we will demonstrate in a later section), and second, that the very low values for the initial and 

final temperatures ensure that virtually all of the phonons are located in the low-energy linear 

parts of the acoustic branches, thus allowing for use of the Debye approximation [26] in 

determining the heat capacity. 

 

A. Energy Gain for Surface Electron Modes: We start by writing out an expression 

corresponding to energy conservation in the system given the absorption of a photon of 

frequency ω: 

 

 
 

 where ∆Uel and ∆Uph represent the total energy gained by the topological surface electron 

modes and the bulk phonon modes, respectively, at equilibrium. We focus first on the 

energy gain for the electron modes as a function of electron temperature, as this will be 

necessary for calculating the initial electron temperature gain after photon absorption but 

prior to heat transfer to the lattice. The total electron energy with respect to the Fermi sea is 

calculated by taking a sum of the conduction and valence band energies weighted by the 

Fermi-Dirac occupation probabilities (multiplied by 2 to account for the fact that each 

spatial state contains 2 spin states): 

 

  
 

The first term corresponds to the energy gained in creating a conduction band electron, 

while the second term corresponds to the energy gained in creating a valence band hole. 

Since the deviation from the Fermi sea at low temperatures is concentrated in the vicinity 

of the Dirac cone, we can assume that the linear isotropic dispersion relationship in Eq. (1) 
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holds for the entire relevant wavevector range. Therefore, the summation over wavevectors 

can be replaced by an integral over the density of spatial states (ρc and ρv for the 

conduction and valence bands, respectively): 

 

 
 

 Since the conduction and valence band energies are opposite at each wavevector, we can 

express Uel as a single integral over the energy absolute value E, where Ec = E and Ev = -E. 

Due to the equivalent magnitudes of the dispersion slope for the conduction and valence 

bands at each wavevector, we can further define a general density of states ρ(E) = ρv(E) = 

ρc(E): 

 
  

 The density of states at band energy E can be solved by applying the dispersion relationship 

as follows: 
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 where A is the surface state area, Ak is the area in the reciprocal space associated with the 

value k = |k|, and N is the number of states. As expected for the graphene-like band 

structure, the density of states is linear in the energy. We are thus in a position to solve for 

the electron energy Uel(T) as a function of temperature T: 

 

  
 

where ζ represents the Riemann zeta function, with ζ(3) ≈ 1.2. This implies that the 

electron temperature varies with the total electron energy as Uel
1/3, and the relationship 

between the gain in electron energy and the temperature change from Ti to Tf takes the 

following form: 

 
 For detecting a moderate number of microwave photons, we are primarily interested in the 

limit ∆T(≡ Tf -Ti) << Ti where Ti > 0.1 K. In that limit, the cooling power Q for the 

electron modes is related to the rate of change of the temperature by taking the derivative 

of ∆Uel with respect to time, yielding the following function of the temperature T ≈ Ti: 
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B. Energy Gain for Bulk Phonon Modes: Next, we look to determine how the energy gained 

by the lattice vibrations relates to the lattice temperature. In general, the total phonon 

energy is determined as a function of temperature by summing over the modes 

corresponding to various phonon branches µ and phonon wavevectors q, weighted by the 

occupation number <nµ,q> for each phonon mode: 

 

 
 

where µµ,q is the frequency of the phonon mode of branch µ and wavevector q, and the 

occupation number at a given temperature T is calculated from the Bose-Einstein 

distribution: 

 

 
 

As previously mentioned, the fact that the sample is in the low-temperature regime 

(below 0.5 K) indicates that the Debye model, with its assumption of a linear phonon 

dispersion, is approximately valid for the phonon modes with non-negligible occupation 

numbers. Therefore, we can restrict the summation over branches to just the 3 acoustic 

branches (corresponding to the 3 polarizations). In general, the slope of each of these 

branches is slightly anisotropic in reciprocal space due to the varying angle between the 

polarization and propagation directions. However, per the treatment in Kittel [27], we can 

approximate the composite effect of the 3 branches on the summation in Eq. (11) as 

equivalent to a summation over 3 isotropic branches, each featuring a slope of vs (i.e., the 
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speed of sound in the material), such that: 

 

 
 

where ωq = vsq, and the speed of sound vs for Cd3As2 is estimated as 2.3 x 103 m/s [25]. 

 

We now replace the summation over wavevectors with an integral over the density of 

states for each branch in terms of frequency, D(ω). For a 3-dimensional lattice with a 

speed of sound vs, this density is determined as follows: 

 

 
 

where V is the bulk volume of the lattice and Vq is the volume in the reciprocal space 

associated with q = |q|. We therefore solve for the total phonon energy as a function of 

temperature through the following integral: 
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Note that the expression differs from that in Kittel in that we use ∞ instead of a specific 

Debye cutoff for the upper bound of the frequency range. As in the case of the integral 

over energy for the electronic modes in the previous section, this is justified by the rapid 

convergence of the integrand to 0 at very low temperatures [28], corresponding to the fact 

that only the linear regime of the acoustic branches are non-negligibly occupied. Then, 

we find the following result: 

 
 

Unlike the total surface electron energy, which scales as T3, the total bulk phonon energy 

scales as T4. This difference can be attributed to the fact that the surface is 2D whereas the 

bulk is 3D, having more degrees of freedom, thus implying that all else being equal, a 

given change in energy would have a weaker effect on bulk temperature than on surface 

temperature. The change in the total phonon energy can therefore be related to the initial 

and final temperatures Ti and Tf as follows: 

 

 
 

Note that, for a prism-shaped sample (such as a thin film) for which the surface state forms 

one of the two bases for the prism, the bulk volume is proportional to the surface area as V 

= Ad, where d represents the sample thickness. 

 

C. Energy Gain for Bulk Phonon Modes: Having derived the energy gain for the surface 

electron and the bulk phonon modes for given initial and final temperatures, we now seek 

to compare the specific heat values for the two mode types in order to glean an 

understanding of how the excess thermal energy is distributed between the modes. From 
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the result in Eq. (9), the specific heat for the collection of surface electrons is determined 

as follows: 

 

 
 

The specific heat for the bulk lattice is calculated in an analogous manner from the result in 

Eq. (17): 

 

 
 

Using the relationship V = Ad, where d denotes the bulk depth of the lattice, we divide Eq. 

(19) by (18) in order to determine the ratio of the specific heat values for a given 

temperature: 

 

 
 

Since the baseline refrigerator temperature is at least 0.25K, this sets the minimum value 

for T. The lattice depth d must be at least multiple times longer than the lattice constant, 

which is 3 - 5 Å for Cd3As2 [29]. Therefore, the phonon specific heat is far higher than the 

electron specific heat (by at least 3 orders of magnitude), indicating that nearly all of the 

thermal energy gained from the photon absorption is eventually stored in the lattice 

vibrational modes. As such, if N photons of frequency ω are absorbed, then the relationship 

between the final equilibrium temperature Tf  and the initial temperature Ti can be 

determined from Eq. (17): 
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Figure 3: Plots of temperature gain (in nanokelvins) versus density of absorbed photons (per 10-15 m3) for baseline 
temperatures Ti = 0.35; 0.40; and 0.45 K given a photon frequency f = 5 GHz. 
 

 
As this expression shows, the determinitive factor in the temperature increase is the total 

photon energy absorbed per unit volume of the lattice, which is proportional to Nω=V . We 

plot the temperature gain as a function of photoelectron density N=V for 3 different 

baseline temperatures 0.35 K, 0.40 K, and 0.45 K, for an input photon frequency of 5 GHz 

(corresponding to ω = π x 1010 s-1) in Fig. 3. Note that for low photon densities such that 

the temperature gain is small compared to the baseline temperature, the relationship 

between temperature gain and photon density is approximately linear, as expected. The 

imbalance between the electron and lattice specific heat values also has significant 

implications for the heat transfer between the electron and phonon distributions that 
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ultimately yields the equilibrium state. In particular, when comparing the quasiequilibrium 

electron and lattice temperatures to the final equilibrium temperature for the whole system, 

the equilibrium temperature will be much closer to the quasiequilbrium lattice temperature 

than to the electron temperature. We consider the timescale for the electron-lattice heat 

transfer as a function of temperature in the next section. 

 

 

IV. ELECTRON-PHONON INTERACTION TIMESCALE 

Having derived the equilibrium temperature for the bulk lattice upon photon absorption, we now 

aim to estimate the timescale over which that equilibrium is reached. As previously mentioned, 

this energy transfer takes place in two steps: a rapid electron-electron rethermalization, followed 

by heat transfer from the electrons to the acoustic vibrations of the lattice (which is much slower 

than the electron-electron interaction [23-25]). Here, we will focus on the latter process, since it 

serves as the limiting factor in setting the minimum timescale for reaching equilibrium. The heat 

transfer timescale between bulk electrons and lattice phonons in Cd3As2 has been the subject of 

recent analysis [25, 30], and here we will build on that analysis to solve for the heat transfer 

timescale between surface electrons and lattice phonons. We will characterize the available 

phase space area for bulk phonon emission by the surface electrons, derive the matrix element 

for the electron-phonon interaction, and finally calculate the rate for the electron-phonon heat 

transfer. 

 

A. Phase Space: We start by examining the available phase space for the interaction 

between 2D surface state electrons and the bulk phonon modes. Unlike the spherical 

equal-energy manifolds for the 3D Dirac cone carrier modes, the 2D Dirac cone 

electron modes take a cylindrical equal-energy manifolds, with a degree of freedom in 

the kz-direction (corresponding to the axis perpendicular to the surface). We therefore 

use cylindrical coordinates, expanding the final electron wavevector p as (p cosθp; 

sinθp; pz) and the initial wavevector k as (k; 0; 0). In this coordinate system the emitted 

phonon wavevector q can be expanded as follows: 
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Figure 4: Depiction of the phase space area of final electronic states for a given initial state k = (k; 0; 0), including 
the 2D cross-section of the phase space along the pxpy-plane (a) and the phase space along the pz-axis (b). The phase 
space forms a double cone, with a base of radius k on the pxpy-plane, and tapering off in the +pz and -pz directions 
with a length of vFk/vs along each. Note that the base versus height ratio for the double-cone in (b) is not to scale. 

 

    Note that the bulk phonon's equal-energy manifolds retain a 3D spherical shape defined 

by w = vsq. We map this onto the electron's manifolds using energy conservation: 

 

 
 

Squaring both sides and solving for p, we find that p varies with both θp and pz: 

 

 
 

where ∆(θp) is defined as follows: 

 

 
 



 

32 

For our material, vs << vF , thus yielding ∆(θp) << 1 for all θp. Therefore, p can be 

approximately expressed as solely a linear function of pz: 

 

 
 

Geometrically, the available phase space can be envisioned as pair of cones aligned along 

the pz -axis, with the bases overlapping at pz = 0, as depicted in Fig. 4. The radius attains 

is maximal value of k at pz = 0 and tapers o as the magnitude of pz increases. The vertices 

are reached at the following values of pz: 

 

 
 

Finally, we determine the phonon wavevector q from the calculated value of p as a 

function of k. As shown in Eq. (22), the amplitudes of pz and qz will equal each other, 

since the electron and phonon dispersion centers lie on the same xy-plane. We label qxy as 

the component of q perpendicular to the qz -axis. For a given pz and qp pair, the 

amplitudes qxy, k, and p form the 3 legs of a triangle for which qp represents the angle 

between the sides of lengths k and p. Therefore, qxy can be calculated as follows: 

 

 
 

and since qz = - pz, the frequency !q of the emitted phonon is straightforwardly calculated 

from the speed of sound: 
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Since vF >> vs (by a factor of 400), the length of each cone is far longer than the diameter, 

implying that the approximation q ≈ |qz| = |pz| ≈ p will be valid for nearly all of the 

available phase space. 

 

B. Heat Transfer Rate: Having determined the phase space for the electron-phonon 

interaction, we are now in a position to calculate the heat transfer rate between the two 

modes from the composite interaction. Labeling the electron energy for a generic 

wavevector k’ as Ek’, the matrix element corresponding to the electronic transition from 

k to p through the emission of a phonon in branch µ and wavevector q as Mµ;q k;p , the 

Bose-Einstein phonon occupation number for the mode frequency ω at temperature T 

as nT(ω), and the Fermi-Dirac distribution value at T as f(T), the rate Q is determined 

through the following summation over initial carrier wavevectors k, final carrier 

wavevectors p, and phonon branches and wavevectors (µ; q) [31, 32]: 

 

 
As previously discussed, the low temperature restricts the occupied phonon modes to the 

long-wavelength acoustic regime. The interaction between electrons and long-wavelength 

acoustic phonons is dominated by the deformation potential [33, 34], as recently applied 

to the interaction between bulk electrons and phonons in Cd3As2 [25, 35]. As discussed in 

our published paper, the equivalent matrix elements apply for the interaction between 
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surface electrons and bulk phonons. Therefore, the matrix element amplitude-squared 

reduces to a function varying solely with and linear in the phonon amplitude q: 

 

 
 

where V represents the lattice volume and C is a constant that varies with the square of 

the deformation potential. Substituting this, along with the electron and phonon 

dispersion relationships into the expression for Q, we find that it takes the following 

form: 

 

 
The summation is simplified in the limit ∆T << T, where T ≈ Te ≈ TL and ∆T is defined 

as Te - TL. We find that the Dirac and Kronecker delta functions combine to reduce the 

integral over the phase space volume to the double-cone phase space area derived 

previously, as expected. This yields the following expression for the carrier-phonon heat 

transfer rate due to intraband (valence-valence or conduction-conduction) transitions: 

 

 
 

Solving the integral numerically, we obtain a value of -32. Therefore, Q is further 

reduced to the following: 
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Next, we solve for the heat transfer rate due to interband transitions. We use the 

following expression: 

 
 

Note that the constants in front of the integral are identical to that for the intraband case. 

Solving this integral numerically yields a value of -100. The total heat transfer rate Qtotal 

from the surface carriers to the lattice vibrations is determined by multiplying the 

intraband rate Q by 2 (to account for both bands) and then summing with the interband 

rate Qinter: 

 

 
 

In order to determine the heat transfer timescale, we substitute the previously derived 

relationship between the electron cooling rate and the rate of change of electron 

temperature from Eq. (10) into the left-hand-side of the above expression: 

 

 
 

As the result shows, the electron temperature decays exponentially toward the lattice 

temperature, with the rate varying as T3. 
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The remaining task is to determine the value of the constant C, which derives from the 

electron-phonon matrix element. One method for doing so is by using the deformation 

potential of 20 eV measured by Jay-Gerin et al. [36]. This yields the following value for 

C, using a material density ρ = 7 x 103 kg/m3 [25]: 

 
 

This leads to the following heat transfer time constant: 

 

 
 

An alternative method for finding the deformation potential is by merging the 

experimental results from Weber et al. [37] with the theory provided by Lundgren and 

Fiete [25]. Specifically, Weber et al. used a bulk Cd3As2 sample intrinsically doped to a 

baseline electron density of 6 x 1023 m-3, which corresponds to a Fermi energy of 170 

meV and a Fermi temperature of 1130 K. Under these conditions, they observed a 

timescale of 3.1 ps for electron cooling by low-energy acoustic phonon emission at lattice 

temperatures of 80 K and 300 K. This scenario is addressed by Lundgren and Fiete's 

Equation (8), which models the heat transfer rate for kBT << Ef (where Ef is the Fermi 

energy): 

 

 
 

We now substitute a temperature and rate data point from Weber et al. into this 

expression to calculate the deformation potential D. Since the limit kBT << Ef is much 

more valid for T = 80 K than for 300 K, we use the former as the temperature 
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corresponding to the rate  γ = (3.1 ps)-1 for the purposes of application to Eq. (40). This 

yields the following value for D: 

 
This leads to the following value for the coefficient C: 

 
 

which yields the following heat transfer time for our model: 

 

 
 

As will be discussed in the next section, the lower bound for the baseline temperature T 

(which will also set the minimum value for the heat transfer rate) will be about 0.35 K. 

For this temperature, the above two methods yield a lattice heating timescale 

approximately ranging from 93 ns to 15 µs. 

 

It is worth comparing this timescale with the corresponding timescale for heat transfer 

between lattice phonons and bulk electrons (when the bulk is in the normal, non-

superconducting phase). Based on Eq. (6) of Lundgren and Fiete [25], this timescale 

would be on the order of 7000 seconds, well over 8 orders of magnitude longer than even 

the upper bound value for the transfer time from surface electrons to the lattice phonons. 

This difference can be attributed to the vastly greater available phase space area for the 

surface electron interaction. Consequently, any heat transfer from the phonons to the bulk 

electrons is insignificant compared to that from the surface electrons to the phonons. 
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V. PHOTON-NUMBER RESOLVING DETECTION 

We now describe the photon-number resolving detector scheme based on our theoretical 

findings. First, we address the question of whether the timescale for lattice temperature 

equilibration is much faster than the dissipation time through thermal conduction or radiative 

decay. Regarding the thermal conduction heat loss, we note that the contacts used for cooling the 

sample can be removed after the material reaches the refrigerator temperature. As a result, the 

heat dissipation time through thermal conduction will range on the order of several hours and can 

thus be ignored. Instead, we will focus on the radiative loss. Based on the results calculated for 

graphene, the electron-hole interband dipole moment for a 2D Dirac cone band structure is given 

as a function of photon radial frequency ω as follows [38]: 

 

 
 

Substituting this into the well-known radiative decay rate expression based on the Einstein 

coefficients [39], we find that the radiative rate varies linearly with ω: 

 

 
For frequencies up to 10 GHz, the radiative decay time is therefore 150 µs or greater. This is 

significantly longer than the electron-phonon heat transfer time calculated above, which is 15 µs 

or less, which in turn is much longer than the previously discussed electron-electron 

rethermalization time of tens of picoseconds [22]. Therefore, a rapid rethermalization of the 

electron population in the bands occurs before any radiative loss of the photoelectrons occurs. 

 

Next, we address the question of heat transfer from the surface electronic modes directly to the 

bulk electronic modes. This would constitute a loss process, since it reduces the heat absorbed by 
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the bulk phonon modes. We note that the aforementioned spatial separation between bulk and 

surface electronic states renders this process unlikely. It is also worth comparing the heat 

capacity of the bulk electron modes to that of the phonon modes. To this end, in the temperature 

range 0.35-0.45 K (just over 0.5Tc), the superconducting state features approximately the same 

heat capacity as the normal state extrapolated to that temperature range. As such, we use the 

collective electron energy expression shown in Eq. (6), this time using the 3D rather than 2D 

Dirac cone dispersion to derive the density of states ρ(E): 

 

 
 

where V denotes the bulk volume. Substituting into Eq. (6), we find the following bulk thermal 

energy as a function of temperature: 

 

 
 

The bulk heat capacity is calculated by taking the derivative with respect to the temperature T: 

 

 



 

40 

 
Figure 5: Resistivity (in megaohm-meters) versus temperature (in kelvins) for bulk Cd3As2. 
 

Comparing this to the phonon heat capacity (see Eq. (19)), we find that the phonon heat capacity 

is greater by a factor of approximately (vF/vs)3, i.e. more than 7 orders of magnitude. This 

massive disparity can be explained by the fact that near the Fermi level, the electron group 

velocity vastly exceeds the phonon group velocity, resulting in a far greater density of states for 

the phonon modes than for the electron modes. We thus conclude that the energy of the absorbed 

photons is safely transferred to, first, the rethermalization of the carrier band populations, and 

then, to the bulk phonon modes to elevate the bulk temperature. We now discuss how the bulk 

temperature is measured. Since the elevated bulk temperature will increase the bulk resistance of 

the superconducting bulk states as shown in Fig. 5, we measure the zero-bias resistivity across 

the bulk (using a lock-in amplifier) as a proxy for the temperature. This is advantageous relative 

to infrared-based bolometry since it does not perturb the electronic structure of the bulk, as well 

as due to the fact that electrical signals can be measured in ultrafast picosecond-range intervals 

[40]. We manufactured a Cd3As2 device to measure the superconducting bulk resistivity as a 

function of sample temperature. To this end, it is important to note the lower bounds for the 

dimensions of each Cd3As2 crystal. The goal of the device is to measure photons in the transmon 
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frequency range, i.e. 5 - 7 GHz [41, 42]. For a Dirac cone dispersion with Fermi velocity vF , a 

photon of frequency f is resonant with the band gap at the following band wavevector: 

 

 
 

Therefore, in order for resonance to exist at photon frequencies as low as 5 GHz, the maximum 

length of each Bloch state in reciprocal space must be ∆k ≈ 1.6 x 104 m-1, thus implying that the 

minimum length of the Cd3As2 surface along each dimension is 2π/∆k = 0.4 mm. We also 

assume that the depth of the lattice is limited by design constraints to a minimum value of 20 nm, 

since this is the minimum thickness that has been achieved with an MBE technique [14]. For a 

photon frequency of 5 GHz and crystal dimensions of 0.4mm by 0.4 mm by 20 nm, the single-

photon temperature gain is calculated by substituting the values N = 1, ω = π x 1010 s-1, and V = 

3.2 x 10-15 m3 into Eq. (21) and linearizing: 

 

 
 

For temperatures above our minimum refrigerator temperature of 0.25 K, the temperature gain 

due to the absorption of a single photon is below 6.5 nK, which confirms our previous 

assumption that ∆T << T.  

 

Finally, we use the single-photon temperature gain to determine the corresponding increase in 

bulk resistance. Figure 5 depicts the experimental values for zero-bias resistivity as a function of 

temperature in bulk Cd3As2 in the superconducting regime. For temperatures above 0.35 K, the 

resistivity steadily increases with temperature. We will therefore use 0.35 K to 0.45 K as the 

range of baseline temperatures for which we will determine the single-photon bulk resistance  
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Figure 6:  Plots of bulk resistance gain (in microohms) due to absorption of a single photon versus baseline 
temperature for photon frequencies f = 5; 10 GHz given sample dimensions 0.4 mm by 0.4 mm by 20 nm. 
 

gain. For a square lattice surface, the bulk resistance scales linearly with resistivity as 1/d, where 

d denotes the lattice depth. Therefore, the single-photon resistance gain relates to the slope of the 

resistivity with respect to temperature (dρ/dT ) and the single-photon temperature gain (∆T) as 

follows: 

 

 
 

For the aforementioned sample dimensions, d = 20 nm. Substituting the expression for ∆T from 

Eq. (50), we find that the single-photon resistance gain ∆R solely becomes a function of the 

baseline temperature T: 
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Figure 6 depicts the resistance gain due to the absorption of a single photon for baseline 

temperatures ranging from 0.35 K to 0.45 K for the selected photon frequencies of 5 GHz and 10 

GHz. For temperatures of 0.39 K and above, the single-photon resistance gain will be greater 

than 1 µΩ for photon frequencies as low as 5 GHz, an increase which is certainly measurable 

using a commercially available micro-ohm meter (such as the Keysight 34420A 

NanoVolt/Micro-Ohm Meter by Keysight Technologies) or with a Corbino geometry sample 

which can even measure sub-micro-ohm resistance [43]. This property can therefore be exploited 

in order to precisely determine the number of absorbed photons for a known frequency. 

 

It is worth discussing the effect of impurities on the properties of the detector. Normally, the 

presence of charged impurities would lead to a shift of the Fermi level away from the Dirac 

point, which in turn would degrade the performance of the detector by hindering photon 

absorption in the microwave frequency range. However, recent experiments have demonstrated 

that Cd3As2 is easily doped, either chemically [44] or electrostatically [45]. Therefore, the Fermi 

level of the surface state can be tuned so as to coincide with the Dirac point, as desired. Since the 

electronic structure of the surface is decoupled from that of the bulk, it is feasible to specifically 

dope the former while leaving the latter unaltered. 

 

Finally, we address the issue of dark count. Due to the cryogenic (sub-Kelvin) refrigerator 

temperature, the dark count should be negligible, as previously demonstrated for transition-edge 

sensors under similar temperature conditions [46]. Nonetheless, precise experimental 

determination of the dark count for the Cd3As2 detector would serve as an important topic for 

future research. 
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VI. DISCUSSIONS AND CONCLUSION 

We demonstrated a microwave photon-number resolving detector based on the topological 

surface states of Cd3As2 material. The number of photons absorbed is produced after measuring 

the increased resistivity of the superconducting bulk. For this, we derived in detail how much 

bulk temperature would elevate as a function of the absorbed number of photons and the photon 

frequency. We showed that the energy of the absorbed photon is rapidly transferred first to the 

rethermalized distribution of the surface state electron band population. Then, the electron band 

energy is quickly transferred to the bulk phonon modes through the deformation potential 

coupling. The bulk temperature is thus elevated, and finally, the superconducting bulk increases 

resistance, which is measured to resolve the absorbed number of photons. To address how 

quickly the energy is transferred from the surface electron to the bulk phonon modes, we derived 

the deformation potential electron-phonon coupling rate by calculating the transition matrix 

element and the phase space volume. As a result, we concluded that the coupling time constant 

ranged from nanoseconds to microseconds. Therefore, it is expected that the number of absorbed 

photons would be measured within several milliseconds after the absorption happens. 

 

Our proposed scheme accomplishes rapid photon detection based on quick (or even continuous) 

and accurate bulk resistance measurement. Direct measurement of the elevated temperature in 

bulk does not provide a feasible path due to the slow detection speed and the measurement noise 

in the extremely small differential temperature. It is essential to understand why the use of 

Cd3As2 bulk's semimetal feature for absorbing microwave photons is avoided. Recall that, if the 

baseline temperature is set above the critical temperature, the bulk's electronic bands do not open 

a gap, which allows the bulk electrons to be excited by the microwave photons. However, 

detecting the excited electron is extremely difficult for two main reasons. First, the bulk 

photoelectron may easily join the resistance-measuring current and be lost in the measurement 

process. Second, the photoelectron's energy transfer to the bulk temperature is extremely 

inefficient due to the reduced phase space of 3D electrons, risking the loss of photoelectrons via 

radiative decay rather than energy transfer to the bulk phonon modes. In contrast, the photon 

absorption from the surface state electrons almost surely transfers the energy to the bulk phonon 

modes. 
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Equally important is understanding the difference between our proposed scheme and an 

alternative device structure of a Dirac 2D material such as graphene on the surface of a bulk 

superconductor. A pure graphene layer indeed does not possess a superconductor state [47], and 

thus can be used as a Dirac cone photon absorber of microwave photons even at a very low 

temperature. However, it is more difficult to fabricate this device than Cd3As2 which 

simultaneously has both bulk superconductor and surface states. In addition, the hybrid structure 

suffers from inefficient electronic energy transfer to the bulk phonons due to the mismatch of 

lattice constants. Instead, as previous research on graphene single-photon detectors has shown, 

the inefficient electronic energy transfer to phonons is used for efficient capture of the 

photoelectron in the electrodes [48]. However, in this case, the photon-number resolving feature 

is lost. In comparison, our scheme utilizes the surface state electrons of Cd3As2 as a microwave 

photon absorber and the bulk superconductor of the same material for detecting the number of 

photons absorbed. The distinct advantage of our method is to provide a deterministic photon-

number resolving capability in microwave photon detection. It is also worth understanding the 

advantage that our scheme offers over traditional transition-edge-sensor (TES) based detectors. 

Due to the need for a significant voltage bias in measuring the resistance of the TES bulk, a large 

source-drain current is generated, causing undesired side effects such as flicker noise. A Cd3As2-

based detector avoids this issue by enabling zero-bias resistance measurement. 

 

We now discuss the design strategy of maximizing the photon absorption probability of the 

device. Note that each crystal surface features an absorption rate of 0.3-0.6%. Therefore, it is 

possible to have a near unity quantum efficiency if about 2000 bulk crystal layers are vertically 

stacked in a heterostructure (such that they are in series from the point of view of the incoming 

photon), while measuring the bulk zero-bias resistivity for each of the crystals separately. With 

the advent of more advanced manufacturing techniques, such heterostructure is increasingly 

becoming possible [50]. Another means of achieving the same goal is by placing a single-layer 

detector in an optical cavity bounded by high-reflectivity mirrors. Since Bragg mirrors can 

feature transmittance rates as low as 1 ppm [51], the total probability that a photon is lost through 

one of the mirrors will be negligible even after thousands of round trips through the cavity, thus 

ensuring a near-unity detector efficiency. 
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