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ABSTRACT

Single photon detection (SPD) plays an important role in many forefront areas of fundamental
science and advanced engineering applications. In recent years, rapid developments in
superconducting quantum computation, quantum key distribution, and quantum sensing call for
SPD in the microwave frequency range. We have explored in this LDRD project a new approach to
SPD in an effort to provide deterministic photon-number-resolving capability by using topological
Josephson junction structures. In this SAND report, we will present results from our experimental
studies of microwave response and theoretical simulations of microwave photon number resolving
detector in topological Dirac semimetal CdsAs,. These results are promising for SPD at the
microwave frequencies using topological quantum materials.
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1. INTRODUCTION

A single photon detector (SPD) can register a quantum object at an extremely minuscule energy
scale, for example on the order of 103 joule for a 10 GHz microwave photon. It has found
increasingly important applications in many forefront areas of fundamental science and advanced
engineering, ranging from studying the galaxy formation through the cosmic infrared
background to entanglement of superconducting qubits, single molecular spectroscopy, and
remote sensing. Most existing SPD’s are simple click detectors and can only detect either zero or
more than zero photons in a multiplexed configuration, being incapable to provide deterministic
photon number resolution of a light source. To solve this long-standing problem, a radically new
approach is required for high-speed deterministic photon-number-resolving SPD particularly in

the infrared and microwave frequency range.

We have explored in this LDRD project a new approach to SPD in an effort to provide
deterministic photon-number-resolving capability by using topological Josephson junction (JJ)
structures. In this SAND report, we will present results from our experimental studies of
microwave response and theoretical simulations of microwave photon number resolving detector
in topological Dirac semimetal Cd3As». These results are promising for SPD at the microwave
frequencies using topological quantum materials. As a result, nine new peer reviewed
publications were generated (with three additional manuscripts under review) during this LDRD,

highlighting the importance of this field of study.



2. MICROWAVE RESPONSE IN A TOPOLOGICAL
SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE

SPD has found increasingly important applications in many forefront areas of fundamental
science and advanced engineering applications, ranging from studying the galaxy formation
though cosmic infrared background to entanglement of superconducting qubits, single molecular
spectroscopy, and remote sensing [1,2]. In recent years, the rapid developments in
superconducting quantum computation, high fidelity quantum measurement, quantum key
distribution, and quantum network call for SPD in the microwave frequency range [3]. The
current SPD scheme has good sensitivity for photons in the high frequencies range (e.g., visible
light). However, their sensitivity decreases drastically for low-frequency, low energy, microwave
photons. As a result, the detection of single photons at this low frequency is highly prone to error

from classical noise.

Graphene single photon detectors (i.e., graphene superconducting JJs) have emerged as one new
platform to meet the needs of detecting single microwave photons [4,5]. It is capable of
performing SPD over a wide frequency range, particularly at the infrared and microwave
frequencies due to its linear energy dispersion relationship. Like graphene, the helical surface
states in Cd3Asz, a Dirac semimetal [6-8], also possess Dirac linear dispersion relationship. As a
result, Cd3As: is also sensitive to low-frequency microwave photons. Compared to graphene,
CdsAs> may be even more promising for microwave photon detection [9] based on the following
reasons. First, a higher electron mobility has been reported. Indeed, a mobility as high as 107
cm?/Vs has recently been reported in Dirac semimetal CdsAs; single crystals [10]. Second, they
can be readily grown by many conventional growth techniques, such as vapor transport [11],
MBE (Molecular beam epitaxy) [12], PLD (pulsed laser deposition) [13] techniques; this enables
their facile integration into any optical device structures, such as microwave cavities. Third, the
unique electronic and optical properties in Cd3Asz may allow for polarization-resolved photon
detection [14]. Fourth, superconductivity in CdzAs> thin films [15] and the supercurrent states in
CdsAs»-based JJs via the superconducting proximity effect [16-18] have been demonstrated,
receptively. This may make the adoption of the well-developed single photon detection schemes,

such as superconducting nanowires and transition edge sensors [2], possible in the Cd3As>



material system. Final, the helical surface states in topological semimetals, when combined with
conventional superconductors, can host Majorana zero modes, which can be used to construct
topological qubits. New single photon detection scheme utilizing Majorana zero modes have also
been proposed recently [19]. Together, the microwave single photon detection capability and

qubit operation is predicted to lead to high-fidelity quantum computation [20].

In this section, microwave response in this proximity induced superconducting state is presented
in a superconducting quantum interference device (SQUID) structure fabricated on CdsAs:, as
shown in the inset of Figure 1(a). In our SQUID device, a large photo response is observed at
various microwave frequencies ranging from 0.5 to 10 GHz. Our results are published in

Scientific Reports 11, 8615 (2021).

Device and Methods:

The mechanical exfoliation method is used to obtain flat and shiny Cd;As; thin flakes from the
initial bulk ingot materials. Information about the CdsAs: polycrystalline ingots can be found in
Ref. [16]. The thickness of the resulting exfoliated CdsAs; flakes is approximately 200nm. To
fabricate the alminimum-CdsAsz-almuninum SQUID, a two-step process is employed. First, a
CdsAs> flake is deposited on a Si/SiO; substrate (with SiO; thickness of 1 um). Then, e-beam
lithography is used to define the aluminum (Al) electrodes. The thickness of resultant Al
electrodes is 300 nm. A low-frequency (~ 11 Hz) phase-sensitive lock-in amplifier technique,
with an excitation current of 10 nA, is used to measure the sample resistance. To measure the
differential resistance, a large direct current (up to + 2pA) is added to the 10 nA a.c. current. The
entire device is immersed in cryogenic liquid; all measurements are carried out at the cryogenic

temperature of ~ 0.25K.
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Figure 1: (a) The temperature dependence of the junction resistance in a superconducting quantum interference
device (SQUID). The insert shows the SQUID device fabricated on a Cd3As2 thin flake. Th scale bar is 1 pm. (b)
The current-voltage (I-V) curve measured in the SQUID. The critical current is ~ 1 p A. (c¢) The two-dimensional
color plot of I-V traces as a function of magnetic fields at 0.44K. The red color represents a positive Vdc, blue for
negative Vdc. The green area represents the supercurrent regime. (d) The schematic setup (dimension not to scale)
used to examine microwave response

Results and Discussion:

Figure 1a shows the temperature dependence of the SQUID resistance Rxx. At high temperatures,
the Rxx is nearly constant. The drop at T ~ 1.2K is due to the onset of the superconductivity in the
aluminum electrodes. Rxx continues to decrease slowly from 1.2K to ~ 0.55K. After 0.55K, Rxx
drops precipitately and reaches a zero-resistance state at T ~ 0.35K. We thus take 0.55K as the
superconducting transition temperature (Tc). Direct current-voltage (I-V) measurements in this
junction is shown in Figure 1b. For large d.c. currents Ipc, the I-V curve follows a linear
dependence. From the slope of this straight line, a normal state resistance of R, = 75 Q2 can be
deduced. Extrapolating the line to zero V¢, we obtain an excess current of ~ 0.08 nA. Assuming

the two JJs in the SQUID are identical and taking into account the superconducting gap of A =
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1.75ksT., we can estimate the barrier strength Z ~ 1 in our SQUID, based on the calculations in
the paper by Flensberg et al [21,22]. Correspondingly, the junction transparency T = 1/(1+Z?) is
estimated to be ~ 0.5. In the small Ipc regime of |Ipc| < 1 pA, the voltage across the junction Ve

is zero, demonstrating the robust supercurrent states. The critical current is approximately 1pA.

Figure 1c shows the magnetic field dependence of the I-V data in this SQUID. Periodic
oscillations of the critical current are clearly seen, as expected for a conventional SQUID. The
period is estimated to be ~ 1.8 mT. This corresponds to an effective SQUID area of ~ 1.1 um?, as
illustrated by the dashed square in the inset of Fig. 1a. We note that in a small SQUID the
effective area is often larger than the middle open area, due to the flux compression effect by the
surrounding electrodes [23]. Another feature in Fig. 1c is the envelop of the oscillatory pattern

being modulated by the Fraunhofer diffraction pattern of the single JJ in the SQUID.

To examine the microwave response in our SQUID device, a setup shown schematically in
Figure 1d is utilized. An Agilent 83592B sweep generator is used to generate microwave
photons, which are conducted through a semirigid coax cable. The end of coax cable is located
about 5 mm above the sample surface. The microwave power is tuned at room temperature; the

exact microwave power at the end of coax cable is not known.
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Figure 2: (a)-(c) The differential resistance measured at three selected microwave frequencies, 0.5, 7, and 10 GHz.
At each frequency, the microwave power is also varied. (d)-(f) The zero-bias resistance as function of microwave
power at 0.5, 7, 10 GHz, respectively.

The differential resistance dV/dI as a function of d.c. current bias (Ipc) in this SQUID is
measured and reported in Figures 2a, 2b, and 2c; it has been collected at the three selected
microwave frequencies of 0.5, 7, and 10 GHz, respectively. Additionally, the microwave power
was varied at each frequency. The SQUID shows a large response at both the zero and also the
finite d.c. bias. In this paper, we will focus on the microwave response at the zero-bias current.
Other features, such as the Shapiro steps [24] at non-zero d.c. bias, merits more detailed studies

and will be discussed elsewhere.

A general trend is seen when the resistance as a function of microwave power for each
microwave frequency is plotted, see Figures 2d-f. At low microwave powers, the resistance is
approximately zero. With further increase in microwave power, resistance becomes non-zero and
starts increasing. We note here that the onset microwave power (in dBm) for non-zero dV/dlI is
different for different microwave frequencies, e.g., -33 dBm for f= 0.5 GHz and -16 dBm for f=
7 GHz. This is mainly due to different power attenuations at different frequencies through the

semi-rigid coax cable we used in the measurements.
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Figure 3: The effective junction temperature as a function of microwave power at 0.5 (a), 7 (b), and 10 (¢) GHz.

Overall, the microwave power dependence of the zero-bias resistance shows a similar trend to its
temperature dependence, seen in Fig. 1a. The zero-bias resistance is zero at low microwave
powers (versus zero resistance at low temperatures). After an onset microwave power, the zero-
bias resistance increases with increasing microwave power. This, again, is like the temperature
dependence, in which the resistance increases with increasing temperature after a critical

temperature. The similarity suggests that the increase of zero bias resistance probably is of a
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bolometric origin, i.e. due to the increasing temperature upon microwave photon absorption.
Based on this assumption, it is possible to deduce the effective electron temperature at various
microwave powers by relating the resistance value with the temperature dependence from Fig.

la.

It is important to note that this procedure works well for mid-range microwave powers, where
the resistance is finite and has not reached the normal state resistance. For lower microwave
powers, the resistance is zero thereby rendering it difficult to determine the effective electron
temperatures. For higher microwave powers, or higher electron temperatures, the resistance
change is gradual, and the error bar is relatively large. In Figure 3, a plot shows the effective
electron temperature as a function of mid-range microwave power (in a logarithmic scale). It is
clearly shown that the effective temperature increases roughly linearly with increasing

microwave power (in the logarithmic scale).

The above result, i.e., effective temperature increasing with increasing photon energys, is
promising for microwave photon detection. Indeed, with further optimization of microwave
coupling structure, for example through utilization of a meander line [25], quarter wave
resonator [4], or log periodic antennas [26], measurements can be done at much lower
microwave power level, which may provide more support for single photon detection with
number resolving [9, 27] capability. Compared to other superconducting photon detectors, such
as transition edge sensors (TESs), the photon detection in this device is done by the zero-bias
resistance, thus avoiding a large source-drain current needed, for example, in a TES structure
[28]. Consequently, issues caused by the large source-drain current, such as the flicker noise, are

greatly reduced.

Conclusion:

In summary, a large microwave response has been observed in a superconducting quantum
interference device fabricated on Dirac semimetal Cd3As: thin flakes, in which the temperature
dependence and microwave power dependence of the junction resistance are studied. The

effective temperature of the junction device under microwave radiation increases with increasing

13



microwave power (in the logarithmic scale). This result may pave the way of single photon

detection at the microwave frequency in topological quantum materials.

14



REFERENCES

[1]
2]
[3]

[4]

[5]

[6]
[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

Hadfield, H.R. Single-photon detectors for optical quantum information applications.
Nature Photonics 3, 696 (2009).

Eisaman, M.D., Fan, J., Migdall, A. & Polyakov, S.V. Invited Review Article: Single-
photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).

Kurpiers, P., Magnard, P., Walter, T., Royer, B., Pechal, M., Heinsoo, J., Salathé¢, Y., Akin,
A., Storz, S., Besse, J.-C., Gasparinetti, S., Blais & Wallraff, A. Deterministic quantum
state transfer and remote entanglement using microwave photons. Nature 558, 264 (2018).
Walsh, E.D., Efetov, D.K., Lee, G.-H., Heuck, M., Crossno, J., Ohki, T.A., Kim, P.,
Englund, D. & Fong, K.C. Graphene-Based Josephson-Junction Single-Photon Detector.
Phys. Rev. Applied 8, 024022 (2017).

Koppens, F.H.L., Mueller, T., Avouris, Ph., Ferrari, A.C., Vitiello, M.S. & Polini, M.
Photodetectors based on graphene, other two-dimensional materials and hybrid systems.
Nature Nanotechnology 9, 780 (2014).

Young, S.M., Zaheer, S., Teo, J.C.Y., Kane, C.L., Mele, E.J. & Rappe, A.M. Dirac
Semimetal in Three Dimensions. Phys. Rev. Lett. 108, 140405 (2012).

Wan, X., Turner, A.M., Vishwanath, A. & Savrasov, S.Y. Topological semimetal and
Fermi-arc surface states in the electronic structure of pyrochlore iridates. Physical Review
B 83, 205101 (2011).

Lee, S.R., Sharma, P.A., Lima-Sharma, A.L., Pan, W. & Nenoff, T.M. Topological
Quantum Materials for Realizing Majorana Quasiparticles. Chem. Mater. 31, 26 (2019).
Chatterjee, E., Pan, W. & Soh, D. Microwave Photon Number Resolving Detector Using
the Topological Surface State of Superconducting Cadmium Arsenide. ArXiv:2009.02096
(2020).

Liang, T., Gibson, Q., Ali, M.N., Liu, M., Cava, R.J. & Ong, N.P. Ultrahigh mobility and
giant magnetoresistance in the Dirac semimetal CdszAsz. Nature Materials 14, 280 (2015).
Ali, M.N., Gibson, Q., Jeon, S., Zhou, B.B., Yazdani, A. & Cava, R.J. The Crystal and
Electronic Structures of Cd3As, the Three-Dimensional Electronic Analogue of Graphene.
Inorg. Chem. 53, 4062 (2014).

Schumann, T., Galletti, L., Kealhofer, D.A., Kim, H., Goyal, M. & Stemmer, S.
Observation of the Quantum Hall Effect in Confined Films of the Three-Dimensional Dirac
Semimetal Cd3As;. Phys. Rev. Lett. 120, 016801 (2018).

Uchida, M., Nakazawa, Y., Nishihaya, S., Akiba, K., Kriener, M., Kozuka, Y., Miyake, A.,
Taguchi, Y., Tokunaga, M., Nagaosa, N., Tokura, Y. & Kawasaki, M. Quantum Hall states
observed in thin films of Dirac semimetal Cd3As2. Nature Communications 8, 2274
(2017).

Conte, A.M., Pulci, O. & Bechstedt, F. Electronic and optical properties of topological
semimetal Cd3As>. Scientific Report 7: 45500 (2017).

Oveshnikov, L.N., Davydov, A.B., Suslov,A.V., Ril’, A.L., Marenkin, S.F., Vasiliev, A.L.
& Aronzon, B.A. Superconductivity and Shubnikov - de Haas effect in polycrystalline
CdsAs; thin films, Scientific Reports 10: 4601 (2020).

15



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Yu, W., Pan, W., Medlin, D.L., Rodriguez, M.A., Lee, S.R., Bao, Z.-Q. & Zhang, F. m and
4r Josephson Effects Mediated by a Dirac Semimetal. Phys. Rev. Lett. 120, 177704
(2018).

Wang, A.-Q., Li, C.-Z., Li, C., Liao, Z.-M., Brinkman, A. & Yu, D.-P. 4n-Periodic
Supercurrent from Surface States in Cd3As2 Nanowire-Based Josephson Junctions. Phys.
Rev. Lett. 121, 237701 (2018).

Yu, W., Haenel, R., Rodriguez, M.A., Lee, S.R., Zhang, F., Franz, M., Pikulin, D.I. & Pan,
W. Zero-bias conductance peak in Dirac semimetal-superconductor devices. Phys. Rev.
Research 2, 032002 (2020).

Chi, F., He, T.-Y., Wang, J., Fu, Z.-G., Liu, L.-M., Liu, P. & Zhang, P. Photon-Assisted
Transport Through a Quantum Dot Side-Coupled to Majorana Bound States. Front. Physics
8,254 (2020).

Opremcak, A., Pechenezhskiy, I.V., Howington, C., Christensen, B.G., Beck, M.A.,
Leonard Jr., E., Suttle, J., Wilen, C., Nesterov, K.N., Ribeill, G.J., Thorbeck, T., Schlenker,
F., Vavilov. M.G., Plourde, B.L.T. & McDermott, R. Measurement of a superconducting
qubit with a microwave photon counter. Science 361, 1239-1242 (2018).

Flensberg, F., Hansen, J.B. & Octavio, M. P Subharmonic energy-gap structure in
superconducting weak links. Phys. Rev. B 38, 8707 (1988).

Bai, M., Yang, F., Luysberg, M., Feng, J., Bliesener, A., Lippertz, G., Taskin, A.A., Mayer,
M. & Ando, Y. Novel self-epitaxy for inducing superconductivity in the topological
insulator (Bi1—xSbx)>Tes, Phys. Rev. Materials 4, 094801 (2020).

Qu, F., Yang, F., Shen, J., Ding, Y., Chen, J., Ji, Z., Liu, G., Fan, J., Jing, X., Yang, C. &
Lu, L. Strong Superconducting Proximity Effect in Pb-Bi2Te; Hybrid Structures. Sci. Rep.
2,339 (2012).

Michael Tinkham, Introduction to superconductivity, McGraw-Hill, New York, NY, USA
1996.

Ye, P.D., Engel, L.W., Tsui, D.C., Lewis, R.M., Pfeiffer, L.N. & West, K. Correlation
Lengths of the Wigner-Crystal Order in a Two-Dimensional Electron System at High
Magnetic Fields. Phys. Rev. Lett. 89, 176802 (2002).

Dyer, G.C., Aizin, G.R., Preu, S., Vinh, N.Q., Allen, S.J., Reno, J.L. & Shaner, E.A.
Inducing an Incipient Terahertz Finite Plasmonic Crystal in Coupled Two Dimensional
Plasmonic Cavities. Phys. Rev. Lett. 109, 126803 (2012).

Roy, K., Ahmed, T., Dubey, H., Sai, T.P., Kashid, R., Maliakal, S., Hsieh, K., Shamim, S.
& Ghosh, A. Number-Resolved Single-Photon Detection with Ultralow Noise van der
Waals Hybrid. Adv. Mater. 30, 1704412 (2018).

Gerrits, T., Calkins, B., Tomlin, N., Lita, A.E., Migdall, A., Mirin, R. & Nam, S.W.
Extending single-photon optimized superconducting transition edge sensors beyond the
single-photon counting regime. Optical Express 20, 23798 (2012).

16



3. MICROWAVE PHOTON NUMBER RESOLVING DETECTOR USING
THE TOPOLOGICAL SURFACE STATE OF SUPERCONDUCTING
CADMIUM ARSENIDE

I. INTRODUCTION

Photon number resolving detectors have been explored significantly over the past decades [1-3]
due to the dire need for resolving the number of photons in applications such as the security of
quantum communications [4, 5] and the sensitivity of quantum sensing [6]. As photon-based
quantum computing advances, precise resolution of photon number detection is increasingly
important. Microwave photons are the backbone of prolific transmon quantum computation, and
therefore, detection of the microwave photons is tremendously important in the current quantum
computing paradigm [7]. Several non-number-resolving techniques to detect microwave photons
have been developed, including the circuit QED technique [8], dressed-state superconducting
quantum circuit [9], current-biased JJ [10], and the dark-state detector [11]. It is well-known that
building a parallel detection system, first splitting the light path using beam splitters and then
using non-number-resolving detectors in each parallel path, may provide a probabilistic photon
number resolving detection, which is further limited due to the loss associated with
parallelization. In contrast, a single photon-number resolving detector with a deterministic
photon number resolution would provide a immense advantage particularly in photonic quantum
computers by reducing the error-correcting overhead. To the best of our knowledge, a single-
device photon-number resolving detector that can simultaneously detect multiple incoming

photons at microwave frequency has not been reported so far.

Here, we propose a photon-number resolving detector operating at microwave frequencies, based
on the topological surface states of cadmium arsenide (Cd3Asz). Semimetals such as graphene
provide an ideal detecting material for microwave photons due to their zero band gap. Recently,
Dirac and Weyl semimetals with Dirac cone dispersion have gained prominence due to high
mobility [12], along with the fact that they can be synthesized through conventional techniques
[13-15]. Particularly, Cd3As: displays proximity-induced bulk superconductivity at low
temperatures, and the electronic structures of the bulk and the topological surface states are
decoupled. Maintaining the Cds3As> semimetal material at a very low temperature is necessary for

an efficient photon-induced electron excitation to a conduction band just above the Fermi level

17



due to the low photon energy. The bulk state enters a superconducting state at a sufficiently low
temperature, opening a band gap beyond the microwave photon energy. Fortunately, the
topological surface state of Cd3As: is not affected by the temperature, continuing to provide a
gapless Dirac cone. We use this topological surface state as a photon absorber. Once the photon
is absorbed, a rapid rethermalization in band population occurs with a new elevated temperature
corresponding to the absorbed photon energy. We then utilize the fact that the redistributed
electron population transfers its energy to the bulk's phonon modes via a surface electron-bulk
phonon coupling, thus increasing the bulk's temperature. The elevated bulk temperature then
reduces the conductance of the superconducting bulk electron state, which is measured and used
to eventually indicate the number of photons absorbed. Results are published in Phys. Rev.

Research 3, 023046 (2021).

hw

(112) Surface

(-) Electrode
T Al

(+) Electrode
I

Figure 1: Basic layout for the Cd;As, photon number resolving device. At low temperatures, the bulk becomes
superconducting due to the material's proximity to superconducting aluminum, while the (112) surface retains a
graphene-like dispersion. A photon (depicted by the arrow) is absorbed by the surface electrons. The change in bulk
resistivity (measured by the electrodes at zero bias) is used to determine the temperature increase. Note that the Al
bars are positioned in the out-of-plane direction with respect to the Cd3As, material.

II. PHOTON ABSORPTION IN TOPOLOGICAL SURFACE STATE
The setup for the device is depicted in Fig. 1. The system is based on a CdzAs: crystal inside a

low-temperature refrigerator with a baseline temperature below the bulk superconducting critical
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temperature. Recent experimental findings have demonstrated that CdsAs> features a topological
surface state on the (112) surface with a linear band crossing around the Dirac points [16, 17].
This graphene-like surface state band structure at low energy can be attributed to the fact that
sites consisting of stacked As and Cd atoms approximately form a honeycomb superlattice on the
(112) surface [13]. As with graphene, the dispersion relationship can be expressed as the

following linear function of the wavevector k when the Fermi level is at the Dirac point:

E.(k) = £hvp|k|, (1)

where h is the Planck constant, ¢ and v represent the conduction and valence bands, respectively,
and vF denotes the Fermi velocity, which is approximately 10° m/s. [16, 18]. At low
temperatures, if the material is in proximity to superconducting aluminum (Al), the surface state
electrons are decoupled from the bulk state, and the bulk becomes superconducting below 0.7 K
while the surface retains its semimetallic property [19]. We measure the superconducting gap
frequency fgap near zero temperature (T =21 mK) and at T = 0.39 K from Figs. 2(a) and 1(d) of
Yu et al. [19]. For the case of near-zero temperature, the gap is measured as 0.113 meV
(corresponding to a frequency of 27 GHz), while at 0.39 K, the gap amounts to 0.088 meV
(corresponding to 21 GHz). The resulting band structures for the superconducting bulk and the
topological surface state are compared in Fig. 2. Note that this proximity-induced
superconducting gap is smaller than the gap predicted from BCS theory [20], which would equal
about 50 GHz for a critical temperature around 0.7 K. Nonetheless, even for temperatures as high
as 0.35-0.45 K, photons of microwave frequency below approximately 20 GHz will be absorbed
solely by the surface state. Since we are primarily interested in microwave photons of frequency
5-10 GHz, this satisfies our goal of using the surface as the absorber and the bulk as the

thermometer.

In order to derive the absorption probability, we consider the physical manifestation of the Dirac
cone on the nature of the Bloch states. As in graphene, each electronic state in the vicinity of a
Dirac point can be conceptualized as a massless Dirac fermion with a well-defined momentum

hk, where k represents the wavevector of the electronic state in the reciprocal space for which the
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Figure2: Band structures for the superconducting bulk (purple curves) and the topological surface state (blue
straight lines). Note that a gap of frequency fg,p is opened in the bulk, while the surface state remains gapless, thus
restricting the absorption of photons at microwave frequency f, to the surface state.

Dirac point is the origin. Therefore, the absorption coefficient for Cd3Asz will equal the

corresponding value for graphene [21]:

e2 hew hw
Alw) = I Y )
)= Theoe f( 2') f(?')

= ¢ tanh fuwo
"~ Adhege 4kpT )’

where e is the charge of an electron, g is the vacuum permittivity, ¢ the speed of light, and
f(E;T) denotes the Fermi-Dirac electron occupation probability at energy E for temperature T.
Note that the absorption coefficient (as a function of photon frequency) is invariant with respect

to the Fermi velocity. This is because the interband dipole matrix element (corresponding to the
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absorption probability for a single electronic state) increases with the Fermi velocity, while the
density of states decreases with it, eventually canceling each other's effect. At high frequencies
(ho >> kgT), the absorption coefficient (i.e., the quantum efficiency for a single pass through a
single Cd3As; crystal) is approximately invariant with frequency, equaling a constant value of
e?/(4heoc) = 2.3%. On the other hand, at low frequencies on the scale ho < kBT, the coefficient
becomes attenuated, reaching a minimum value of zero as the Dirac cone is approached. We will
use an upper bound base-line temperature of 0.45 K, which will set the minimum quantum
efficiency for photons of a given frequency interacting with a single crystal. For microwave
frequencies ranging from 5-10 GHz, Eq. (2) implies a single-crystal quantum efficiency ranging
from 0.3-0.6%. build credible real use cases of the proposed scheme. In the final section, we
summarize our results and suggest the path toward building a photon-number resolving detector

with near-unity efficiency on a chip.

III. TEMPERATURE INCREASE VS. ABSORBED PHOTON NUMBER

Having determined the probability that the topological surface state absorbs a photon from an
incoming field, our next step is to determine how the absorption of a single photon increases the
temperature of the 3D bulk sample. When a photon excites an electron to the conduction band, a
rapid rethermalization of the Fermi-Dirac distribution through electron-electron interaction
ensues, leading to an electron temperature above the lattice temperature. For undoped monolayer
graphene, which features a band structure approximately identical to that for the Cd3As2 surface
state, this process occurs in tens of picoseconds for cryogenic baseline temperatures [22]. The
carrier rethermalization is followed by heat transfer from the collection of electrons to the lattice
via electron-acoustic phonon interaction, until a thermal equilibrium is reached between the
electron temperature and the lattice temperature. Generally, the interaction between electrons and
acoustic phonons is much slower than the electron-electron interaction [23-25]. Afterward, the
Fermi-Dirac distribution for the electron bands and the Bose-Einstein distribution for the phonon

branches will comply with the same temperature.
We now determine the temperature increase due to the absorption of a photon of frequency ® by

calculating the portion of the imparted energy that is eventually converted to bulk lattice

vibrations (i.e., the phonon modes) and to the surface electron modes, and by deriving the heat
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capacity of the two systems. We will make two important assumptions here: first, that the
electron-electron interaction rate dominates over the radiative loss rate of the electrons (which
we will demonstrate in a later section), and second, that the very low values for the initial and
final temperatures ensure that virtually all of the phonons are located in the low-energy linear
parts of the acoustic branches, thus allowing for use of the Debye approximation [26] in

determining the heat capacity.

A. Energy Gain for Surface Electron Modes: We start by writing out an expression
corresponding to energy conservation in the system given the absorption of a photon of

frequency o:

hw = AUe + AUpp, (3)

where AU and AUjp; represent the total energy gained by the topological surface electron
modes and the bulk phonon modes, respectively, at equilibrium. We focus first on the
energy gain for the electron modes as a function of electron temperature, as this will be
necessary for calculating the initial electron temperature gain after photon absorption but
prior to heat transfer to the lattice. The total electron energy with respect to the Fermi sea is
calculated by taking a sum of the conduction and valence band energies weighted by the
Fermi-Dirac occupation probabilities (multiplied by 2 to account for the fact that each

spatial state contains 2 spin states):

Ua(T) =2 (Ec,kf(Ec.k, T)— oo (1= 1 (Eu T))) .
k
(4)
The first term corresponds to the energy gained in creating a conduction band electron,
while the second term corresponds to the energy gained in creating a valence band hole.

Since the deviation from the Fermi sea at low temperatures is concentrated in the vicinity

of the Dirac cone, we can assume that the linear isotropic dispersion relationship in Eq. (1)
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holds for the entire relevant wavevector range. Therefore, the summation over wavevectors
can be replaced by an integral over the density of spatial states (p. and pv for the

conduction and valence bands, respectively):

UEE(T) — 2 / {—IE'L';GU (E11)(_EL) J_ - E‘L‘;
J0 EEBT _I_ 1
o J_
J0 ekBT _|_ 1

(5)

Since the conduction and valence band energies are opposite at each wavevector, we can
express Uel as a single integral over the energy absolute value E, where Ec = E and E, = -E.

Due to the equivalent magnitudes of the dispersion slope for the conduction and valence

bands at each wavevector, we can further define a general density of states p(E) = pw(E) =

pe(B):

Ua(T) = 2 / dEp(E)E(1— —
Jo e FBT 1
+ 2/ dEp(E)E—F— (6)
J0O eFrT + 1

e_“‘BE_"‘"%—l

E .
cosh (m) +1

—o [ dENE)E
/D p(E)

The density of states at band energy E can be solved by applying the dispersion relationship

as follows:
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A

——F
2mh2v%

where A is the surface state area, Ak is the area in the reciprocal space associated with the

value k = |k|, and N is the number of states. As expected for the graphene-like band

structure, the density of states is linear in the energy. We are thus in a position to solve for

the electron energy U.(T) as a function of temperature T:

00 e T4
UEE(T):%/ anp?_© (B 431
TV Jo cosh +1
(8)
A
= oz k) 13¢(3),

where C represents the Riemann zeta function, with {(3) = 1.2. This implies that the
electron temperature varies with the total electron energy as Ue'?, and the relationship

between the gain in electron energy and the temperature change from T; to Tr takes the

following form:

36Ak3 3

For detecting a moderate number of microwave photons, we are primarily interested in the

limit AT(= Tr-Ti) << T; where T1 > 0.1 K. In that limit, the cooling power Q for the
electron modes is related to the rate of change of the temperature by taking the derivative

of AU, with respect to time, yielding the following function of the temperature T ~ Ti:
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Q=— ST (10)

d 3.6Ak38 73) — 10.8 Ak3 dT
dt Th2v%, dt

2 i2
Thvg

B. Energy Gain for Bulk Phonon Modes: Next, we look to determine how the energy gained
by the lattice vibrations relates to the lattice temperature. In general, the total phonon
energy is determined as a function of temperature by summing over the modes
corresponding to various phonon branches p and phonon wavevectors q, weighted by the

occupation number <ny > for each phonon mode:

Upn(T) = Z Z (1,q(T)) Ny q (11)

I

where L4 1S the frequency of the phonon mode of branch p and wavevector q, and the

occupation number at a given temperature T is calculated from the Bose-Einstein

distribution:
. 1 L
(nu,q(T)) = Fopa (12)
e FBT _— 1

As previously mentioned, the fact that the sample is in the low-temperature regime
(below 0.5 K) indicates that the Debye model, with its assumption of a linear phonon
dispersion, is approximately valid for the phonon modes with non-negligible occupation
numbers. Therefore, we can restrict the summation over branches to just the 3 acoustic
branches (corresponding to the 3 polarizations). In general, the slope of each of these
branches is slightly anisotropic in reciprocal space due to the varying angle between the
polarization and propagation directions. However, per the treatment in Kittel [27], we can
approximate the composite effect of the 3 branches on the summation in Eq. (11) as

equivalent to a summation over 3 isotropic branches, each featuring a slope of vs (i.e., the
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speed of sound in the material), such that:

;I' y
Upn(T) =3 # (13)

qg eFBT 1

where mq = vsq, and the speed of sound v for CdsAs: is estimated as 2.3 x 10 m/s [25].

We now replace the summation over wavevectors with an integral over the density of
states for each branch in terms of frequency, D(®). For a 3-dimensional lattice with a

speed of sound vs, this density is determined as follows:

dN dV, dq

dV, dq dw

D(w) =

where V is the bulk volume of the lattice and V4 is the volume in the reciprocal space
associated with q = |q|. We therefore solve for the total phonon energy as a function of

temperature through the following integral:

hw

Upn(T) = 3/ dwD(w)——
Jo

ek BT _ 1

3Vh [ 3
= : / dw“i
0

2,3 ’
2T (I BT _ 1
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Note that the expression differs from that in Kittel in that we use o instead of a specific
Debye cutoft for the upper bound of the frequency range. As in the case of the integral
over energy for the electronic modes in the previous section, this is justified by the rapid
convergence of the integrand to 0 at very low temperatures [28], corresponding to the fact
that only the linear regime of the acoustic branches are non-negligibly occupied. Then,

we find the following result:
o\
VELT* [ [ hw (A';WT)
Un(T) = —B__ d
ph( ) 2203 k3 -/0 (kBT) ef_w e
(BVELTH (7
o\ 2m2e3nd S\ 15

Unlike the total surface electron energy, which scales as T°, the total bulk phonon energy

scales as T*. This difference can be attributed to the fact that the surface is 2D whereas the
bulk is 3D, having more degrees of freedom, thus implying that all else being equal, a
given change in energy would have a weaker effect on bulk temperature than on surface
temperature. The change in the total phonon energy can therefore be related to the initial

and final temperatures T; and Tr as follows:

VY frn o _
A[.’Tphzm(rf—ﬂ) (1()

Note that, for a prism-shaped sample (such as a thin film) for which the surface state forms
one of the two bases for the prism, the bulk volume is proportional to the surface area as V

= Ad, where d represents the sample thickness.

C. Energy Gain for Bulk Phonon Modes: Having derived the energy gain for the surface
electron and the bulk phonon modes for given initial and final temperatures, we now seek
to compare the specific heat values for the two mode types in order to glean an

understanding of how the excess thermal energy is distributed between the modes. From
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the result in Eq. (9), the specific heat for the collection of surface electrons is determined

as follows:

(HJ'TE_@ o J.USAk‘?'B T2

dT ~ wh?v% (18)

CE.I (T) —

The specific heat for the bulk lattice is calculated in an analogous manner from the result in

Eq. (17):

AUy, 272VEL

= 19
drT Shdv3 (19)

Cph-(T) =

Using the relationship V = Ad, where d denotes the bulk depth of the lattice, we divide Eq.
(19) by (18) in order to determine the ratio of the specific heat values for a given

temperature:

Cph(f) ?F”fg'?.ig—-.
=" B Ry
CE:E (T) 2 I’h-'l-‘s (20)

— (1.24 % 103 K‘1111‘1)Td.

Since the baseline refrigerator temperature is at least 0.25K, this sets the minimum value
for T. The lattice depth d must be at least multiple times longer than the lattice constant,
which is 3 - 5 A for Cds;As; [29]. Therefore, the phonon specific heat is far higher than the
electron specific heat (by at least 3 orders of magnitude), indicating that nearly all of the
thermal energy gained from the photon absorption is eventually stored in the lattice
vibrational modes. As such, if N photons of frequency o are absorbed, then the relationship
between the final equilibrium temperature Tr and the initial temperature T can be

determined from Eq. (17):
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Figure 3: Plots of temperature gain (in nanokelvins) versus density of absorbed photons (per 10713 m?) for baseline
temperatures Ti = 0.35; 0.40; and 0.45 K given a photon frequency f =5 GHz.
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As this expression shows, the determinitive factor in the temperature increase is the total
photon energy absorbed per unit volume of the lattice, which is proportional to No=V . We
plot the temperature gain as a function of photoelectron density N=V for 3 different
baseline temperatures 0.35 K, 0.40 K, and 0.45 K, for an input photon frequency of 5 GHz
(corresponding to ® = x 10'° s in Fig. 3. Note that for low photon densities such that
the temperature gain is small compared to the baseline temperature, the relationship
between temperature gain and photon density is approximately linear, as expected. The

imbalance between the electron and lattice specific heat values also has significant

implications for the heat transfer between the electron and phonon distributions that
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ultimately yields the equilibrium state. In particular, when comparing the quasiequilibrium
electron and lattice temperatures to the final equilibrium temperature for the whole system,
the equilibrium temperature will be much closer to the quasiequilbrium lattice temperature
than to the electron temperature. We consider the timescale for the electron-lattice heat

transfer as a function of temperature in the next section.

IV. ELECTRON-PHONON INTERACTION TIMESCALE

Having derived the equilibrium temperature for the bulk lattice upon photon absorption, we now
aim to estimate the timescale over which that equilibrium is reached. As previously mentioned,
this energy transfer takes place in two steps: a rapid electron-electron rethermalization, followed
by heat transfer from the electrons to the acoustic vibrations of the lattice (which is much slower
than the electron-electron interaction [23-25]). Here, we will focus on the latter process, since it
serves as the limiting factor in setting the minimum timescale for reaching equilibrium. The heat
transfer timescale between bulk electrons and lattice phonons in Cd3As; has been the subject of
recent analysis [25, 30], and here we will build on that analysis to solve for the heat transfer
timescale between surface electrons and lattice phonons. We will characterize the available
phase space area for bulk phonon emission by the surface electrons, derive the matrix element
for the electron-phonon interaction, and finally calculate the rate for the electron-phonon heat

transfer.

A. Phase Space: We start by examining the available phase space for the interaction
between 2D surface state electrons and the bulk phonon modes. Unlike the spherical
equal-energy manifolds for the 3D Dirac cone carrier modes, the 2D Dirac cone
electron modes take a cylindrical equal-energy manifolds, with a degree of freedom in
the kz-direction (corresponding to the axis perpendicular to the surface). We therefore
use cylindrical coordinates, expanding the final electron wavevector p as (p cos6p;
sinBp; p,) and the initial wavevector k as (k; 0; 0). In this coordinate system the emitted

phonon wavevector q can be expanded as follows:

q=k—p=(pcosbp — k,psinby, p.). (22)
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Figure 4: Depiction of the phase space area of final electronic states for a given initial state k = (k; 0; 0), including
the 2D cross-section of the phase space along the pxpy-plane (a) and the phase space along the p,-axis (b). The phase
space forms a double cone, with a base of radius k on the pxpy-plane, and tapering off in the +p, and -p, directions
with a length of vek/v, along each. Note that the base versus height ratio for the double-cone in (b) is not to scale.

Note that the bulk phonon's equal-energy manifolds retain a 3D spherical shape defined

by w = vsq. We map this onto the electron's manifolds using energy conservation:

vpk —vpp = fus\/(pcos Op — k)2 + p2sin? 0, + p2. (23)

Squaring both sides and solving for p, we find that p varies with both 6, and p.:

p=k|1+ A(6p)
(24)

12

2 z 2
-/ (1+26) _1+(u§_vg)ﬁ ’

where A(D,) is defined as follows:

2 a2
vy — vicoslp

A(ap) — )

] ‘2
Up — Vg

—1. (25)
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For our material, vs << vg , thus yielding A(8,) << 1 for all 6,. Therefore, p can be

approximately expressed as solely a linear function of p.:

Ug

p~k——|p.| (26)

v

Geometrically, the available phase space can be envisioned as pair of cones aligned along
the p -axis, with the bases overlapping at p, = 0, as depicted in Fig. 4. The radius attains
is maximal value of k at p, = 0 and tapers o as the magnitude of p, increases. The vertices

are reached at the following values of p,:

Up
P2 |maz = —F. (27)
Us

Finally, we determine the phonon wavevector q from the calculated value of p as a
function of k. As shown in Eq. (22), the amplitudes of p, and q. will equal each other,
since the electron and phonon dispersion centers lie on the same xy-plane. We label qxy as
the component of q perpendicular to the g, -axis. For a given p; and qp pair, the
amplitudes qxy, k, and p form the 3 legs of a triangle for which g, represents the angle

between the sides of lengths k and p. Therefore, qxy can be calculated as follows:

Gy = k2 + K2 — 2kK cos by, (28)

and since gz = - pz, the frequency !q of the emitted phonon is straightforwardly calculated

from the speed of sound:
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wq — Us \f‘ qu + qg

S f.'.;s\/p2 + k2 — 2pk cos 0, + p2.

(29)

Since vr >> v, (by a factor of 400), the length of each cone is far longer than the diameter,
implying that the approximation q = |q.| = |p.| = p will be valid for nearly all of the

available phase space.

B. Heat Transfer Rate: Having determined the phase space for the electron-phonon
interaction, we are now in a position to calculate the heat transfer rate between the two
modes from the composite interaction. Labeling the electron energy for a generic
wavevector k’ as Ei, the matrix element corresponding to the electronic transition from
k to p through the emission of a phonon in branch p and wavevector q as M*9 i, , the
Bose-Einstein phonon occupation number for the mode frequency o at temperature T
as nt(w), and the Fermi-Dirac distribution value at T as f(T), the rate Q is determined
through the following summation over initial carrier wavevectors k, final carrier

wavevectors p, and phonon branches and wavevectors (u; q) [31, 32]:

Mpe

2
k,p‘

Q=T XL ()

X (f(Ek:) - f(Ep)) ('HTL (Wy,q) — M, (wﬁ.-q)) Ok.p+q

X 5(}:,4 —E, - ruu-“,q).
(30)

As previously discussed, the low temperature restricts the occupied phonon modes to the
long-wavelength acoustic regime. The interaction between electrons and long-wavelength
acoustic phonons is dominated by the deformation potential [33, 34], as recently applied
to the interaction between bulk electrons and phonons in CdzAs> [25, 35]. As discussed in

our published paper, the equivalent matrix elements apply for the interaction between
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surface electrons and bulk phonons. Therefore, the matrix element amplitude-squared

reduces to a function varying solely with and linear in the phonon amplitude q:

2 C
M| =, (31)

>

I

where V represents the lattice volume and C is a constant that varies with the square of
the deformation potential. Substituting this, along with the electron and phonon
dispersion relationships into the expression for Q, we find that it takes the following

form:

Q=" 3 o ~pay) a(F(Burk) — f(vepsy)

X (-nTL (vsq) — 1, (t’sg))

X 5k,p+q5(hl’pk — hvppey — hvsq).
(32)

The summation is simplified in the limit AT << T, where T = Te = Tr and AT is defined
as Te - Tr. We find that the Dirac and Kronecker delta functions combine to reduce the
integral over the phase space volume to the double-cone phase space area derived
previously, as expected. This yields the following expression for the carrier-phonon heat

transfer rate due to intraband (valence-valence or conduction-conduction) transitions:

AC v, [ Fws \ AT [kgT\* /kgT\* /x ‘ /r I 1 1 N
@ 2r2hup (IJBT) T (f’wF ) e ) o doz Jo dy(e —y)y (ev—12\ev 41 emvig1) (33)

Solving the integral numerically, we obtain a value of -32. Therefore, Q is further

reduced to the following:
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Q ~ TPAT. (34)

Next, we solve for the heat transfer rate due to interband transitions. We use the

following expression:

AC v, (g \AT (kgT\* (kpT\* (> 1= e 1 1 -
QI'”LE'"NQ?TZ?EE(I(’.BT)T(MT hv, -/0 d:t..r‘/m‘ dy(y — =)y (e¥ —1)2 et 41 e=vil1) (35)

Note that the constants in front of the integral are identical to that for the intraband case.
Solving this integral numerically yields a value of -100. The total heat transfer rate Qotal
from the surface carriers to the lattice vibrations is determined by multiplying the
intraband rate Q by 2 (to account for both bands) and then summing with the interband

rate Qinter:

Qtor.al — QQ + Q-in.f.er
82ACKS
w2h v

(36)

&Q

In order to determine the heat transfer timescale, we substitute the previously derived
relationship between the electron cooling rate and the rate of change of electron

temperature from Eq. (10) into the left-hand-side of the above expression:

1084k} L d(AT) _ S2ACK]
Th?v%, dt m2hTvhu2
d(AT)  7.6CKLT?

dt = mhSvie?

T°AT,

(37)
AT.

As the result shows, the electron temperature decays exponentially toward the lattice

temperature, with the rate varying as T°.
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The remaining task is to determine the value of the constant C, which derives from the
electron-phonon matrix element. One method for doing so is by using the deformation
potential of 20 eV measured by Jay-Gerin et al. [36]. This yields the following value for
C, using a material density p = 7 x 10% kg/m? [25]:

_ hD?

S
dpuvg

= 1.7 x 1077 J*m® (38)

This leads to the following heat transfer time constant:

o 7 L@?Ta ~ (1.6 x 10 K—3s—1)T3. (39)

mhivgvZ
An alternative method for finding the deformation potential is by merging the
experimental results from Weber et al. [37] with the theory provided by Lundgren and
Fiete [25]. Specifically, Weber et al. used a bulk Cd;As, sample intrinsically doped to a
baseline electron density of 6 x 10> m~, which corresponds to a Fermi energy of 170
meV and a Fermi temperature of 1130 K. Under these conditions, they observed a
timescale of 3.1 ps for electron cooling by low-energy acoustic phonon emission at lattice
temperatures of 80 K and 300 K. This scenario is addressed by Lundgren and Fiete's

Equation (8), which models the heat transfer rate for kgT << Ef (where Eris the Fermi

energy):

DQEJ‘%
N = = .
" 3kphtvppT

(40)

We now substitute a temperature and rate data point from Weber et al. into this
expression to calculate the deformation potential D. Since the limit kT << Eris much

more valid for T = 80 K than for 300 K, we use the former as the temperature
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corresponding to the rate y = (3.1 ps)! for the purposes of application to Eq. (40). This
yields the following value for D:

3k plitvs 2 _
D= (MT*}-) — 950 6V. (41)
E}

This leads to the following value for the coefficient C:

 4pvg

C 2.7 x 1077 J*m?, (42)

which yields the following heat transfer time for our model:

7.6CkLT? :
~ B (2.5 « 108 K—3s—1)T3. (43)

’.:r" i~

mhovEv2

As will be discussed in the next section, the lower bound for the baseline temperature T
(which will also set the minimum value for the heat transfer rate) will be about 0.35 K.
For this temperature, the above two methods yield a lattice heating timescale

approximately ranging from 93 ns to 15 ps.

It is worth comparing this timescale with the corresponding timescale for heat transfer
between lattice phonons and bulk electrons (when the bulk is in the normal, non-
superconducting phase). Based on Eq. (6) of Lundgren and Fiete [25], this timescale
would be on the order of 7000 seconds, well over 8 orders of magnitude longer than even
the upper bound value for the transfer time from surface electrons to the lattice phonons.
This difference can be attributed to the vastly greater available phase space area for the
surface electron interaction. Consequently, any heat transfer from the phonons to the bulk

electrons is insignificant compared to that from the surface electrons to the phonons.
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V. PHOTON-NUMBER RESOLVING DETECTION

We now describe the photon-number resolving detector scheme based on our theoretical
findings. First, we address the question of whether the timescale for lattice temperature
equilibration is much faster than the dissipation time through thermal conduction or radiative
decay. Regarding the thermal conduction heat loss, we note that the contacts used for cooling the
sample can be removed after the material reaches the refrigerator temperature. As a result, the
heat dissipation time through thermal conduction will range on the order of several hours and can
thus be ignored. Instead, we will focus on the radiative loss. Based on the results calculated for
graphene, the electron-hole interband dipole moment for a 2D Dirac cone band structure is given

as a function of photon radial frequency ® as follows [38]:

I (44)

Substituting this into the well-known radiative decay rate expression based on the Einstein

coefficients [39], we find that the radiative rate varies linearly with o:

.3

W

I'aalw) = —‘d.c.u w
a(«) 3meghecd | ™ ()
_ €U (45)

3meghc
_ (1.1 % 10—’f’)w

‘ 2

For frequencies up to 10 GHz, the radiative decay time is therefore 150 us or greater. This is
significantly longer than the electron-phonon heat transfer time calculated above, which is 15 s
or less, which in turn is much longer than the previously discussed electron-electron
rethermalization time of tens of picoseconds [22]. Therefore, a rapid rethermalization of the

electron population in the bands occurs before any radiative loss of the photoelectrons occurs.

Next, we address the question of heat transfer from the surface electronic modes directly to the

bulk electronic modes. This would constitute a loss process, since it reduces the heat absorbed by
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the bulk phonon modes. We note that the aforementioned spatial separation between bulk and
surface electronic states renders this process unlikely. It is also worth comparing the heat
capacity of the bulk electron modes to that of the phonon modes. To this end, in the temperature
range 0.35-0.45 K (just over 0.5Tc), the superconducting state features approximately the same
heat capacity as the normal state extrapolated to that temperature range. As such, we use the
collective electron energy expression shown in Eq. (6), this time using the 3D rather than 2D

Dirac cone dispersion to derive the density of states p(E):

dN dVi. dk

PE) = v ak dE
1% E\%\ 1
= 2n)pe 4(r—) Tr (46)
Voo,

— —F~
2m2h3vE

where V denotes the bulk volume. Substituting into Eq. (6), we find the following bulk thermal

energy as a function of temperature:

e -
[’TEl,bulk(T) = L— / (IEEB e kBT L]
0

m g cosh (;‘BLT) +1
1% T (47)
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The bulk heat capacity is calculated by taking the derivative with respect to the temperature T:

. dUeE.b-u-Ek . Tﬂ.zv—k% Ta
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(48)
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Figure 5: Resistivity (in megaohm-meters) versus temperature (in kelvins) for bulk Cds;As;.

Comparing this to the phonon heat capacity (see Eq. (19)), we find that the phonon heat capacity
is greater by a factor of approximately (vF/vs)3, i.e. more than 7 orders of magnitude. This
massive disparity can be explained by the fact that near the Fermi level, the electron group
velocity vastly exceeds the phonon group velocity, resulting in a far greater density of states for
the phonon modes than for the electron modes. We thus conclude that the energy of the absorbed
photons is safely transferred to, first, the rethermalization of the carrier band populations, and
then, to the bulk phonon modes to elevate the bulk temperature. We now discuss how the bulk
temperature is measured. Since the elevated bulk temperature will increase the bulk resistance of
the superconducting bulk states as shown in Fig. 5, we measure the zero-bias resistivity across
the bulk (using a lock-in amplifier) as a proxy for the temperature. This is advantageous relative
to infrared-based bolometry since it does not perturb the electronic structure of the bulk, as well
as due to the fact that electrical signals can be measured in ultrafast picosecond-range intervals
[40]. We manufactured a Cd3As; device to measure the superconducting bulk resistivity as a
function of sample temperature. To this end, it is important to note the lower bounds for the

dimensions of each Cd3As; crystal. The goal of the device is to measure photons in the transmon
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frequency range, i.e. 5 - 7 GHz [41, 42]. For a Dirac cone dispersion with Fermi velocity vF , a

photon of frequency f is resonant with the band gap at the following band wavevector:

A (49)
o

Therefore, in order for resonance to exist at photon frequencies as low as 5 GHz, the maximum
length of each Bloch state in reciprocal space must be Ak ~ 1.6 x 10* m™!, thus implying that the
minimum length of the Cd3As2 surface along each dimension is 2/Ak = 0.4 mm. We also
assume that the depth of the lattice is limited by design constraints to a minimum value of 20 nm,
since this is the minimum thickness that has been achieved with an MBE technique [14]. For a
photon frequency of 5 GHz and crystal dimensions of 0.4mm by 0.4 mm by 20 nm, the single-
photon temperature gain is calculated by substituting the values N=1, ® = x 10! s, and V =

3.2 x 10" m? into Eq. (21) and linearizing:

1 N
AT = — (413 % 103 m3K45) v
AT? v -
1.0 x 10-10 K* (50)
— T3 .

For temperatures above our minimum refrigerator temperature of 0.25 K, the temperature gain
due to the absorption of a single photon is below 6.5 nK, which confirms our previous

assumption that AT <<T.

Finally, we use the single-photon temperature gain to determine the corresponding increase in
bulk resistance. Figure 5 depicts the experimental values for zero-bias resistivity as a function of
temperature in bulk Cd;As; in the superconducting regime. For temperatures above 0.35 K, the
resistivity steadily increases with temperature. We will therefore use 0.35 K to 0.45 K as the

range of baseline temperatures for which we will determine the single-photon bulk resistance
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Figure 6: Plots of bulk resistance gain (in microohms) due to absorption of a single photon versus baseline
temperature for photon frequencies f=5; 10 GHz given sample dimensions 0.4 mm by 0.4 mm by 20 nm.

gain. For a square lattice surface, the bulk resistance scales linearly with resistivity as 1/d, where
d denotes the lattice depth. Therefore, the single-photon resistance gain relates to the slope of the
resistivity with respect to temperature (dp/dT ) and the single-photon temperature gain (AT) as

follows:

1 dp
AR = —-—AT 51
d dT (51)

For the aforementioned sample dimensions, d = 20 nm. Substituting the expression for AT from

Eq. (50), we find that the single-photon resistance gain AR solely becomes a function of the

baseline temperature T:
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5.0 x 1072 m~'K* dp

Al = T3 dT

(52)

Figure 6 depicts the resistance gain due to the absorption of a single photon for baseline
temperatures ranging from 0.35 K to 0.45 K for the selected photon frequencies of 5 GHz and 10
GHz. For temperatures of 0.39 K and above, the single-photon resistance gain will be greater
than 1 pQ for photon frequencies as low as 5 GHz, an increase which is certainly measurable
using a commercially available micro-ohm meter (such as the Keysight 34420A
NanoVolt/Micro-Ohm Meter by Keysight Technologies) or with a Corbino geometry sample
which can even measure sub-micro-ohm resistance [43]. This property can therefore be exploited

in order to precisely determine the number of absorbed photons for a known frequency.

It is worth discussing the effect of impurities on the properties of the detector. Normally, the
presence of charged impurities would lead to a shift of the Fermi level away from the Dirac
point, which in turn would degrade the performance of the detector by hindering photon
absorption in the microwave frequency range. However, recent experiments have demonstrated
that Cd3Aso> is easily doped, either chemically [44] or electrostatically [45]. Therefore, the Fermi
level of the surface state can be tuned so as to coincide with the Dirac point, as desired. Since the
electronic structure of the surface is decoupled from that of the bulk, it is feasible to specifically

dope the former while leaving the latter unaltered.

Finally, we address the issue of dark count. Due to the cryogenic (sub-Kelvin) refrigerator
temperature, the dark count should be negligible, as previously demonstrated for transition-edge
sensors under similar temperature conditions [46]. Nonetheless, precise experimental
determination of the dark count for the Cd;As: detector would serve as an important topic for

future research.
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VI. DISCUSSIONS AND CONCLUSION

We demonstrated a microwave photon-number resolving detector based on the topological
surface states of Cd3Asz material. The number of photons absorbed is produced after measuring
the increased resistivity of the superconducting bulk. For this, we derived in detail how much
bulk temperature would elevate as a function of the absorbed number of photons and the photon
frequency. We showed that the energy of the absorbed photon is rapidly transferred first to the
rethermalized distribution of the surface state electron band population. Then, the electron band
energy is quickly transferred to the bulk phonon modes through the deformation potential
coupling. The bulk temperature is thus elevated, and finally, the superconducting bulk increases
resistance, which is measured to resolve the absorbed number of photons. To address how
quickly the energy is transferred from the surface electron to the bulk phonon modes, we derived
the deformation potential electron-phonon coupling rate by calculating the transition matrix
element and the phase space volume. As a result, we concluded that the coupling time constant
ranged from nanoseconds to microseconds. Therefore, it is expected that the number of absorbed

photons would be measured within several milliseconds after the absorption happens.

Our proposed scheme accomplishes rapid photon detection based on quick (or even continuous)
and accurate bulk resistance measurement. Direct measurement of the elevated temperature in
bulk does not provide a feasible path due to the slow detection speed and the measurement noise
in the extremely small differential temperature. It is essential to understand why the use of
CdsAs> bulk's semimetal feature for absorbing microwave photons is avoided. Recall that, if the
baseline temperature is set above the critical temperature, the bulk's electronic bands do not open
a gap, which allows the bulk electrons to be excited by the microwave photons. However,
detecting the excited electron is extremely difficult for two main reasons. First, the bulk
photoelectron may easily join the resistance-measuring current and be lost in the measurement
process. Second, the photoelectron's energy transfer to the bulk temperature is extremely
inefficient due to the reduced phase space of 3D electrons, risking the loss of photoelectrons via
radiative decay rather than energy transfer to the bulk phonon modes. In contrast, the photon
absorption from the surface state electrons almost surely transfers the energy to the bulk phonon

modes.
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Equally important is understanding the difference between our proposed scheme and an
alternative device structure of a Dirac 2D material such as graphene on the surface of a bulk
superconductor. A pure graphene layer indeed does not possess a superconductor state [47], and
thus can be used as a Dirac cone photon absorber of microwave photons even at a very low
temperature. However, it is more difficult to fabricate this device than Cd3As> which
simultaneously has both bulk superconductor and surface states. In addition, the hybrid structure
suffers from inefficient electronic energy transfer to the bulk phonons due to the mismatch of
lattice constants. Instead, as previous research on graphene single-photon detectors has shown,
the inefficient electronic energy transfer to phonons is used for efficient capture of the
photoelectron in the electrodes [48]. However, in this case, the photon-number resolving feature
is lost. In comparison, our scheme utilizes the surface state electrons of Cd;As: as a microwave
photon absorber and the bulk superconductor of the same material for detecting the number of
photons absorbed. The distinct advantage of our method is to provide a deterministic photon-
number resolving capability in microwave photon detection. It is also worth understanding the
advantage that our scheme offers over traditional transition-edge-sensor (TES) based detectors.
Due to the need for a significant voltage bias in measuring the resistance of the TES bulk, a large
source-drain current is generated, causing undesired side effects such as flicker noise. A CdzAss-

based detector avoids this issue by enabling zero-bias resistance measurement.

We now discuss the design strategy of maximizing the photon absorption probability of the
device. Note that each crystal surface features an absorption rate of 0.3-0.6%. Therefore, it is
possible to have a near unity quantum efficiency if about 2000 bulk crystal layers are vertically
stacked in a heterostructure (such that they are in series from the point of view of the incoming
photon), while measuring the bulk zero-bias resistivity for each of the crystals separately. With
the advent of more advanced manufacturing techniques, such heterostructure is increasingly
becoming possible [50]. Another means of achieving the same goal is by placing a single-layer
detector in an optical cavity bounded by high-reflectivity mirrors. Since Bragg mirrors can
feature transmittance rates as low as 1 ppm [51], the total probability that a photon is lost through
one of the mirrors will be negligible even after thousands of round trips through the cavity, thus

ensuring a near-unity detector efficiency.
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