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ABSTRACT

In this report, we describe how to estimate the time-variable components of the seismic moment
tensor and compare these estimates to the more conventional analysis that incorporates an
assumption of the source time function (STF) across all components of the seismic moment
tensor. The advantage of our method is that we are able to independently estimate the
time-evolution of each component of the seismic moment tensor, which may help to resolve the
complex source phenomena associated with buried explosions. By performing an eigen
decomposition of the time-evolving seismic moment tensor components, we are able to plot the
seismic mechanism as a trajectory on a lune diagram. This technique enables interpretation of the
seismic mechanism as a function of time, as opposed to the more conventional analysis which
assumes that the seismic mechanism is time invariant. Finally, we describe the differences
between the seismic moment and the seismic moment rate STFs, how to implement each one in
inversion schemes, and the relative strengths/weaknesses of each. Our key take-away is that we
are able to distinguish nearly-overlapping sources with highly different mechanisms, such as an
explosion immediately following an earthquake, by estimating moment rate from seismic data
through a STF-invariant inversion for the full time-variable moment tensor.
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SUMMARY

This work describes the formulation and visualization, via lunes and beachball graphics, for
moment and moment rate source-time functions from local-scale synthetic seismic data and the
utility of each.
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1. FORWARD LINEAR MODEL OF SEISMIC WAVES

In this chapter, we present the linear forward model of seismic waves, including discussion of
source functions in terms of moment versus moment rate. Next, we discuss the specifics of both
explosion and earthquake source-time functions and how these source types can be visualized
through classic ’beachball’ graphics and on a fundamental lune.

1.1. Basic Review of Seismic Signals

We model far-field seismic waves as

uk(x′, t ′) =
N

∑
n=1

∫
∞

−∞

∫
V0

gk,n(x′, t;x, t)Sn(x, t)dV dt. (1.1)

where the seismic wavefield u observed in the far-field at station k, located at x′ = [x′,y′,z′], is the
convolution of a series seismic sources, Sn(x, t) with their corresponding Green’s functions,
g(x′;x, t). The seismic source consist of N term located at the source region x = [x,y,z]. The
corresponding Green’s functions, g(x′;x, t) describe the impulse response of the Earth to the nth
source between the source region and the recording station (Aki and Richards, 2002).

For our model, we simplify the source region as an infinitely small point, and we thus rewrite
equation 1.1 as:

uk(x′, t ′) =
N

∑
n=1

∫
∞

−∞

gk,n(x′, t;x, t)mn(x, t)dt. (1.2)

where mn are a series of time-varying forces and/or force couples acting at source location x. For
our model, we do not require that the force couples in the moment tensor are identical. Rather, we
recognize that each term in the moment tensor can have independent time histories, and thus the
term mn(x, t) in equation 1.1 can be written as

mn(x, t) =

 Mxx(x, t) Mxy(x, t) Mxz(x, t)
Myx(x, t) Myy(x, t) Myz(x, t)
Mzx(x, t) Mzy(x, t) Mzz(x, t)

 . (1.3)

If the time-dependence of the force couples mn are equal, then the terms in the moment tensor act
to scale a single source-time function (STF). In other words, the force couples mn(x, t) of
equation 1.2 can be written as the product of a source-time function and the individual scalars of
the seismic moment tensor

mn(x, t) = h(t)m̂n(x) (1.4)
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where h(t) can be any arbitrary function. For example, the STF is often assumed to be a step
function when h(t) describes moment and a Dirac delta when h(t) is a moment rate function. In
this case, equation 1.2 becomes

uk(x′, t ′) =
6

∑
n=1

∫
∞

−∞

gk,n(x′, t;x, t)h(t)m̂n(x)dt (1.5)

where

mn(x, t) = h(t)m̂n(x) = h(t)

 M̂xx(x) M̂xy(x) M̂xz(x)
M̂yx(x) M̂yy(x) Myz(x)
M̂zx(x) M̂zy(x) M̂zz(x)

 . (1.6)

Finally, we assume that there are no net torques in the seismic source. This makes the moment
tensor symmetric (Mxy(x) = Myx(x), etc.)

For the model shown in equation 1.5, the moment tensor m̂n(x) acts to scale a single STF h(t).
We will refer to this model as the STF-Dependent model, which is in contrast to that of equation
1.1-1.2, which enforces no such STF similarity for the moment tensor components. In the case
that data is inverted using the STF-Dependent model (and an a priori assumption of h(t)), the
results are a set of scalars corresponding to the six independent terms of the moment tensor.
These six scalars form a symmetric tensor and the corresponding eigen-vectors can be graphically
represented as a ‘beachball’ graphic or a single point on the fundamental lune (Tape and Tape,
2012).

In the above formulations the STF h(t) describes the moment, which is a force multiplied by
distance (e.g. SI units of N m). However, there is often confusion and/or errors in the published
literature regarding this term. Specifically, is h(t) a “moment” or a “moment rate” function? We
will define the moment rate function as the first time derivative of the moment function

∂mn(x, t)
∂ t

=
∂h(t)

∂ t
m̂n(x) =

∂h(t)
∂ t

 M̂xx(x) M̂xy(x) M̂xz(x)
M̂yx(x) M̂yy(x) Myz(x)
M̂zx(x) M̂zy(x) M̂zz(x)

 , (1.7)

and in the next section will explicitly describe the caveats of using a moment function versus a
moment rate function, the data units required for each, and the relative advantages/disadvantages
of each.

1.2. Source Time Functions

To produce a seismic wavefield, mechanical energy must be injected into the Earth. This energy
can be injected continuously, as in the case of ocean-generated microseism or wind-induced
seismic noise, or via discrete, transient events such as an earthquake or buried explosion. For our
work here, we focus on buried explosions and earthquakes. For these types of events, there exists
a concept termed the source time function (STF) that models the rate and quantity of energy that
is input into the Earth. The STF is a concept that simplifies the highly complex physical processes
that occur in the Earth during an earthquake or explosion that result in a seismic wavefield. It is
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important to point out that the STF only describes “how much” and ”how fast” the energy is input
into the Earth, and not “in what direction”. To fully model the wavefield, the STF must be scaled
by the moment tensor, which in turn models observed seismic radiation patterns. In this section,
we present two common models for STFs, one for buried explosions and another for earthquakes.
Finally, we present a visualization of the STFs to link the scaling of the moment tensor to the
STFs.

Haskell (1967) proposed a model to describe a STF for an explosive source, in the form of
reduced displacement potentials, for local scale observations in a variety of subsurface mediums
as given by Werth and Herbst (1963). Assuming a spherically symmetric source and the creation
of a cavity after the explosion (e.g. permanent deformation), the reduced displacement potential,
Ψ(t), can be modeled as

Ψ(t) = Ψ(∞)(1− e−kt [1+ kt +
(kt)2

2
+

(kt)3

6
−B(kt)4]) (1.8)

where the empirical parameter B (dimensionless) describes the non-permanent overshoot and k
(SI units of s−1) controls the source bandwidth. Note that this model is similar to the so-called
Mueller-Murphy STF for a contained explosion (Murphy, 1977; Mueller and Murphy, 1971).

The STF for an earthquake has a similar functional form as that of an explosion. However, in
addition to the STF itself, the earthquake source model assumes that the energy is produced by
physical slip along a fault plane with orientation given by its strike φ and dip δ (e.g. Ammon et al.
(2020)). The direction of slip is given by the rake λ . Note that a “pure” earthquake source, termed
a double couple source, implies that there is no volumetric change during the rupture process.
Tanioka and Ruff (1997) give a model for a moment rate STF of a “typical” earthquake as

f (t) = m(
2
d

t)1+γ for 0≤ t ≤ d
2

f (t) = m(2− 2
d

t)1+γ for
d
2
≤ t ≤ d,

(1.9)

where m is the maximum amplitude, d the total function time, and γ the function’s shape. Note
that this is a moment rate function, so the moment function can be determined by integrating this
function with respect to time.

To visualize the time-variable STFs for both of these classical source types, we plot the simulated
STFs of an explosion and earthquake for each component of the moment tensor. We graphically
arrange the STFs to correspond to the component of the moment tensor, omitting the redundant
symmetric terms (Figure 1-1). For both source types, the total energy of the source is 1×1010 N
m. The explosion is purely isotropic whereas the earthquake is defined to have a strike, dip, and
rake of 10°, 85°, 5°, respectively, with a total rupture time of 0.7 seconds. In panels (a) and (b) of
Figure 1-1 we show the moment function and in panels (c) and (d) of the same figure we show the
moment rate function.
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Figure 1-1. Original source time functions (red) and scaled according to the
source tensor (black). The Mi j values are in units of N m for the source mo-
ment (top) and units of Nms−1 for the source moment rate (bottom). Shown
are synthetics from (a) explosion moment source, (b) earthquake moment
source, (c) explosion moment rate source, and (d) earthquake moment rate
source.
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2. SEISMIC SOURCE MECHANISMS

In current and conventional analyses of earthquake and explosion source mechanisms, the STF is
assumed to be identical for all components of the moment tensor, regardless of the source
mechanism or frequency content of the analysis (e.g. (Chiang et al., 2016; Ford et al., 2009;
Herrmann et al., 2011; Rösler and Stein, 2022)). In this case, the moment tensor is treated as a
3×3 array of scalars which quantify the relative scale of the STF for each moment tensor
component (e.g., Equation 1.6). In this model, the moment tensor can be visualized using the well
known “beachball” diagrams, which show the orientation and (potentially) the mechanism of the
source, or plotted on a so-called source-type plot, first introduced by Hudson et al. (1989) and
more recently onto a fundamental lune Tape and Tape (2012), both of which show only the
mechanism.

A source-type plot is a method by which to visualize the mechanism of a seismic point-source,
assuming that the moment tensor is symmetric. For both the equal-area Hudson plots and lune
plots, the fundamental idea is that a moment tensor’s eigenvalues are directly linked to the relative
magnitude of each moment tensor component, and thus the source type. It’s important to note that
a source-type plot, regardless of the flavor, assumes that the moment tensor is symmetric and that
it does not convey information about the orientation or magnitude of the event.

For our work here, we will briefly review the most important concepts of the source-type plots
first proposed by Tape and Tape (2012), as this type of visualization makes more sense from a
geometrical standpoint: the so-called Hudson T k plots essentially plot the source mechanism on
an equal-area cube, projected onto a 2D surface, whereas the visualization introduced by Tape
and Tape (2012) plots the source onto a fundamental lune with no required assumption of
eigenvalue probabilities. The mathematical details of source-type plots is extensive, if not overly
dense, and thus we will only summarize the most important points here. For details of plotting
source types on a fundamental lune, the reader is referred to Tape and Tape (2012), Tape and Tape
(2013), and references therein.

2.0.1. Source-Type Plots on the Fundamental Lune

Recall that the moment tensor is a 3×3 symmetric matrix. Although the moment tensor
quantifies the relative strength of the force couples in the source model, it can also be interpreted
as the orientation and source type of a given seismic event. Specifically, a moment tensor M can
be rotated into its principle components via eigen decomposition:

M = UΛU−1 (2.1)
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where the columns of the matrix U are the eigenvectors with the corresponding eigenvalues in
matrix Λ:

Λ =

 λ1 0 0
0 λ2 0
0 0 λ3

 . (2.2)

In the context of a beachball pattern, the eigenvalues determine the size and pattern of the
beachball and the eigenvectors determine its orientation. Note that a single set of eigenvalues
Λ = (λ1,λ2,λ3) gives a fixed pattern (i.e. source type) of many beachball orientations. In the
context of explosion monitoring, this may be sufficient if only the source type is of interest. Thus,
to aid in interpretation of source-type, the eigenvalues ΛM of M can be plotted on a portion of the
unit sphere and the coordinates of ΛM can be compared to the coordinates of known source types
such as isotropic explosions, earthquakes, or some combination thereof.

A unit sphere W has coordinates of longitude γ , measured eastwards from Λ = (1,0,−1)
direction, and latitude δ = π/2−β , where β is the colatitude. The eigenvalues of a given
moment tensor are plotted on the sphere W according to the angles γ and β :

tan(γ) =
−λ1 +2λ2−λ3√

3(λ1−λ3)

cos(β ) =
λ1 +λ2 +λ3√

3||Λ||
,

(2.3)

where ||Λ|| is the L2 norm of Λ;

||Λ||=
3

∑
i=1

√
λ 2

i . (2.4)

For arbitrary ordering of the eigenvalues, there are six possible points that the event can plot on
the unit sphere W (see Figure 3 of Tape and Tape (2012)). However, these six points on the unit
sphere all have same source mechanism and orientation, so we can reduce geometrical complexity
by enforcing the condition λ1 ≥ λ2 ≥ λ3. This forced ordering of the eigenvalues of M will
confine its location on the unit sphere to a so-called fundamental wedge L ∈W, giving rise to the
term fundamental lune. On the fundamental lune L the longitude γ ranges from −π/6 to π/6 and
the latitude δ ranges from −π/2 to π/2. The latitude δ is zero for deviatoric patterns, while γ and
δ are zero for double couple patterns. Isotropic sources have latitude of δ =±π/2, depending on
whether it’s an explosion or implosion.

2.0.2. Time Evolution of Source Mechanism

Typically, seismic source-types are plotted on the fundamental lune with the assumption that the
STF is identical for all six components of the moment tensor. This assumption, although
simplifying the problem and perhaps better constraining the inversion, is an approximation that is
not unreasonable for moderately sized earthquakes. Indeed, it is in this context that source-type
plots were developed. However, there is an increasing use of the fundamental lune source plot to
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discriminate between earthquakes and buried explosions (e.g., (Alvizuri and Tape, 2018; Alvizuri
et al., 2018; Chiang et al., 2016, 2018)). However, we argue that the fundamental assumption
underlying the use of source-type plots may be missing an important aspect in explosion sources:
the time evolution of the source. That is, consider the case where a buried explosion results in a
subsequent release of tectonic strain on nearby fractures and/or faults. In this case, the seismic
source could be modeled as (nearly) co-located sources, offset in time and type with different
STFs. The explosion source would map to the isotropic region of the fundamental lune L whereas
the double couple source related to the slip on the loaded fractures/faults would map to the double
couple regions of L. In conventional analysis, these details are completely lost, as the
assumptions ensure that the estimated moment tensor is an average of all potential source
mechanisms. Indeed, it was under these concerns that we originally developed our time-variable
inversion for STFs (e.g. Poppeliers et al. (2019), Poppeliers and Preston (2020b), Poppeliers and
Preston (2020a), Poppeliers and Preston (2022)).

Although our time-variable inversion method accounted for potential time-variability of the
seismic source mechanisms, it was not easily interpreted. Thus, we combine the results of our
inversion with the powerful visualization tool of a fundamental lune source-type plot. By forming
a set of eigenvalues for every time point along the six independent STFs, we can form a
coordinate in lune space that is a function of time. As a simple test of this concept, in Figure 2-1
we show the STFs for an isotropic explosion and an earthquake. In this simple example, the
source types are “pure” in that for a given source type, the STFs are identical and there is no other
mechanism present. In this case, because the STFs for each source type are identical, the
time-dependent eigenvalues have the same relative magnitude for all time, and thus the trajectory
on the corresponding lune plots remains fixed. Note that in this simple example, we did not invert
any actual seismic data; rather we simply formed STFs according to equations 1.8 and 1.9,
assigned amplitudes to the STFs based on the specific source model’s moment tensor, and then for
every time point along the STFs formed a six-element tensor and plotted its eigenvalue-derived
coordinates on the lune. We did this for both a moment source (SI units = N m) and a moment
rate source (SI units = Nms−1). In these plots, we also show the orientation of the mechanism as a
beachball pattern for completeness. Interestingly, when performing this analysis on the
isotropic-model moment rate STFs, we see a small contraction (small, white, non-filled
beachball) at the bottom of the lune (panel C) following the expansion (filled beachball) of the
explosion (panel D). This characteristic is due to the simulated explosion STF having a small
overshoot that accounts for the slight contraction of the cavity immediately following the
explosion and thus represents a small dilatational source type at the end of the explosion STF.
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Moment Rate Source-time Functions
(c) (d)

Moment Source-time Functions
(a) (b)

Figure 2-1. Comparing source-type plots with time-variable STFs, for mo-
ment STFs (a-b) and moment rate STFs (c-d). Panels (a) and (c) show an
explosion mechanism and Panels (b) and (d) show an earthquake mecha-
nism. For this figure, we only show the beachball graphics (in all panels)
with the sum of the moment tensor components are greater than 1010 N m
(panels a and b) or 1010Nms−1 (panels c and d). For a given time point in the
STFs, we form a moment tensor and compute the corresponding beachball
graphic and the eigenvalues. We then plot the beachball graphic on the STFs,
where its size corresponds to its relative amplitude (equal to the sum of the
absolute value of the tensor components for that time). The same beachball
mechanisms are plotted according the their eigenvalue coordinates on the
lune diagram. Note that for a given source type, the mechanism is the same
for all time, and thus all of the points on the lunes overlap. The exception to
this is the small implosion mechanism seen in Panel (c), which corresponds
to the small overshoot in the explosion source model.

16



3. EARTH MODEL AND DATA SIMULATION

In order to more completely test our approach, we create synthetic seismic data, invert it
according to our time-variable source inversion scheme, and then plot the mechanisms, as a
function of time, on the fundamental lune. To create the data, we follow the same procedures as
described in Poppeliers and Preston (2020a) and Poppeliers and Preston (2022). That is, we first
create an Earth model that consists of a heterogeneous halfspace and compute three-component
Green’s functions for the six independent components of the moment tensor. Then, by convolving
the Green’s functions with the appropriate STF, and scaling by an assumed moment tensor, we
can form synthetic three-component seismograms for any source model and arrangement of
sensors (e.g. equation 1.2).

3.1. Earth Model

The Earth model has physical dimensions of 2500×2500×1500 m in the x,y, and z directions,
respectively, with a discrete node spacing of 10m. The average compressional and shear
wavespeeds of the model are 2000 m/s and 1176 m/s, respectively. To introduce semi-realistic
scattering effects, we introduce impedance heterogeneities in the form of stochastic perturbations
to the wavespeed and density. The heterogeneities follow a von Karman power law decay model,
and parameterized with characteristic lengths of [ax,ay,az] = [700,700,500] m with a trimodal
distribution of density/wavespeed contrasts of ±7.5 % about the mean. A slice through the center
of the Earth model for the realization of the stochastic model used in our analysis is shown in
Figure 3-1. We created a set of arbitrarily-located stations from 150 - 1500 m from the central
source (Figure 3-2), where we place the stations 20 m below the top of the model in order to avoid
artifacts associated with the finite difference boundary conditions in our wave simulation code. To
generate the three-component Green’s functions for each station, we use the Sandia-created
elastic wave equation simulation code, parelasti. Parelasti uses a second-order time, fourth-order
space staggered grid, finite-difference solution to the elastic wave equation to solve for velocity,
stress and pressure at each model grid point (Poppeliers and Preston, 2020a).

3.2. Creating Green’s Functions and Synthetic Data

We create three-component (3-C) Green’s functions (GFs) for each seismic station along the
surface of the Earth model space. We use the GFs to create the subsequent seismic data as well as
the forward model in our inversion scheme. To account for the Earth-air boundary, we employ a
free-surface boundary condition at the top of our Earth model, which given the impedance
contrast here, is almost a perfect reflection boundary. To compute a complete suite of 3-C GFs for
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Figure 3-1. 2D Slice (x=0) through the Earth model showing the compres-
sional wavespeed through the realizations of stochastic heterogeneities
used in our analysis here.
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Figure 3-2. Location of stations (on the surface) relative to the source epi-
center (star at x = 0 m, y = 0 m). Stations are labeled according to the trace
number of the first component; for example, station 1 with 3 components will
consist of traces 1-3 but only trace 1 is labeled here.

each seismic station, we define a source location at [x,y,z] = [0,0,300] m, where the initial
condition is a band-limited delta function. The simulation is run for a model time of 3.0 s, where
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the discrete time interval is 0.001 s. Based on the seismic wavespeeds of our model and the
discrete time increment, our simulations will produce seismograms that are free from numerical
dispersion up to a frequency of approximately 17.5 Hz. To generate the synthetic seismic data in
units of velocity (m/s), we solve equation 1.5 for each data component for each station, where we
define apriori a moment tensor and the corresponding STFs, depending on the source model we
wish to simulate.

Let us briefly digress to discuss the importance of the units of the STFs, the data, and what that
means for the simulation of the GFs and the seismograms derived with reference to equation
1.5.

1. Moment STF: To simulate data with units of velocity (SI units: m/s) from the moment
source-time function (units of Nm), then the GFs must be in units of 1/Ns2. In the
literature, these type of Green’s functions are commonly, if not misleadingly, referred to as
“velocity Green’s functions”, although their units are not in velocity. Rather their units are
such that when convolved with the appropriate STF (of units of moment) result in velocity
seismograms. To prevent confusion on this front, we instead refer to these GFs as GM,V to
denote the moment STF and resulting velocity data. Explicitly the units work out as[m

s

]
u
=

[
1

Ns2

]
GM,V

[Nm]h[s]dt (3.1)

where the subscript indicates the quantity with the units designated inside the brackets.

2. Moment Rate STF: To simulate velocity data (units of m/s) from the moment rate STF,
∂h(t)/∂ (t) with units of Nms−1, then GFs must be generated with units of 1/Ns. These
GFs are conventionally referred to as “displacement Green’s functions” as, when applied
with the moment (not moment rate) STF, this results in displacement data. We instead refer
to these GFs as GMR,V to prevent confusion in the context of our analysis. Explicitly the
units work out as [m

s

]
u
=

[
1

Ns

]
GMR,V

[
Nm

s
]∂h(t)/∂ t [s]dt (3.2)

Thus, to obtain synthetic seismic velocity data, we need one set of GFs if using a moment STF
(GM,V ) and another if using a moment-rate STF (GMR,V ). To obtain the latter we use the -Smr flag
in parelasti, but note that the integrated GM,V could also instead be used.

We create three datasets, where the only difference between the three is the source model. For the
first set, we assume a pure isotropic explosion where the STF is given by equation 1.8. The
second dataset simulates a perfect double-couple earthquake source with a strike, dip, and rake of
10, 85, and 5 degrees, respectively, where the STF is defined by equation 1.9. We show record
sections of ground velocity data for both the isotropic explosion (Figure 3-3) and the
double-couple earthquake (Figure 3-4) to prove the consistency and validity of generating
velocity seismic data using GM,V with moment STFs as compared to that from GMR,V with
moment rate STFs. Finally, the third dataset we will explore is formed by combining the two
source models: i.e. an isotropic explosion source followed by lower frequency double-couple
source with the same strike, dip, and rake as the previous earthquake-only dataset. Each dataset is
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computed with units of ground velocity, and all data is inverted by both inversion methods,
STF-invariant and STF-Dependent, which we will describe in detail in the following section.

Synthetic Explosion Data
uvel from Moment STF & G

uvel from Moment Rate STF & G
uvel from Moment STF & G

uvel from Moment Rate STF & G
uvel from Moment STF & GM,VM,V

MR,V

M,V

MR,V uvel from Moment Rate STF & GMR,V
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e 
N
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Figure 3-3. Synthetic velocity seismograms for an explosion source, sorted
by increasing source-receiver distance showing the comparability between
how we generate data from either type of STF and corresponding Green’s
functions. The y-axis label correspond to the station numbers in Figure 3-2.
The three panels correspond to the particle velocity in the x,y, and z direc-
tions, respectively. Each seismogram is trace normalized by the data gener-
ated from the MomentST F & GM,V .
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Figure 3-4. Similar to Fig 3-3, but for a synthetic earthquake.
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4. INVERSE METHODS AND NUMERICAL TESTS

We explore two types of linear inversions designed to estimate the source parameters. In the first,
we use an assumed source function to estimate the scalar values of M̂i j. Specifically, we estimate
the six scalars corresponding to the six independent components of the moment tensor, m̂n, where
we assume an a priori STF. We will refer to this inversion scheme as Method 1 STF-Dependent.
For Method 1, we also assume that we perfectly know the origin time of the event, as we cannot
estimate that from this method. In the second type of inversion, we make no a priori assumptions
of a STF and instead invert the data for the time-variable STFs Mi j(t), each of which corresponds
to a component of the moment tensor. This second inversion scheme, herein denoted Method 2
STF-Invariant, makes no requirement that the STF is similar for all components of the moment
tensor. Additionally, Method 2 does not require an a priori origin time. In both inversion schemes
that we test here, we invert the data to estimate the moment as well as the moment rate
functions.

To test the capabilities of both types of inversion we form synthetic data for three types of seismic
sources: an isotropic (buried) explosion, a double-couple earthquake, and a combination of the
two. We find that for data constructed using only a single source type (i.e. an explosion or double
couple source) Method 1 can accurately recover the source parameters of the moment and
moment rate functions. However, for the more complex source that consists of a combined
explosion and earthquake, Method 2 results in a more accurate estimate of the source parameters,
but we find that only the estimated moment rate function capable of completely resolving the
independent components of the complex source.

Both methods of inversion are linear, and based on equation 1.3. Specifically, for Method 1,
equation 1.4 is recast into a set of linear equations

u = GM (4.1)

where u and G are the observed data and the GFs, respectively, and M are the six scalars
corresponding the moment tensor. Note that the GFs are convolved with an a priori assumption of
a STF, either a moment function or a moment rate function depending on the units of the data. For
Method 2, there is no a priori assumption about the form of the STF, and thus the GFs are not
convolved or filtered in any way prior to construction the system of equations. Note that for both
methods, the inversion can be performed in either the time domain or the frequency domain. We
will detail both methods of inversion in the next two sections.

22



4.1. Method 1: Scalar Moment Tensor

Method 1 is the most common method used in the literature, as the problem is both easier to set
up, has fewer free parameters, and is arguably appropriate for analyzing low frequency data
observed at regional or teleseimic distances. At these scales, the data are typically at too low of a
passband to reasonably resolve the detailed time history of the STF and thus the moment rate
function is often assumed to be a band-limited delta function or so-called triangle function. While
Method 1 can be formulated in the frequency domain, we stay in the time domain so we can
directly compare our tests to those commonly used in the literature (e.g. Chiang et al. (2016);
Herrmann et al. (2011); Herrmann (2013)). Specifically, the time-domain formulation is given
as



|
u1(t)
|

|
u2(t)
|

...

|
uK(t)
|


T K×1

=



| | |
Ĝ1,1(t) Ĝ1,1(t) ... Ĝ1,N(t)
| | |

| | |
Ĝ(t)2,1 Ĝ(t)2,2 ... Ĝ(t)2,N
| | |

| | |
Ĝ(t)3,1 Ĝ(t)3,2 ... Ĝ(t)3,N
| | |

...
... . . . ...

| | |
Ĝ(t)K,1 Ĝ(t)K,2 ... Ĝ(t)K,N
| | |


T K×N


M1
M2
...

MN


N×1

(4.2)

where [−uk(t)−]T is the observed time domain data (of length T ) for channel k (of which there
are K) and Mn is a scalar corresponding to the nth moment tensor component (up to n = 6 total
terms). The term [−Ĝ(t)k,n−]T is the time domain GF for channel k and moment tensor
component n that has been convolved with an a priori assumption of an STF. We use velocity
seismic data and the corresponding GFs to estimate moment and moment-rate tensor components.
Specifically, to estimate the moment rate tensor scalar components,

Ĝk,n(t) =
∫

∞

−∞

GMR,Vk,n(t)
∂h(t)

∂ t
dt (4.3)

where the subscript MR,V indicates that the units of the GF, when convolved with the moment
rate function ∂h(t)

∂ t , will result in the quantity Ĝk,n(t), which predicts the velocity seismograms
according to equation 1.5. Similarly, if we aim to estimate the moment tensor scalar components,
then

Ĝk,n(t) =
∫

∞

−∞

GM,Vk,n(t)h(t)dt. (4.4)
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4.1.1. Numerical Tests

Recall that we constructed three datasets, one for three source models: an explosion, an
earthquake, and a combined source consisting of an earthquake followed by an explosion. We
invert these data according to the scheme described in equation 4.2. After inverting, we obtain the
estimated scalar terms of the moment tensor Mn which we can use to determine the source type
(equations 2.1-2.4) as well as to form predicted data according to equation 1.5.

We show the results from inverting the first two datasets, for an explosion and for an earthquake,
to estimate the moment and moment rate scalar values in Figures 4-1 and 4-2, respectively. We
compute the L2 misfit to quantify the fit-to-data for each inversion (Poppeliers and Preston,
2020b). From these figures we see that the data are all able to be fit using this inversion scheme,
which proves the capability of our inversion to estimate moment and moment rate scalar tensor
values. However, we also observe that the fit-to-data appear better in our inversion to estimate
moment rate scalar values (Figure 4-2). This is most likely due to the fact that the moment rate
function has compact support, meaning the value of the function begins and ends at zero, which
appears to result in a better constrained inversion. The lune plots show the estimated source
mechanism, which is estimated for the explosion data and the earthquake data in both Figures 4-1
and 4-2.

Similarly, for our more complex source, an earthquake followed by an explosion, we display the
results from our inversions to estimate the moment and moment rate scalar values in Figures 4-3
and 4-4, respectively. An immediate observation is that the the L2 misfit for the single-source
source models (i.e. the explosion- and earthquake-source models), indicated in panels (a) and (b)
of Figures 4-1 and 4-2, is very low whereas the misfit is significantly higher for the case when the
source consisted of an earthquake followed by an explosion, as seen in Figures 4-3 and 4-4. This
is not surprising as the inversion Method 1 is not able to estimate this time variable source type,
rather it finds the best solution that essentially averages the two source types, resulting in a source
estimate that imperfectly predicts the data. We also show the estimated source mechanism for the
combined explosion/earthquake data on the lune (see Figures 4-3 and 4-4), which plots as a point
between the double-couple and explosion points for both the estimated moment and moment rate
scalar values. Note that the lune coordinates, although not totally incorrect given the combined
nature of the source, does not give any insight into the time evolution of the source mechanism.

4.2. Method 2: Estimating Time-Variable Moment Tensor

Method 2, although a linear inversion scheme, makes no a priori assumptions concerning the
STF, other than it being localized in space. Specifically, each component of the moment tensor is
allowed to have independent time histories. This method may be more appropriate for analyzing
underground explosions at higher frequencies, as these source types are often of a combination of
an explosion and near-source shear sources. The inversion scheme can be formulated in either the
time or frequency domains. Poppeliers & Preston (2019, 2020) describe a method to formulate the
inversion in the frequency domain, as it is computationally far less demanding than a time domain
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formulation. Specifically, the frequency domain implementation of inversion Method 2 is

|
u1( f )
|

|
u2( f )
|

...

|
uK( f )
|


FK×1

=



[G1,1] [G1,2] ... [G1,N ]

[G2,1] [G2,2] ... [G2,N ]

[G3,1] [G3,2] ... [G3,N ]

...
... . . . ...

[GK,1] [GK,2] ... [GK,N ]


FK×NF



|
M1( f )
|

|
M2( f )
|

...

|
MN( f )
|


NF×1

(4.5)

where f is frequency, of which there are F , and

Gk,n =


Gk,n( f1) ... 0

... ↘ ...

0 ... Gk,n( fF)

 (4.6)

is an F×F diagonal matrix containing the frequency domain Green’s function for the kth receiver
channel and the nth source type. Note that in this inversion method, the GF is not convolved with
any a priori assumed STFs, as the inversion will estimate these directly for each component of the
moment tensor. After Fourier transforming the observed data and GFs, the system of equations
shown in 4.5 is solved for MN( f ) and transformed into the time domain via the inverse Fourier
transform (not forgetting to scale by 1/dt to account for the dt term in the convolution). Similar
to the inversion Method 1, we use Green’s functions with appropriate units to estimate the
moment and moment rate source time-series. After estimating the time-variable moment tensor
components as functions of time mn(x, t), we use equation 1.2 to compute the predicted data.

Akin to our previously presented results, we show the results from our inversion of singular
sources, including an explosion and an earthquake, from velocity seismic data to estimate
moment and moment rate in Figures 4-5 and 4-6. However, because the source model has
time-variable behavior we add an additional column that shows the time-variable STF
corresponding to the moment tensor with the estimated source mechanism plotted as a beachball
directly on the STF time series. We see that the single-source models (the explosion in panel (a)
and the earthquake in panel (b)) are accurately estimated with a correspondingly low degree of
misfit. We also consider the estimated results from the more complex source of an earthquake
followed by an explosion for both moment and moment rate as functions of time in Figures 4-7
and 4-8. In this case, we observe that the estimated moment tensor functions still struggle to fully
separate the explosion following the earthquake source as evidenced on the lune. However, the
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estimated moment rate tensor functions are able to resolve the independent sources with two
clusters located at the double-couple earthquake and the isotropic explosion in lune coordinates
and as evidenced by the beachball graphics.
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(a)   Explosion Source

(b)    Double-Couple Earthquake Source

Estimated Moment Scalar Values from STF-Dependent Inversion

Figure 4-1. Results of inverting the two velocity datasets with a singular
source, where the STF is a moment function h(t) using inversion Method 1:
(a) the explosion-only data , and (b), the earthquake-only data. The left-hand
columns show the observed (synthetic) seismic data (black) and predicted
data (red), organized from nearest to the source on the bottom to furthest on
top, where the total data misfit is indicated above the data . The observed
and predicted data are filtered to 1-15Hz passband. In the center column we
show the time-series of the moment sources from the a priori STF convolved
with the true scalar values (grey), and convolved with the estimated scalar
values resulting form the inversion (red). The right-hand column shows the
estimated moment tensor scalar values plotted on the fundamental lune,
where the source mechanism and orientation are indicated by the beach-
ball graphic.
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(a)   Explosion Source

(b)    Double-Couple Earthquake Source

Estimated Moment Rate Scalar Values from 
STF-Dependent Inversion

Figure 4-2. Similar to Figure 4-1 except the inversion estimates the scalar
values associated with the moment rate, ∂h(t)/∂ t.
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(a)   Earthquake followed by Explosion

(b)    Double-Couple Earthquake Source

Estimated Moment Scalar Values from STF-Dependent Inversion

Figure 4-3. Similar to Figure 4-1 except the inversion estimates the scalar
values of the moment, h(t) from velocity data of an explosion followed by an
earthquake.
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(a)   Earthquake followed by Explosion

Estimated Moment Rate Scalar Values from 
STF-Dependent Inversion
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Figure 4-4. Similar to Figure 4-3 except the inversion estimates the scalar
values associated with the moment rate.
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(a)   Explosion Source

(b)    Double-Couple Earthquake Source

Estimated Moment from STF-Invariant Inversion

Figure 4-5. Results from inversion to estimate time-variable moment source
parameters for an (a) explosion source and (b) earthquake source.
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(a)   Explosion Source

(b)    Double-Couple Earthquake Source

Estimated Moment Rate from STF-Invariant Inversion

Figure 4-6. Similar to Figure 4-5 except the inversion estimates the time-
variable moment rate source parameters.
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(a)   Earthquake followed by Explosion
Estimated Moment from STF-Invariant Inversion

Figure 4-7. Results from inversion to estimate time-variable moment source
parameters from velocity data created from complex sources of an earth-
quake followed by an explosion.
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(a)   Earthquake followed by Explosion
Estimated Moment Rate from STF-Invariant Inversion

Figure 4-8. Similar to Figure 4-7, but results from the inversion to estimate
time-variable moment rate source parameters.
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5. CONCLUSIONS

We present two inversion types: Method 1. estimate source scalar values with a priori STFs
(STF-Dependent) and Method 2. estimate the time-series source parameters without a priori
STFs (STF-Invariant). We investigate both inversion methods to resolve the moment and moment
rate source parameters as scalars, Method 1, and functions of time, Method 2. While all inversion
methods and estimated sources are able to accurately resolve singular sources of an earthquake or
an explosion, only by performing the Method 2 inversion scheme and resolving for the
moment-rate parameters, as functions of time, are we able to constrain a complex,
multi-phenomenology source consisting of an earthquake followed by an explosion. To visualize
the STFs, we decompose these into time-evolving beachball graphics onto a fundamental lune to
convey both orientation and source type. We note that while the Method 2 inversion scheme is
able to resolve complex sources in our ideal, synthetic case, this method may also be more
sensitive to noise and/or uncertainty in the earth model and recorded seismic data. We do not
explore the extent that this may persist within this analysis, but will explore that in future work.
Additionally, we will apply our investigation to invert recorded seismic data to constrain
real-world sources.
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