SAND2022-13310

SANDIA REPORT

SAND2022-13310 Sandia
Printed September 28, 2022 Plaat}:)(:g%ries

ATHENA: Analytical Tool for Heterogeneous
Neuromorphic Architectures

Mark Plagge, Luke Parker, Ben Feinberg, Sapan Agarwal, Fred Rothganger, Clay
Hughes and Suma G. Cardwell

Center for Computing Research
Sandia National Laboratories
Albuquerque, NM, 87185

{mplagge,lgparke, bfeinbe, sagarwa, frothga, chughes, sgcardw}@sandia.gov
John McFarland, Amro Awad

North Carolina State University
Raleigh, North Carolina, 27695

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSH

National Nyclear Security Adminisfration

ABSTRACT

The Advanced Simulation and Computing (ASC) program seeks to use machine learning to
improve efficiencies in its stockpile stewardship mission. Moreover, there is a growing market for
technologies dedicated to accelerating Artificial Intelligence (Al) workloads. Many of these
emerging architectures promise to provide savings in energy efficiency, area, and latency when
compared to traditional CPUs for these types of applications. In particular, neuromorphic analog
and digital technologies provide both low-power and configurable acceleration of challenging
artificial intelligence (AI) algorithms. If designed into a heterogeneous system with other
accelerators and conventional compute nodes, these technologies have the potential to augment
the capabilities of traditional High Performance Computing (HPC) platforms. This expanded
computation space requires not only a new approach to physics simulation, but the ability to
evaluate and analyze next-generation architectures specialized for AI/ML workloads in both
traditional HPC and embedded nuclear deterrence (ND) applications. Developing this capability
will enable the ASC program to understand how this hardware performs in both HPC and ND
environments, improve our ability to port our applications, guide the development of computing
hardware, and inform vendor interactions, leading them toward solutions that address ASC’s
unique requirements.

This report discusses the progress in developing and expanding the tool ecosystem at Sandia
National Laboratories with a focus on the tool ATHENA: Analytical Tool to Evaluate
Heterogeneous Neuromorphic Architectures, for fast design space exploration for emerging
next-generation machine learning architectures.

ACKNOWLEDGMENT

The authors acknowledge financial support from the DOE Advanced Simulation and Computing
program. Sandia National Laboratories is a multi-mission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LL.C, a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. This report describes technical results and
analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United States Government. SAND
Number: SAND2022-13310

CONTENTS

NOMENCIATUTE . . .ot e e e e e e e
1. Introduction

2. Background
2.1. Comparison of Existing Accelerator Tools.............. iiiiii....
2.1.1. MAESTRO/MAERI e
2.1.2. TImeloop/ACCelergyt
2.2. Emerging Hardware: SONOS Based Analog accelerator
2.3. Structural Simulation Toolkit (SST) i
23.1. SSTAnalogTileoiuni e i
2.3.2. SST Spiking Tile: Generic Spiking Architecture (GenSA)...............

3. ATHENA: Modeling Novel Analog ML Accelerators

3.1, ATHENA OVEIVIEW . .ottt e ettt e ettt e
3.2, Activation FUNCHIONS oo e e e e e
3.3. Command Line Interface i
3.4. Modeling the SONOS Analog Accelerator in ATHENA

3.4.1. Hardware Descriptionin ATHENA

3.4.2. Energy/AreaTables
3.5, ReSUILS ..o

4. ATHENA-SST Integration Tool (ASIT)
4.1, ReSUILS ..o e
4.2, Extending ASIT e

5. Conclusion

Bibliography

11
11
11
12
13
15
15
15

17
18
19
20
21
22
24
26

29
30
30

31

33

LIST OF FIGURES

Figure 1-1.

Figure 2-1.
Figure 2-2.

Figure 2-3.

Figure 3-1.
Figure 3-2.

Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.

Figure 3-11.

Figure 4-1.
Figure 4-2.

Figure 5-1.

ATHENA OVEIVIEW . . o .ttt e e e e e e e e 10
Analog Crossbar Array 14
Overview of SONOS Floating-Gate based Analog Accelerator Architecture

and Tile oo 14
SST-Generic Spiking Architecture, 16
ATHENA in the Codesign Ecosystem i, 17
ATHENA for Design Space Exploration of Novel Accelerators leveraging Emerg-

INE DOVICES . . vttt 18
Spiking Activation Functions i 19
ATHENA CLI. . .o e e 20
ATHENA CLI €XECULIONottt ettt e et 21
Flowchart describing ATHENA’s process flow. 22
ATHENA’s Hardware Mappingouuuiieiieneienenennnn. 23
Simplified Analog Tile Definition i, .. 24
Snapshot of ATHENA +Accelergy ERT 25
Small selection of an ATHENA+Accelergy ART, with various example com-
ponents and thier corresponding areas. i 26
Comparing ATHENA Results to SONOS FG Analog Model 27
ASIT Functional Diagram it 29
Example output of the ASITtool 30
Snapshot of a Codesign Tools EcoSystem for Machine Learning............. 31

LIST OF TABLES

Table 3-1. MVM energy estimates from ATHENA’s MAC operation count method versus
SONOS simulation against the VGG-16 convolutional neural network. Only
convolutional layers are compared. Each energy result is from the MVM ar-
rays in all tiles, and does not contain peripheral circuits....................... 27

Table 3-2. Energy Estimates using ATHENA with and without Activation Function Costs .. 28

ACRONYMS AND DEFINITIONS

ASC Advanced Simulation and Computing

ATHENA Analytical Tool for Heterogeneous Neuromorphic Architectures
ANN Analog Neural Network

ARIAA Artificial Intelligence focused Architectures and Algorithms
CMOS Complementary Metal-Oxide-Semiconductor

CNN Convolutional Neural Network

GEMM General Matrix Multiplication

GenSA General Spiking Architecture

HPC High Performance Computing

LIF Leaky Integrate and Fire

MAESTRO Modeling Accelerator Efficiency via Spatio-Temporal Resource Occupancy
MAERI Multiply-Accumulate Engine with Reconfigurable Interconnects
NoC Network On Chip

Al Artificial Intelligence

CGRA Coarse Grained Reconfigurable Array

SST Structural Simulation Toolkit

SWaP Size Weight and Power

PE Processing Element

MAC Multiply Accumulate

SONOS Silicon-Oxide-Nitride-Oxide-Silicon

MVM Matrix Vector Multiplication

ERT Energy Reference Tables

ART Area Reference Tables

FG Floating-gate

1. INTRODUCTION

The ASC program seeks to use machine learning to improve efficiencies in its stockpile
stewardship mission. Moreover, there is a growing market for technologies dedicated to
accelerating Al workloads. Many of these emerging architectures promise to provide savings in
energy efficiency, area, and latency when compared to traditional CPUs for these types of
applications — neuromorphic analog and digital technologies provide both low-power and
configurable acceleration of challenging artificial intelligence (Al) algorithms. If designed into a
heterogeneous system with other accelerators and conventional compute nodes, these
technologies have the potential to augment the capabilities of traditional High Performance
Computing (HPC) platforms [5]. This expanded computation space requires not only a new
approach to physics simulation, but the ability to evaluate and analyze next-generation
architectures specialized for AI/ML workloads in both traditional HPC and embedded ND
applications. Developing this capability will enable ASC to understand how this hardware
performs in both HPC and ND environments, improve our ability to port our applications, guide
the development of computing hardware, and inform vendor interactions, leading them toward
solutions that address ASC’s unique requirements.

Currently, there are many viable AI/ML-focused next-generation computer architectures, each
focused on different technologies and granularities, e.g. analog neural networks, dataflow
accelerators, and spiking neural networks. Yet, they face a common obstacle — how to map an
application’s operations to individual hardware units and how to evaluate their performance
quickly. The large design space, particularly with heterogeneous nodes, necessitates a simulation
environment that can quickly eliminate poor accelerator choices. We developed a new tool,
ATHENA (Analytical Tool to Evaluate Heterogeneous Neuromorphic Architectures), to quickly
evaluate heterogeneous neuromorphic architectures to enable design space exploration of
emerging machine learning architectures.

Technical Approach: ATHENA

Neuromorphic accelerators can impact the efficiency of machine learning, scientific computing,
and trusted Al applications with two-three orders of magnitude improvement in energy and speed.
This technology has the potential to augment the capabilities of traditional HPC platforms [5]
when integrated into a heterogeneous system with other accelerators and conventional computing
nodes. However, the lack of sufficient benchmarking for neuromorphic hardware is a deterrent to
adopting these novel architectures.

ATHENA is an analytic modeling tool to enable design space exploration of neuromorphic
accelerators in the context of highly heterogeneous architectures, enabling massively parallel

9

computation and mixed-precision computing as shown in Figure 1-1. Analytical tools are
approximate modeling tools that estimate performance of a given architecture (number of
memory read/write, number of multiply-accumulate operations, network-on-chip
communications), for a given technology node. Adding a non-CMOS or analog hardware element
to it involved developing a similar solution in the analog device space. This tool will be extremely
beneficial for rapid testing and architecture prototyping of neuromorphic components for deep
learning. These results can then be used to provide to Structural Simulation Toolkit (SST) to
provide a flexible cycle-approximate simulation foundation and simulate in more detail.

[Input problem description, Hardware configurations J—

il (IEEED [mm=s=c ~
nalytica 4 ATHENA apping

Tools |

: — et — -
(Approsimae (T I Cost Model ‘ ASIT |
Modeling) \[_ E— l[_ — _]_'1\ ZROSS SIM I_
CvcleA N ' ATHENA-SST
ycle-Accurate Structural Simulation :@ Integration Tool
Tools Toolkit
Digital Accelerators Novel Computing
EIEI.)
Hardware ﬁ sl =TT
Backend - This
Dataflow Neuromorphic Analog/ Work
Accelerator Beyond- CMOS

Figure 1-1. ATHENA Overview. ATHENA is a tool that extends existing accelerator tools to model digi-
tal/analog/neuromorphic kernels to enable evaluation of heterogeneous architectures for machine learning ap-
plications. We have also developed a tool called ASIT: ATHENA-SST Integration Tool, that leverages ATHENA
for design space exploration for different hardware configurations (analog/spiking) and based on a metric of
choice (energy,latency etc.) selects a hardware configuration to then simulate on SST. Once a ‘best candidate’
architecture is picked, then detailed simulations can be done on SST.

Chapter 2 reviews few open-source tools leveraged for machine learning dataflow accelerators,
reviews an emerging analog architecture and also a brief overview of SST. Chapter 3 gives an
overview of the ATHENA tool and specific example of the SONOS based analog accelerator and
results. Chapter 4 details the development of the ASIT and reviews leveraging ATHENA to select
a hardware configuration to simulate on SST.

10

2. BACKGROUND

Challenges in power scaling of conventional digital computing have ushered in a new ‘Golden
Age in Computer Architecture’ [8]. A wide variety of computer architecture design tools have
emerged to facilitate research into these novel and emerging computational architectures. This
exploration ranges from less precise analytical assessments to high fidelity simulations. Example
analytical approaches include Modeling Accelerator Efficiency via Spatio-Temporal Resource
Occupancy (MAESTRO) and Eyeriss Eyexam [11, 6]. Other analytical tools focus upon assessing
properties of a hardware architecture such as the utilization of resources and identifying what is
an optimal dataflow strategy for the architecture. An example is the Timeloop tool [15]. More
accurate but slower tools offer cycle accurate simulation capabilities. This increased fidelity often
incorporates component models to attain the cycle accurate analysis and sometimes couples with
executable hardware description level simulations. Examples include Systolic CNN AcceLErator
Simulator (SCALE Sim) and Nvidia Deep Learning Accelerator (NVDLA) [22, 14]. The above
techniques have largely focused on ML accelerator approaches such as systolic arrays and
convolutional neural networks (CNN) accelerators. Additional interest is in how emerging
neuromorphic architectures may also be modeled. For example, NeMo utilizes the Rensselaer’s
optimistic simulation system (ROSS) in a discrete event simulation tool to provide a functional
simulation of the IBM TrueNorth spiking neuromorphic architecture [17]. Other capabilities seek
to account for the performance of emerging device technologies such as CrossSim and PUMA

[1, 3]. Effectively, this spectrum of analytical modeling capabilities help enable co-design and the
assessment of the impact of incorporating emerging ML accelerator and neuromorphic
architectures into truly heterogeneous HPC systems [5].

2.1, Comparison of Existing Accelerator Tools

We evaluated existing accelerator tools to evaluate suitability to extend their functionality for
novel accelerators. In particular we reviewed two tools, namely MAESTRO and
Timeloop/Accelergy in our evaluation which is presented below.

2.1.1. MAESTRO/MAERI

MAESTRO (Modeling Accelerator Efficiency via Spatio-Temporal Resource Occupancy) is an
open-source tool for modeling and evaluating dataflow accelerators. The MAESTRO cost model
provides rapid estimation of the performance/energy given a DNN Model, its mapping, and
hardware configuration. It can be used for HW-SW co-design by porting it into tools that perform
design-space exploration [11]. MAERI (Multiply-Accumulate Engine with Reconfigurable

11

Interconnects) is a modular design-methodology for building DNN accelerators in RTL. It
provides an efficient mapping of neural networks, which covers various DNN layer types and
dimensions, state-of-the-art partitioning strategies (inter-layer fusion, intra-layer tiling, etc.) data
density optimizations (sparsity, compression, etc.), data reuse strategies (dataflow classes based
on stationary data) [12] .

2.1.1.1. Advantages

* MAESTRO has shorter execution time. Maestro determines the estimated energy and
output of a network in milliseconds. Given a convolutional neural network, it will give an
energy estimate for the entire network as well.

* Ease of use. Maestro is fairly easy to use out of the box. The workflow for an end-user is to
gather hardware specification for a systolic style accelerator, convert a PyTorch/Keras
network into a model and dataflow.

 Actively supported with frequent updates.

2.1.1.2. Disadvantages

* Hard to customize. The high speed of MAESTRO comes at the cost of assumptions about
the underlying hardware. The way MAESTRO computes network energy estimates is
limited by the analytical method which works when used against systolic array-based
accelerators. The codebase is monolithic and not documented well.

» Assumes NoC based systolic accelerator architecture.
* It uses single lookup-table for energy estimates and does not support dynamic models.

* MAESTRO supports a limited set of operations.

2.1.2. Timeloop/Accelergy

Timeloop and Accelergy are tools developed by Nvidia labs and MIT. The purpose of Timeloop is
to provide a system that both finds the optimal dataflow for a given problem and a hardware
definition. It does this through an optimized exhaustive search. If the dataflow is already known,
Timeloop can output an energy estimate. Timeloop uses, by default, a lookup table for hardware
costs. This can be enhanced by using Accelergy as a plugin. Accelergy is a tool developed to
provide an easy-to-use architecture-level energy estimation for accelerator designs. Timeloop
features three executables. These are a mapper, which optionally runs if a dataflow map is not
specified. This requires a problem shape configuration. A model generator, which generates
performance metrics from a given workload, architecture, and mapping. And a metrics generator,
which gives statistics and information about a particular hardware definition. The following
subsection details the advantages and disadvantages of Timeloop/Accelergy tools.

12

2.1.21. Advantages

* Accelergy is able to model a wide variety of hardware designs. Examples include very
non-standard hardware including a ‘Process-In-Memory’ design.

* Plugin based: Accelergy can either use a functional-style plugin or a lookup table based
plugin to generate energy estimates. This makes integration of novel devices easier.

* Accelergy takes run-time action counts as input and an architecture as an input. So if the
user generates a set of operation/action counts, this could be piped into Accelergy.

* Timeloop can use Accelergy to generate energy estimates.
* Given an input problem shape, Timeloop can search valid dataflow mappings to find an
optimal mapping.

* Timeloop, as input, takes a layer shape: Dimensions of input, output, and weights, along
with operations. Timeloop focuses on convolutional layers and supports GEMM (General
Matrix Multiplication) layers as well.

* Operations can be extended easily. There is a projection option that deals with Inputs and
can apply dilation and stride modifier.

* Timeloop has a python interface that can call Timeloop and parse the results.

2.1.2.2. Disadvantages

* Timeloop’s execution time is slower if the mapping is not given.
* Timeloop’ s definitions are tricky to figure out (but they are in YAML text).

* Larger codebase. With Timeloop and Accelergy, both the code bases are extremely large.

2.2, Emerging Hardware: SONOS Based Analog accelerator

ATHENA leverages the SONOS (silicon-oxide-nitride-oxide-silicon) floating-gate based
accelerator design as an initial exemplar for analog accelerators. This accelerator was developed
by hardware groups at Sandia and Infineon Memory Technologies. These devices are fabricated
in the embedded 40nm process and enable 8-bit in sifu matrix multiplications. The SONOS
analog memory arrays are optimized for neural network inference and have been shown to
achieve 20 TOPS/W on ResNet-50 with a >10X gain in energy efficiency over state-of-the-art
digital and analog inference accelerators [24].

SONOS floating-gates are a type of non-volatile memory device that enable matrix computation.
Typically, digital dataflow accelerators use arrays of multiply-accumulate (MAC) units, but are
limited by memory read/write and data movement costs. In analog MVM (Matrix-Vector
Multiplication) arrays as shown in Figure 2-1(a), the input vector is encoded in the applied
voltage to the rows V , the weight matrix W is encoded in the memory cell conductances, and the

13

Vy
G G G X
11\ ”\ cee 1”\ | wi | (w2 | **® Wi
v,
x
621\ Gzz\ GZM\ T way | (w2 Wan
. | = . .
[] []
N, cee
s GNA(Wyi| | Whz2 Wy
Y| eee| SO\
v v v
Iy = Z;GiV; Iy = 2iGinVi Y1 Y2 Ym
(a) ()

Figure 2-1. Analog Crossbar Array (a) Schematic of an analog crossbar using floating-gates. (b) The analog

crossbar essentially performs matrix multiplication. Different analog devices afford different precision per
device.

dot product is the output I n the column currents. Using Kirchhoff’s current law, products
accumulate on the bit line. The current is then quantized using an analog-to-digital converter
(ADC) and sent to the next layer’s array. This is equivalent to Figure 2-1(b) matrix multiplication,
where V is equivalent to X, G is equivalent to weight matrix W and output Iis equivalent to y .

i From router To router I
f —

64
TileOut | TileOut
Recatelrocee] o o
FIFOs | FIFOs A —

: 4kB | 4kB '
Tile Tile| | Tile Tile A - \
L —
® @ Analog Analog E TP i
s | |[mvmtin '::r': MVMin ’:;': H Range i
) . 1.125 1.125 conversion * 64 ||
= Tile Tile| | Tile Tile KB |[1152=256 kB |[1152<256 i <16 RolU <64 | |
Host S saks |® Lk IV 1 s 512 ;
CPU £ i | | Ramp generator | oot | [Azon |
- - 64 i| adders |512| adders i
= Tile Tile| | Tile Tile memory i x16 =16 i
w MVMin|| Analog MVMin| | Analog . o = i
@ @ 1125 || mvm 1.125 || Mvm ALUin ! o i
(|| ¥ || core ® || core | (L1881l oo | [Bies memon]
1152256 " =16 o ;
Tile Tile| | Tile Tile R 18 || e e :
Control B4 ALUin 128 Arithmetic logic
unit || L1xe unit (ALU)Y
- .
84 18

(a) (b)

Figure 2-2. Overview of SONOS Floating-gate based analog accelerator architecture and tile. (a) Tile archi-
tecture for the SONOS analog inference accelerator (b) Detailed diagram of SONOS accelerator tile. Analog
accelerator arrays are computationally denser than a convention digital accelerator PE with four 1152 x 256

MVM arrays in the same tile along with peripheral circuits, control unit and 64kB local memory. Images repro-
duced from [24]

14

Unlike digital dataflow accelerators, the SONOS analog accelerator tile contains multiple MVM
arrays as seen in Fig. 2-2. This posed some challenges adapting to this novel accelerator as
discussed in Section 3.4.

2.3. Structural Simulation Toolkit (SST)

SST is a tool that enables cycle-accurate simulations of extreme-scale architectures [20]. It
enables the simulating and testing instruction set architectures, memory components, network
interfaces, network on chip, dataflow accelerators. It has a modular design and parallel simulation
environment based on MPI. This enables simulating large-scale systems on this tool.

The following sections briefly describe the analog and spiking tiles in SST. These can be
leveraged for more detailed cycle-accurate simulation after an analytical tool like ATHENA is
used for design-space exploration.

2.3.1. SST Analog Tile

An analog tile component was developed for SST, that can encapsulate recent developments in
analog crossbars and capture their unique properties. It currently interfaces with CrossSIM,
which is an analog crossbar simulation tool [18]. Each analog tile contains one or more array
models, and an interface to the memory/NoC. The tile component is a memory request generator
for tile memory and for inter-tile communication/synchronization. Different tile functionality can
be simulated by modifying tile address mapping functions for data movement and addressing (e.g.
producertoArray, arraytoConsumers etc.). It currently implements linear/direct mapping, fully
connected layer, and convolutional layers. For more details on this model, please refer to [9].

2.3.2. SST Spiking Tile: Generic Spiking Architecture (GenSA)

SST also contains a spiking neuromorphic processing element called GenSA. This component
will be part of the available hardware that ASIT can utilize when constructing heterogeneous
machines. The GenSA model is under active development. It can now accept an arbitrary spiking
neural network via an external specification file. The architecture configurations are currently
limited to a few basic parameters. This set will be expanded in ongoing development work. The
following is a summary of the goals of GenSA.

A ‘generic’ architecture must encompass the whole design space, such that all the existing
architectures can be represented. The primary machines we consider are IBM’s TrueNorth [13],
Intel’s Loihi [7], and University of Manchester’s SpiNNaker [10]. To a lesser extent, we consider
Sandia’s own STPU, as well as the mixed-signal systems BrainScaleS and Neurogrid. The
following is a notional diagram to illustrate the idea of a design space.

Figure 2-3 illustrates the components that tend appear in some form across a wide range
neuromorphic devices. A neuromorphic machine must scale to a very large cluster, possibly with

15

Chip
Shared | Memory Bus
hemary
Core Other
Cores
Spike | Synapse | Compartment | Spike sas
Receivers Models Models Senders
NoC | Mol
Router Router
Hetwork Channels
S . ._.-" "= ..‘_-"'

Off-chipand
Off-board .
Routers f 1~

Figure 2-3. GenSA Workflow Overview. Image reproduced from [21].

enough processing units to represent an entire brain. There may be many levels to the machine
organization to allow such an enormous system. Starting at the board level and working
downward, there are several chips, each of which contains several cores. A network fabric crosses
all the machine levels in order to move event messages between neural units. Each core will
process several compartments (typically LIF: Leaky Integrate and Fire units). It must accept
incoming event messages from the fabric, store them during their delay period and integrate them
as they become active. The core must compute the dynamics of each compartment and send event
messages out to the network fabric.

GenSA does not need to replicate each architecture exactly. It is sufficient that the generic
machine be configured to provide similar performance characteristics under similar inputs (code +
data). The SST element will include a Python script to construct a spiking device for a given set
of parameters.

16

3. ATHENA: MODELING NOVEL ANALOG ML ACCELERATORS

Analog and neuromorphic accelerators can impact the efficiency of machine learning, scientific
computing, and trusted Al applications with two-three orders of magnitude improvement in
energy and speed [1]. The multiply-accumulate (MAC) unit is a core computational kernel of
many problems, be it neural networks or partial differential equations (PDEs). Current efforts are
focused on accelerating the MAC unit and optimizing data flow. Emerging analog memory
devices can provide significant gain in energy efficiency and latency for vector matrix
multiplication. However, the lack of sufficient benchmarks for analog and neuromorphic
hardware is a deterrent to adopting these novel devices and architectures. Thus, developing tools
for design space exploration of analog and neuromorphic accelerators is important to
demonstrating their efficacy for deep learning applications.

I Mapping
I

Analytical Tools
(Approximate

/
!
!
I
!

Modeling) cenmer : Cost Model
‘ Accelarator, ZROSS SIM)
L e) Y,
Mapping
Cycle-Accurate Tools llyr :@
Conventional Digital Novel Computing -
This
:::] E Project
- . Sandia
Dataflow Neuromorphic Beyond-CMOS Tool

Accelerator

Figure 3-1. ATHENA is an analytical tool that can be leveraged for design space exploration of novel architec-
tures that use emerging devices. It is an approximate tool that be used for performance estimation.

Our approach leverages existing deep learning accelerator modeling tools like Timeloop [15] and
Accelergy [23] to explore analog and neuromorphic accelerator architectures. ATHENA extends
the design space supported by these tools by incorporating hardware description and energy tables
for analog kernels. Analytical tools work through computing energy related operations (number
of memory read/write, number of multiply-accumulate operations, network-on-chip
communications) given a certain technology node. Adding non-conventional analog and

17

emerging devices involves developing a similar solution in the analog device space for
characterization. This tool can be leveraged for rapid testing and architecture prototyping of novel
analog accelerators. While Sandia’s Structural Simulation Toolkit (SST) can yield cycle-accurate
simulations, analytical tools provide quicker analysis for a given architecture. Other tools that
account for the performance of emerging device technologies are CrossSim and PUMA [1, 3]. We
leverage data from the CrossSim [19] tool within ATHENA to model emerging memories. In this
paper we will present results based on a SONOS floating-gate based analog accelerator using
ATHENA.

3.1. ATHENA Overview

ATHENA is intended to be an end-to-end tool that enables searching across a wider variety of
hardware designs. ATHENA provides the ability to quickly examine the performance in terms of
latency, energy requirements, and network traffic limitations of novel analog neuromorphic
hardware. In addition, ATHENA will provide the ability to generate estimates of hardware from
problems implemented in PyTorch, Tensorflow, and MLIR. By providing rapid performance
estimates, ATHENA will enable us to quickly prototype new hardware designs. In addition to the
rapid performance prototyping provided by ATHENA, we will also leverage more traditional
simulation tools as the neuromorphic architecture matures.

Tensorflow/ Pytorch

/ ATHENA \
/ Hardware Description

* Primitive Components

* Architecture —
* Components for mapper THQ 00op
* Hardware Constraints apper

* MVM Types

[Analog] [Spiking }

N
Energy/Area/Time Plugin

« Different analog devices - Accelergy

* Peripheral circuits like ADC/DAC

* Memory

\‘ ALU /

Figure 3-2. ATHENA is an analytical tool that can be leveraged for design space exploration of novel architec-
tures that use emerging devices. It describes the hardware specifications and energy/area/timing tables for
beyond-CMOS analog accelerators.

Our work leverages the existing work by [15], Timeloop, a dataflow style mapping tool that can
estimate energy for CMOS logic based ML acceleration devices. Timeloop supports single layer
mapping of a neural network. ATHENA generates multiple hardware/problem inputs for
Timeloop. ATHENA adapts Accelergy hardware design descriptions to generate a hardware
layout file for each layer of the run (changing active rows and columns). This allows for more
dynamic energy estimates based on the problem size. We have adapted Timeloop to provide

18

estimates of a tiled analog ML acceleration device [24]. This first implementation is a proof of
concept of the suitability of analytical methods for estimating performance of analog devices.

Given the preliminary results estimating the energy and latency of this hardware against a deep
learning network task, we hope to further ATHENA'’s capabilities by adding spiking neuromorphic
hardware estimates as well as combining the ATHENA tool with an ecosystem of novel hardware
design space exploration tools that interface with LLVM and MLIR for broad applicability.

3.2. Activation Functions

Matrix-Vector Multiplication Energy

S a0l 285007

S 2.323 nJ

g

€20

35

2

8

> 1.0

o

i 0.198 nJ 0.113 nJ

0.0° , , : ;
8-bit 1-bit 8-bit 1-bit
1152 x 256 288 x 256
matrix matrix

Figure 3-3. Impact of binary (1-bit) versus 8-bit activations in an analog MVM array using Resistive Random
Access Memory (RRAM) devices. Reproduced from [2]

Typically, in analytical tools for dataflow accelerators, the cost of computing activation functions
are largely ignored. When examining the energy of dataflow accelerator hardware, the cost of
activation functions is relatively small when compared to the cost of the large MAC operation
energy cost. This however is important when considering binary neural networks or spiking neural
networks. Binary neural networks leverage simplified activation functions which could affect the
total energy of an analog accelerator device. In Figure 3-3, the difference in energy between 8-bit
and 1-bit activation functions computed on an analog array are compared. 1-bit activation
functions are computed on the MVM array, allowing for significantly higher energy efficiency.

ATHENA has preliminary support for activation function hardware, but this is still a work in
progress. To add support for activation functions, we first compute the size of the output
dimensions of the running layer. Given a word-size in an ALU and a bit-precision from the
network, we can determine the count of activation function operations that need to be completed
for a given input layer. This allows ATHENA to compute the energy required to run the activation
function circuitry for a given input layer. This functionality will be fully integrated in a future
release of ATHENA.

19

3.3.

The ATHENA CLI is the main interface between the user and the ATHENA tool. It currently
supports a few options for the user to choose from, such as the path to the chosen architecture
(select from the architectures’ folder), the input files to analyze, the output folder to store the
outputs/logs (currently defaults to output), and a verbose flag that determines the verbosity of the
final output message. The input files to the tool are formatted as problem shapes in a YAML file
like those found in the Timeloop examples. These problem shapes define the dimensionality of
the data being processed in a particular layer of a given network. Work is currently being done on
a tool for a user to convert a model created using a tool such as TensorFlow or PyTorch that will

Command Line Interface

root@c74efadceebd: /home/ath_usr# athena --help
Usage: athena [OPTIONS] COMMAND [ARGS]...

- N/
/ |/_ A A [/ (e,e)/ |/
P N A A A B A A A A A A N A A T B VA
AN VA AV A A S A B AN AV Vi
O WA A B A v N Y

Main CLI for using Athena

To modify architecture configuration, edit the ~<arch>_config.yaml™ file
in the architecture folder. This file will define which base architecture
is chosen, what component files are used, which mapper and constraints are
applied, and where the outputs should be stored.

For more information on available commands,

run ~athenz <command> --help’.

Options:
-a, --arch DIRPATH Folder path to chosen architecture
-1, --inputs [FILEPATH ..] Paths of input files to analyze

-0, --outputs DIRPATH Redirects the outputs to this folder if
specifisd; the folder must exist before using
ATHENA

-v, --verbose If verbose flag is set, then a longer summary

message is printed and saved to the summary .csv

file.
--help Show this message and exit.
Commands :
init Initializes ATHENA.

sanitize Sanitizes files given their filepaths.

Figure 3-4. ATHENA Command Line Interface (CLI)

convert the model to this particular format.

20

The ATHENA CLI is setup as a built-in command in the docker container, and requires an
initialization to generate the necessary Accelergy dependencies, like an Accelergy configuration
file, in order for the tool’s backend to work. Once initialized, the user can run the tool directly on
SONOS PIM architecture because it is the default architecture used. The user only needs to
specify the verbosity and particular problem shape inputs when running ATHENA. This is shown
as an example in the following figures.

root@c74efa9c@@b9: fhome/ath_usr# athena -v -1 accelergy_architectures/socnos_pim/vgg/*
Running ATHENA with /home/ath_usr/accelergy_architectures/sonos_pim

> using “system_SONOS.yaml™ as base architecture
Checking primitive components in ~accelergy_config.yaml ...

Output files already in outputs, do you want to save them? (y/n): n
Removing contents from output folder...

Calling timeloocp-mapper...

running timeloop on “vgg_layerl™ ...

> timeloop-mapper execution took 128.387 seconds
running timeloop on “vgg_layer2” ...

> timeloop-mapper execution took 129.774 seconds
running timeloop on “vgg_layer3™ ...

» timeloop-mapper execution took 49.738 seconds
running timeloop on “vgg layerd™ ...

» timeloop-mapper execution toock 57.575 seconds
running timeloop on “vgg layerS5™ ...

> timeloop-mapper execution took 52.568 seconds
running timeloop on “vgg_layere™ ...

Figure 3-5. ATHENA CLI execution

After initialization, we can use the tool to analyze multiple input files and control the verbosity of
the summary statement at the end. Here, we set the verbosity flag -v and set the inputs using -i by
passing all the VGG layers, as shown in Figure 3-5. The tool alerts the users of which base
architecture is chosen, and checks for additional primitive components to add to the Accelergy
config file. It then checks if there are outputs in the output folder (default is used here, but can
otherwise be specified), and asks the user if they want to save the previously found files.
ATHENA then runs the Timeloop-mapper on all inputs and prints a summary statement at the
end. The summary statement is saved to a .csv file and the details of each layer’s run are stored in
a .pkl file. Logs for each layer are stored in /outputs/logs.

3.4. Modeling the SONOS Analog Accelerator in ATHENA

ATHENA models analog MVM array based hardware leveraging the Accelergy+Timeloop
software tools. Adaptation of the analog hardware required emulating the MVM array in the
context of a CMOS-based dataflow hardware acceleration device. To accomplish this, we
implemented a plugin and wrapper based system around the Accelergy+Timeloop framework. An
overview of the ATHENA system is shown in Figure 3-6. ATHENA acts primarily as a “wrapper”
to Accelergy and Timeloop, providing a user interface entry point as well as analysis tools.
Furthermore, ATHENA provides an energy estimate plugin system to Accelergy, providing
energy tables that the Timeloop mapper can use to estimate analog hardware performance, shown
in a high level in Figure 3-7. Combined with the wrapper functionally, ATHENA is able to coerce
Timeloop into analyzing tiled analog accelerator hardware.

21

Input Processing Output Generation

Abstract Representation,
Pytorch CNN,
etc.

Input Model: (
Shape Description

Timeloop Problem

Timeloop & Accelergy Components

MAPPER MODEL
Ve ™ Workload § Mapspace
HARDWARE ?PECIFICATION . Bikioa Fﬂ Construction
Systolic Array, e Conversion Arch S ¥
Analog Accelerator <_ & ch Spec Mapspace Mapping
Spiking Accelerator ‘ .. Generation 7 FT——— Tile
- - | I:[| ™ Analysis
0=y :) Area |
L
([l Tech
Accelergy Hardware Ly F Madel
Hardware Template e Accelergy
. . Accelergy Hardware ——
Representation Library . ..
Design Description
J Timeloop ACCELERGY
Python

Action/Energy
Estimation

Figure 3-6. Flowchart describing ATHENA'’s process flow.

Adapting a dataflow-centric analytical performance estimation tool to enable analog hardware
estimation required several design changes. ATHENA works as a wrapper and plugin for
Timeloop and Accelergy, allowing for the mapping of multi-component SONOS hardware tiles
using Timeloop. A high level overview of ATHENA is shown in Figure 3-6, detailing the
program’s flow from input processing, output generation, and wrapping over Timeloop and
Accelergy.

Within the SONOS hardware, MVM Arrays are combined into structures called “Tiles” as shown
in Figure 2-2. Athena represents tiles as “Fat PEs”, given these tiles are much larger than a typical
dataflow accelerator PE, wrapping energy and performance into a single logical cluster of PEs.

3.4.1. Hardware Description in ATHENA

More precisely, to provide energy and latency estimates, Timeloop computes data movement
across buffer levels. Once the PE level is reached, Timeloop estimates the cycles needed to
complete the computation based on the number of available PEs for computation coupled with
available buffer memory.

Representing a tile within a dataflow-centric tool requires several adaptations. First, the tool must
be aware of both the number of available compute units and the limits of the MVM array sizes. To
represent a tile, with these constraints, a PE cluster was constructed within Timeloop. This cluster
contains a set of “dummy” PEs, “dummy” buffers, along with peripheral components that make
up the tile. To represent the MVM array within the cluster, a group of PEs coupled to scratchpad
memory exist. The scratchpad memory connects to the ATHENA energy estimation tables, which
provide data on a SONOS array’s performance. The PEs exist to allow Accelergy to successfully
map the input problem to hardware, however they report zero energy.

22

“Fat PE" Clusters

Global Buffers

Tile Input Components
Network Buffers

Router / Crossbar NOC

Analog Tiles —

Timeloop SRAM Register
—

Weights stored
«Read Only NeIT-RYNA

Performance Data
Timeloop PE Component

Athena—SONOS Gather MVM Utilization M09 Pl e)

Energy Data Tile Rows/Columns '

SRAM Access Patterns

T

Tile Output Components

ReLU Computations Buffers

-

Figure 3-7. Overview of ATHENA'’s hardware mapping and interface to Accelergy and Timeloop.

Each group of MVM cores, in the ATHENA hardware design mapping, contains an extra
“scratchpad” memory buffer. This scratchpad memory buffer serves two purposes. First, the
memory represents the analog MVM array’s stored weight values. The memory is configured as
read-only, and can only store the weights of the input problem.

One constraint of Accelergy and Timeloop is that they are unable to dynamically change the
energy required for a single MAC operation when finding a valid and optimal mapping for a given
hardware configuration. However, Accelergy will look up different energy values based on
memory access patterns. Athena uses these memory layers to identify and compute the active
rows and columns in the SONOS array, providing energy values to Timeloop that can be
incorporated into the mapping cost model.

Each tile, from the perspective of Accelergy, is a cluster of PEs. This cluster can be mapped
similarly to a standard dataflow-centric hardware design. ATHENA'’s design takes the memory
access patterns reported by Accelergy, and uses them to represent tile access energy. This
technique enables Timeloop’s mapping algorithm to receive more dynamic energy costs when
exploring the mapspace. In standard Timeloop, energy costs are fixed at runtime; each MAC
operation cost is fixed based on the hardware class and definition within the energy look up tables
or calling functions.

In Accelergy, sub-trees define a set of connected components at a specific “level” within the
processor structure. In the case of the SONOS definition, subtrees are defined for the MVM core
with attached MVM-in and ALU-in buffers and the tile structure. Figure 3-8 is a simplified
example of the hardware definition file used by Athena and Accelergy. Line 6 is the end of the
non-MVM components of the device. Each tile has 4 MVM arrays, defined on line 7. Each MVM
array has an SRAM buffer component, which is attached to a sonos_access element. This
element is treated as a zero energy memory buffer by Timeloop. However, the memory access
patterns are used to find energy used based on the number of active SONOS rows and columns for
a particular computation.

23

O 00 1NN RN —

L L) LW W NN DN DD N NN DD = = = = = =
LW — OO0 XIANNPAE WD, OOVXIANND WD —O

Fat PE simplified example - MVM array

subtree:
Non MVM Components of a tile
Fat PE:
subtree: # Virtual cluster of MVM arrays
- name: MVMArray [0..4]
- local:
- name: mvm_in
class: SRAM
attributes:
sizeKB: 8
- name: sonos_access
class: sonos_array_pattern
- name: scratchpad[0..294911] # MVM Array Weights
class: sonos_dummy # Scratchpad containing weights
attributes:
action_name: read
network_drain: sonos_output_network
- name: MVM[0..294911]
class: compute
subclass: sonos_array #sonos array
attributes:
fat: 1
action_name: compute
n_mvm_rows: 1152
n_mvm_cols: 256
- name: sonos_output_network
class: sonos_tile_network
- name: ALUin
class: SRAM
network_fill: sonos_net_output
network_drain: alu_network

Figure 3-8. Simplified example of a SONOS tile definition using Accelergy’s hard-
ware definitions with ATHENA'’s extensions.

To allow Timeloop to map computation, the sonos_access element is attached to a scratchpad
memory element which represents the intrinsic memory of the analog array. We restrict the data
mapped to this element such that the weights or read-only portion of the input problem are stored
within these values. There is one scratchpad entry per MVM cell which provides the weight table
for Timeloop’s mapping. Next, the MVM array is defined as a set of generic “compute”
component classes. The compute class is a standard PE compute element in Timeloop. In this
mapping, the ATHENA energy table reports zero energy for using this MVM array, as the
inherent cost of computation is already reported by the ATHENA energy tables based on the
memory access patterns via the component defined in line 13. The results of these values are sent
via the on-tile network to the ALUin SRAM buffer, which connects to the non-MVM component
network. Figure 3-7 also provides a graphical overview of the structure of the SONOS hardware
mapping in the ATHENA system. This diagram illustrates where non-MVM, and thus
non-ATHENA components are connected to the ATHENA based hardware.

3.4.2. Energy/Area Tables

To enable fast energy and area estimation, Athena uses energy and area lookup tables. ATHENA
generates these tables before each run, providing a fast way to estimate how much energy a

24

O 00 1NN RN —

(SRS E SR SIS IS I S IS I SIS I S o sl i e s e e
OO XN UNHAE WD~ OV AW —O

ERT:
version: 0.3
tables:
- name: system_arch.chip.tile [0..255].Core[0..3].sonos_array_pattern
actions:
- name: read
arguments:
active_cols: 0
active_rows: 0
energy: 4.80143808e-07
- name: read
arguments:
active_cols: 1
active_rows: 0
energy: 4.92697728e-07
- name: read
arguments:
active_cols: 2
active_rows: 0
energy: 5.05251648e-07
- name: read
arguments:
active_cols: 3
active_rows: 0
energy: 5.17805568e-07
- name: read
arguments:
active_cols: 4
active_rows: 0O
energy: 5.30359488e-07

Figure 3-9. Small selection of an ATHENA+Accelergy ERT, with memory access
patterns showing as active_rows and active_columns which provide energy
values for the underlying MVM array.

particular input problem will consume. Data from this table was extracted from a simulation of
the SONOS hardware, discussed in [24]. Energy provided by this simulation data contains
per-array MVM energies based on the number of active rows and columns. Using this data, we
generated energy reference tables for use with the ATHENA and Timeloop system.

Energy reference tables, or ERTs, consist of a set of values based on the actions performed by a
particular hardware component. Each action has a corresponding value in the table, and energies
are provided. The end result file is generated by Accelergy, using Athena as a plugin. A small
sample of this end result data file is shown in Figure 3-9.

ATHENA uses the number of MAC operations required to compute a problem as the basis for
estimating energy required for computation. Within the ERT table, as can be seen in Figure 3-9,
each entry for a particular hardware element has a corresponding activity entry. Since we are
adapting Timeloop’s energy system to support dynamic MAC energies, MAC compute values are
stored as part of the memory read operations. As MAC operations occur while running the
mapper, the energy values in the ERT are added to the running total.

The Area Reference Table (ART) is similar to the ERT, in that it is also a generated lookup table.
Instead of providing energy-action values it provides area estimates. As an example, Figure 3-10
shows some components of an ART. This file is generated by using Accelergy, with the ATHENA
plugin providing other area estimates.

25

O 00 1NN RN —

ART:

version: 0.3

tables:

- name: system_arch.chip.tile [0..255].D2A_NoC
area: 84.992

- name: system_arch.chip.tile [0..255].A2D_NoC
area: 1972.25

- name: system_arch.chip.chip_net
area: 181

Figure 3-10. Small selection of an ATHENA+Accelergy ART, with various example
components and thier corresponding areas.

When running ATHENA, the ART is used to provide estimates of the area of the processor. This
functionality has the potential to be leveraged for a design space exploration tool. The total area
of the processor could be added as a constraint when finding efficient hardware designs.
Currently, in Athena the ART is an informational tool. Accurate area estimations need to be
gathered for specific subcomponents. Furthermore, using ATHENA as a design space exploration
tool will be examined as future work.

An additional tunable element of ATHENA is an activation circuit module. In this work, we
added the activation element as an element to the ALU as a tunable component. Currently, the
circuit estimates a ReLLU function. This ReLU uses energy values gathered from the CrossSim [1]
simulation tool, or from a MUX based system described in [4, 16]. The CrossSim energy data
provided values for 13 and 14 bit ReL.U operations, and the MUX based system provided 16 bit
ReL.U operations. For values larger than these ranges, the ReLLU circuit assumes that the largest
component is an atomic building block, and computes how many of them are required to fulfill
the needed word size.

3.5. Results

To examine ATHENA'’s performance, we ran two major accuracy tests. The first test involved
testing a layer of the VGG-16 network and comparing the tile energy for an ATHENA based
mapping versus a SONOS based mapping. In Figure 3-11, we show the network layer, ATHENA'’s
total tile energy, and the SONOS reported total tile energy. This comparison was generated using
the full dataflow problem mapping features of ATHENA, compared to the hand-tuned mapping
used in the SONOS array. The results show that the techniques used in ATHENA have the
potential to provide fast and close to accurate results when measuring tile energies.

Using an ERT as a lookup method has the potential to lose some dynamical behavior of the
underlying hardware. This is a trade-off between accuracy and modeling speed. Look-up-tables
will provide the most performance, but with potentially the least accuracy, especially when
compared with lower-level simulation tools. In Table 3-1, the results of using ATHENA’s method
of computing energy values is compared with raw results from the SONOS simulator. These
values are computed by first computing the size of the MVM arrays on each tile, modifying the
MAC count with this number, then multiplying out the energy per MAC array against the number
of MACs computed per array. These energy values are a total sum of just the MVM analog
arrays, which have significantly smaller total energy values than the peripheral circuits on a tile.

26

Athena Tile energy estimate VS SONOS Tile Energy Estimate

Athena Total SONOS Total | Number of
Tile Tile Computations
p) p)

86704128

Figure 3-11. ATHENA analytical tool results compared to the Analog FG-based model [24].

As such, these values are much more susceptible to small inaccuracies, and provide a deeper look
into possible errors in ATHENA’s methods of computing energy.

We found that the MVM energy array inaccuracy ranged from approximately 67 % to 2 % over all
layers. A major source of the inaccuracy in these results stems from the more dynamic way that
the SONOS simulation engine maps workloads across the available compute resources on-chip.
The SONOS simulation engine uses a hand-tuned mapping scheme, where weight layers are
duplicated to provide more efficient processing. Furthermore, the SONOS simulation uses activity
over time, using clock-cycles to compute energy usage. Enabling fine-grained MVM array re-use
in ATHENA is part of our ongoing work, and should dramatically increase accuracy.

Table 3-1. MVM energy estimates from ATHENA’s MAC operation count method versus SONOS simulation
against the VGG-16 convolutional neural network. Only convolutional layers are compared. Each energy result
is from the MVM arrays in all tiles, and does not contain peripheral circuits.

Layer Total MACs Athena Result SONOS Result Difference

Conv. 1 86704128 2.1431pJ 1.0652pJ 67.1968 %
Conv. 2 1849688064 8.5201pJ 3.7520pJ 77.7058 %
Conv. 3 924844 032 2.1295pJ 2.1042pJ 1.1940%
Conv. 4 1849688064 4.0181pJ 3.9704pJ 1.1940%
Conv. 5 924 844 032 1.0647 pJ 1.0395pJ 2.3951%
Conv. 6 1849688064 2.1295pJ 2.0791pJ 2.3951 %
Conv. 7 1849688064 2.1295pJ 2.0791pJ 2.3951%
Conv. 8 924 844032 1.0647 pJ 1.0146pJ 4.8186%
Conv. 9 1849688064 2.1295pJ 2.0293pJ 4.8186 %
Conv. 10 1849688064 2.1295pJ 2.0293pJ 4.8186 %
Conv. 11 462422016 0.53237pJ 0.48288pJ 9.7503 %
Conv. 12 462422016 0.53237pJ 0.48288pJ 9.7503 %
Conv. 13 462422016 0.53237pJ 0.48288pJ 9.7503 %

Another source of potential inaccuracy is the inherent differences in low-level simulation and the
underlying Timeloop architecture. In [15], the accuracy of timeloop when compared against the
NVDLA [14] architecture ranged from 78 % to 99 %. Those results were gathered running
Timeloop against a dataflow architecture, something that Timeloop was tuned to perform well
against. We expect ATHENA, in general, to have similar accuracy results against analog
hardware. As we enable more advanced mapping patterns, ATHENA should reach these levels of
accuracy.

27

Table 3-2. This table compares evaluating activation functions as part of the energy costs for different archi-

tectures.

VGG Convolutional Layer Eyeriss Energy (pJ) SONOS Energy (pJ)
No ReLU 14-Bit ReLU
Conv. 1 925.06 42.235 42.574
Conv. 2 12196.60 139.119 146.344
Conv. 3 5636.16 75.684 79.296
Conv. 4 11384.15 139.694 146.919
Conv. 5 5524.96 37.442 41.054
Conv. 6 10739.76 74.273 81.498
Conv. 7 10739.76 74.273 81.498
Conv. 8 5174.99 23.995 27.607
Conv. 9 10710.05 71.804 79.029
Conv. 10 10710.05 71.947 79.172
Conv. 11 3015.38 13.763 15.569
Conv. 12 3015.38 13.617 15.423
Conv. 13 3015.38 13.617 15.423

We further investigated the effect of the ReLU components on the total energy of the SONOS
system. Using ATHENA and plain Timeloop + Accelergy, we computed the energy cost of
running VGG-16 convolutional layers on the Eyeriss digital system against SONOS with and
without a 14 bit ReLLU. In Table 3-2, the results of these evaluations are shown. We found that a
ReL.U activation circuit adds a non-insignificant effect on the energy of running these layers.
Table 3-2 also compares the reported performance of Eyeriss against the SONOS estimations. We
ran this hardware design using Timeloop + Accelergy to examine the effect of the ATHENA
plugin, wrappers, and modifications on non-analog device accuracy. As the table shows, the
modifications to Timeloop and Accelergy did not change the underlying digital estimation

performance.

28

4, ATHENA-SST INTEGRATION TOOL (ASIT)

ASIT allows for the user to pass in a specific input problem, to be tested against different
hardware architectures. ASIT identifies the series of operations needed to run these problems,
then builds a set of possible compatible hardware architectures that could theoretically execute
the problem set. ASIT then utilizes ATHENA in order to evaluate the performance execution of
the input problem set over the specified hardware.

Input
Problem

Init ASIT

v

Build Compatible H/W List

V

Build ATHENA Image

Available
Components

‘ Parse Results

v

‘ Build SST Model

v

‘ SST

Figure 4-1. ASIT Functional Diagram

ATHENA is then used to evaluate the candidate hardware’s performance based on the given input.
Currently, ASIT supports selecting the hardware with the lowest estimated total energy, however,
it is possible to add other optimization targets including latency, area, and cost of the devices.
ASIT is designed to take the selected “best” hardware configuration, and generate an SST
component based on the hardware. This is implemented via a set of configuration parameters
which define the component’s capabilities in terms of compute size, memory capacity, and other
values. In the case of the SONOS system the parameters are tile size, number of tiles, and cache
sizes. As ATHENA is estimating novel analog hardware performance, the design of SST
components to support these devices is critical to increase supported hardware in SST. A
supported component must have a set of configurable parameters which ASIT can populate based
on the ATHENA hardware design. To increase the number of supported hardware devices, more

29

SST components need to be added, along with a corresponding set of ATHENA hardware and
ASIT output configuration parameters.

41, Results

ASIT: ATHENA-SST Integration Tool v0.0.6

Builds ideal SST component for given input problem. Refer to README for more.
By default, inputs are automatically loaded from 'input/inputFile'.
Please modify main.py or use configure option (4) to locate ATHENA path.

. Generate SST Component

. Print Available Components

. Configure Input File Location

. Configure ATHENA Location

. DEBUG OPTION: Compare Pre-Generated Results

UAWNBR

6. Exit

Enter selection: 5

Component: memristor | Total Energy Usage: 233 pJ
Component: sonos_relu | Total Energy Usage: 188 pJ
Component: actual_systolic | Total Energy Usage: 13121 pJ
Chosen Component: sonos_relu

SST sub-module created for component! Found at: output/generated/final_sst_component/sonos_relu_sstmodule.py

Figure 4-2. Example output of the ASIT tool

We evaluated ASIT on three different hardware configurations: A SONOS-based analog
accelerator, a memristor crossbar accelerator, and a digital systolic accelerator configuration
which were then presented to ATHENA to evaluate over. ATHENA then evaluated two layers of
the VGG network previously examined to find performance values. After evaluation the ASIT
tool examined the devices, picked the SONOS accelerator as the best performance option, and
generated a set of SST component configuration settings. Figure 4-2 shows the result of the run as
a demonstration of the software interface.

4.2, Extending ASIT

ASIT is intended to provide a link between an analytical performance estimation tool like
ATHENA, and the SST simulation engine. In the future, ASIT will be able to generate an SST
model based on more primitive SST component templates, allowing for full simulation of a
variety of hardware. ASIT will allow for integration of any device supported both by ATHENA
and SST template enabled components, specifically targeting architectures including: tile-based
digital components, analog accelerators, and neuromorphic accelerators. With the addition of
these hardware components to ATHENA and SST, ASIT will allow for the evaluation of
efficiency of these hardware designs before implementing them into SST. This would allow for an
array of different architectures to be filtered through so the best-fit option is the one chosen to be
fully simulated.

Eventually, ASIT will enable rapid prototyping of analog devices for specific applications with a
higher fidelity simulation step in the loop. This could pave the way to a true DSE software system
for analog and analog-based neuromorphic hardware.

30

5. CONCLUSION

We delivered an initial API for Athena in a docker environment for an analog machine learning
accelerator. The ATHENA framework is now set up to enable design space exploration of
different accelerators that leverage emerging devices. Future work in ATHENA will support a
wider array of devices and architectures. As shown in Figure 5-1, the overarching goal is to
support and develop tools as part of the codesign tool ecosystem at Sandia, thereby impacting
multiple mission areas.

Future work on the ATHENA tool will be to add a hardware design library that would enable a
‘lego’ style method of testing analog hardware design. We also plan to generate candidate
hardware configurations by multi-objective optimization to reduce the analog search space. We
will also continue design space exploration with SST in the loop, leveraging ASIT.

UNION(ARIAA) This
Project
Helps address many D / [] \ : G
different input types . Interface
C++ code, Tensorflow, .
Pytorch etc. :
: {— mamanASC-AML Sandia
! o
= | | i
Analytical Tools D]"[] 1. | Mapping
(Approximate | | H | !
Modeling)] []4 L J [ﬁ
h : /‘v‘lannir{ |~
: ZROSS SIM
Cycle-Accurate Tools [] Ilyr m <« R
(Better Modeling, : .
Computationally expensive) : Low-level mapping
Conventional Digital : Novel Computing
O S B D
Implementation - :
CPUs GPUs FPGAs ASICs Dataflow : Neuromorphic Analog/
Accelerator : Beyond-CMOS

Figure 5-1. A snapshot of codesign tool ecosystem for machine learning with a focus on projects at Sandia.

ATHENA-SST integration was especially important to be able to do design space exploration for
many different accelerator backends. We demonstrated an initial example of integration of
ATHENA with SST, to enable approximate modeling of performance before detailed simulation
in SST.

As shown in Figure 5-1, there are a number of different projects at Sandia that target different
areas of the stack ranging from analytical tools that achieve approximate performance modeling

31

to cycle-accurate and hardware accelerated simulations and many different low-level backends
ranging from conventional computing (CPU, GPU, FPGAs) to leveraging dataflow accelerators,
neuromorphic and beyond-CMOS computing. Our future in particular will focus on
heterogeneous novel computing paradigms like neuromorphic and analog computing and
contributing to the codesign tool ecosystems.

The two tracks for mapping and architectural exploration are complimentary and critical in our
co-design methodology to design heterogeneous architectures that incorporate novel computing
paradigms. The outcome of this work are the first steps toward a formalized design stack
methodology for mission-oriented hardware/software co-design for heterogeneous node and
system architectures. This expanded computation space requires not only a new approach to
application development, but the ability to identify, evaluate, design, and analyze next-generation
architectures specialized for specific workloads.

32

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Sapan Agarwal, Alexander Hsia, Robin Jacobs-Gedrim, David R Hughart, Steven J
Plimpton, Conrad D James, and Matthew J Marinella. Designing an analog crossbar based
neuromorphic accelerator. In 2017 Fifth Berkeley Symposium on Energy Efficient Electronic
Systems & Steep Transistors Workshop (E3S), pages 1-3. IEEE, 2017.

James Bradley Aimone, Christopher H Bennett, Suma George Cardwell, Ryan Anthony
Dellana, and Patrick Xiao. Mosaic, the best of both worlds: Analog devices with digital
spiking communication to build a hybrid neural network accelerator. Technical report,
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2020.

Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin Foltin,

R Stanley Williams, Paolo Faraboschi, Wen-mei W Hwu, John Paul Strachan, Kaushik Roy,
et al. Puma: A programmable ultra-efficient memristor-based accelerator for machine
learning inference. In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 715-731,
2019.

Christopher H. Bennett, Vivek Parmar, Laurie E. Calvet, Jacques-Olivier Klein, Manan Suri,
Matthew J. Marinella, and Damien Querlioz. Contrasting advantages of learning with
random weights and backpropagation in non-volatile memory neural networks. /EEE
Access, 7:73938-73953, 2019.

Suma George Cardwell, Craig Vineyard, Willam Severa, Frances S Chance, Frederick
Rothganger, Felix Wang, Srideep Musuvathy, Corinne Teeter, and James B Aimone. Truly
heterogeneous hpc: Co-design to achieve what science needs from hpc. In Smoky Mountains
Computational Sciences and Engineering Conference, pages 349-365. Springer, 2020.

Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 9(2):292-308, 2019.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqgiang Cao,
Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A
neuromorphic manycore processor with on-chip learning. /IEEE Micro, 38(1):82-99, 2018.

Jeff Dean, David Patterson, and Cliff Young. A new golden age in computer architecture:
Empowering the machine-learning revolution. /EEE Micro, 38(2):21-29, 2018.

Ben Feinberg, Sapan Agarwal, Mark Plagge, Fredrick H Rothganger, Suma Cardwell, and
Clayton Hughes. Modeling Analog Tile-Based Accelerators Using SST. Technical report,
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2022.

33

[10] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The spinnaker
project. Proceedings of the IEEE, 102(5):652-665, 2014.

[11] Hyoukjun Kwon, Michael Pellauer, and Tushar Krishna. Maestro: an open-source

infrastructure for modeling dataflows within deep learning accelerators. arXiv preprint
arXiv:1805.02566, 2018.

[12] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. MAERI: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable interconnects. SIGPLAN Not.,
53(2):461-475, March 2018.

[13] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada,
Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A

million spiking-neuron integrated circuit with a scalable communication network and
interface. Science, 345(6197):668-673, 2014.

[14] NVDLA, 2020.

[15] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A Ying,
Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany, Stephen W Keckler, and Joel
Emer. Timeloop: A systematic approach to dnn accelerator evaluation. In 2019 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), pages
304-315. IEEE, 2019.

[16] Vivek Parmar and Manan Suri. Design exploration of iot centric neural inference
accelerators. In Proceedings of the 2018 on Great Lakes Symposium on VLSI, GLSVLSI
"18, page 391-396, New York, NY, USA, 2018. Association for Computing Machinery.

[17] Mark Plagge, Christopher D Carothers, Elsa Gonsiorowski, and Neil Mcglohon. Nemo: A
massively parallel discrete-event simulation model for neuromorphic architectures. ACM
Transactions on Modeling and Computer Simulation (TOMACS), 28(4):1-25, 2018.

[18] Steven J Plimpton, Sapan Agarwal, Richard Schiek, and Isaac Richter. Crosssim. Technical
report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2016.

[19] Steven J Plimpton, Sapan Agarwal, Richard Schiek, and Isaac Richter. Crosssim. Technical
report, 2016.

[20] A.F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston, R. Risen,
J. Cook, P. Rosenfeld, E. Cooper-Balis, and B. Jacob. The structural simulation toolkit.
SIGMETRICS Perform. Eval. Rev., 38(4):37-42, March 2011.

[21] Fredrick H Rothganger and Arun F Rodrigues. Generic spiking architecture (gensa).
Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2020.

[22] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar Krishna.
Scale-sim: Systolic cnn accelerator simulator. arXiv preprint arXiv:1811.02883, 2018.

[23] Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. Accelergy: An architecture-level energy
estimation methodology for accelerator designs. In 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1-8. IEEE, 2019.

34

[24] T Patrick Xiao, Ben Feinberg, Christopher H Bennett, Vineet Agrawal, Prashant Saxena,
Venkatraman Prabhakar, Krishnaswamy Ramkumar, Harsha Medu, Vijay Raghavan,
Ramesh Chettuvetty, et al. An accurate, error-tolerant, and energy-efficient neural network
inference engine based on sonos analog memory. /IEEE Transactions on Circuits and
Systems I: Regular Papers, 69(4):1480-1493, 2022.

35

DISTRIBUTION

Hardcopy—Internal

1 Clay Hughes 01422 1318
1 Ron Oldfield 01441 1327
1 John S. Wagner 01421 1327
1 Suma G. Cardwell 01421 1327

Email—Internal (encrypt for OUO)

Technical Library 01911 sanddocs@sandia.gov

36

Sandia
National
Laboratories

Sandia National Laboratories is a
multimission laboratory managed
and operated by National
Technology & Engineering
Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s National
Nuclear Security Administration
under contract DE-NA0003525.

