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Overview

Anode Reaction: 2Fe - 2Fe” + de
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Atmospheric corrosion

- Alloys are commonly exposed to atmospheric, marine environments

- Through salt enabled deliquescence or salt spray the creation of a water
layer (WL) on the surface of an alloy allows for a corrosion cell to form

- Many factors will

influence the corrosion
« WL Cathode Reaction: O, + 2H,0 + 4 » 40H

Anode Reaction: 2Fe 9 2Fe™ + 4e

« Solution composition

Atmosphere

Thin Film Elactl_'o!yjta

« Solution concentration

« Temperature
- Alloy

« Reaction mechanisms
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Atmospheric corrosion
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Atmospheric Brines

- Dehydration of seawater brine shows wide variation in composition

- Important relative humidities:
« Precipitation of NaCl ~ 75 % RH

 Precipitation of MgCl,~ 35 % RH 98 % RH ~ 0.6 M NaCl
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Thin Atmospheric Water Layers

- In atmospheric scenarios, salt enabled deliquescence is possible

- WL dependent upon:

-Iuﬂu,i M 1 a L a L = 1 x L a L x k
- Salt composition t ]
« Relative humidity =
E 1004
»  Temperature - =
w
- Loading density =
2 10 o
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WL < 300 um is expected

VERSITY R.M. Katona, A.W. Knight, E.J. Schindelholz, C.R. Bryan, R.F. Schaller, R.G. Kelly.
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What separates bulk from thin film conditions?

- Natural convection separates bulk from thin film conditions
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« Increasing chloride concentration and temperature decrease the

natural convection boundary layer
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Atmospheric corrosion

- Alloys are commonly exposed to atmospheric, marine environments

- Through salt enabled deliquescence or salt spray the creation of a water
layer (WL) on the surface of an alloy allows for a corrosion cell to form

- Many factors will

influence the corrosion Anode Reaction: 2Fe-» 2Fe™ + d4e
« WL Cathode Reaction: O, + 2H,0 + 4 » 40H

« Solution composition

_ _ Atmosphere
« Solution concentration

- Temperature Thin Film Electrolyte

- Alloy

« Reaction mechanisms
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Temperatures

Temp. °C  pyyyi 2012,
122 l Figure 7.1
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« Seasonal and diurnal fluctuations of

temperature

- One specific application of work is for -
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Atmospheric corrosion

- Alloys are commonly exposed to atmospheric, marine environments

- Through salt enabled deliquescence or salt spray the creation of a water
layer (WL) on the surface of an alloy allows for a corrosion cell to form

- Many factors will

influence the corrosion
« WL Cathode Reaction: O, + 2H,0 + 4 » 40H
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SS Susceptibility to Localized Corrosion

« Failure mechanisms for SS

 Pitting corrosion, crevice corrosion, and stress corrosion cracking
« Pitting corrosion typically initiated at magnesium sulfide (MnS) inclusions
- Creation of an aggressive environment through metal ion hydrolysis

CI" Containing Dmplertp pmmT TS o= . Me"™ -> Me(OH)™! + (n-1)H*
) Me"™ + CI" -> MeCI™)

Passive Film ™\

55 Matrix

MnS Inclusion

U ,;-%5%& T.D. Weirich, et al., J. Electrochem. Soc. 166 (2019) C3477—C3487.




SS Reaction Mechanisms

- There are various mechanisms for pit initiation, however always will have
an aggressive environment in the pit

« Dissolution supported by cathodic reduction reaction

- In atmospheric scenarios typically thought to be oxygen reduction
reaction

2+2 t+4 54

« Literature determined
reaction mechanisms focus
on dilute solutions typically
at room temperature
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Stress Corrosion Cracking
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Residual stress in SS304L canister for SNF
applications [1]

Cracks immerging from pitting corrosion
damage [2]

« SCCis characterized by susceptible material in a susceptible
environment undergoing cracking at a stress intensity below the
fracture toughness of the material

[1] Bryan, C. R. and Enos, D. G., Final Report: Characterization of Canister Mockup Weld
[I VERSITY Residual Stresses, 2016

[2] Horner, D. A, et al., Corrosion Science, Vol. 53, 2011, p. 3466—-3485
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Stress Corrosion Cracking

Corrosion
Pit

Occluded
Environment

- Two things are generally accepted for SCC:
« Bulk chemical and electrochemical conditions not maintained down the crack

« Stress state and chemical/electrochemical conditions local to the crack tip
control SCC

« Need to understand the occluded environment

TRGINIA Editor, Third., 2005

[J%I‘.-’ERSITY [1] Anderson, T. L., Fracture Mechanics - Fundamentals and Applications T. L. Anderson,
[#]



What is missing in localized corrosion?

« Corrosion reaction mechanisms in high chloride containing solutions
across a wide range of relative humidity and temperature
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- Prediction and validation of localized corrosion in atmospheric environments
containing various solution properties
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Critical Dissertation Questions

- What mechanisms control how external (solution composition, solution
concentration, geometry, temperature) and internal (material) factors
affect pitting and stress corrosion?

- To what extent can we predict damage from localized corrosion and stress
corrosion cracking and what are the governing factors in these
predictions?
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Critical Dissertation Questions

-  What mechanisms control how external (solution composition, solution
concentration, geometry, temperature) and internal (material) factors
affect pitting and stress corrosion?

« To what extent can we predict damage from localized corrosion and

stress corrosion cracking and what are the governing factors in these
predictions?
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General Dissertation Question

- Knowing pertinent weather and temperature related data, can we identify
which regions/canisters that are potentially the worse for localized
corrosion related scenarios?

« Can we understand effects of the environment on stress corrosion

cracking?
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Outline of Dissertation

« Chapter 2 — Cathodic Kinetics « Environmental Factors
« Chapter 3 — Water Layer - Temperature
- Chapter 4 — Anodic Kinetics « Chloride concentration

. Chapter 5 — Modeling Corrosion Composition

- Chapter 6 — Modeling SCC
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Outline of Dissertation

- Chapter 2 — Cathodic Kinetics

- Chapter 3 — Water Layer

- Chapter 4 — Anodic Kinetics

« Chapter 5 — Modeling Corrosion
« Chapter 6 — Modeling SCC
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Overview

Anode Reaction: 2Fe - 2Fe” + de

Cathode Reaction: O, + 2H,0 + 4" = 40H
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Cathodic Reaction Mechanisms

- For NaCl solutions (high RH), oxygen reduction (ORR) is dominant cathodic
reduction reaction
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- Holds for all concentrations (0.6 — 5.3 M) and temperatures (25-45 °C) of
NaCl explored
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Cathodic Reaction Mechanisms

ORR as rate limiting step
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., Submitted to Journal of the Electrochemical Society (2021).



Cathodic Reaction Mechanisms
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Cathodic Reaction Mechanisms

« Hydrogen evolution (HER) dominant in MgCl, brines (low RH)
- Also present at elevated temperatures and for seawater solutions
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« Proposed HER due to ORR suppression due to precipitate formation in

brine and localized corrosion
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In-situ Spectroelectrochemistry

- Visualization of precipitate formation in MgCl, solutions as a function of
cathodic polarization
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Cathodic Kinetics Summary

« Across wide range of solutions, various mechanisms are dominant

Low CI' |  High RH A

[CI']~5.3M R 75 0 NaCl Rich
[ MgCl, Rich

High CI'Y  Low RH

‘ \

i
[Cr]~10M’ RH ~ 34 %

MgCl, Precipitation

« Now that we know mechanisms, we can model corrosion scenarios
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Overview

Anode Reaction: 2Fe - 2Fe” + de
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Modeling Localized Corrosion

- In chloride environments, pitting is highly probable, therefore worried
about maximum extent of corrosion

- Pits (anode) are inherently coupled to the surrounding cathode

Limited Cathode Size -> Limited Cathodic Current -> Limited Supply
for Anodic Dissolution -> Finite Pit (Anode)

- Anode can only grow if sufficient supply from cathode

- Cathode current limited by reaction mechanism and physical geometry
(water layer, sample size, etc.)

UNIVERSITY
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Modeling Localized Corrosion

Coui Studied through lead-in-pencil
experiments under a salt film (full
saturation) [1]

Pit Depth (x) -

|

Schematic of 1-D scenario with active alloy
surrounded by no flux (J) boundary (J=0)

—Insulating Epoxy

- Embedded S5 Wire

Csat, =

Insulating Wire

- Battle between outward ion diffusion and maintaining critical environment

- Galvele 1-Dimensional analysis yielded a pit stability product (i - x) [2]
- Where i is current density and x is the pit depth

[T VERSITY [1] Srinivasan, J. and Kelly, R. G., Corrosion, Vol. 73, 2017, p. 613—-633
g

[TIRGINIA [2] Galvele, J. R.,, Corrosion Science, Vol. 21, 1981, p. 551-579



Modeling Localized Corrosion

« Finite cathodic current given by ohmic drop in thin electrolyte layers

- Anodic demand determined by ability to maintain aggressive
environment

Corrosion Potential (E...)

Repassivation Potential (E,,) .
Cathode: area with radius r. Ic,max ~ f(.'C, WL, Eg,_r;p, ERp, Ta, qu)
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Anodic Demand = Cathodic Supply -> Max pit
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Elevated Temperatures 200
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Similar trends seen in Galvanic Modeling
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Increasing Chloride Concentration

« Increasing chloride concentration
increases maximum pit size

Chloride Concentration (M)
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Change in Solution Composition

« Larger pit size in NaCl solutions despite nearly half the chloride
concentration

200 L 1 1 1 1 1 200 1 1
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- MgCl, experiences ORR suppression and decreased conductivity

[UNIVERSITY
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Similar trends seen in Galvanic Modeling
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Comparison to Long Term Exposures

- 104-week exposures of SS304L to

sea water solutions at 35 °C

« 40 % sea salt brine ~ saturated
MgCl, with thinner water layer

« 76 % sea salt brine ~ saturated
NaCl

- Conservative estimates of the
maximum pit

« Roughly 1.5 x larger estimate

Can we decrease the error in our
predicted maximum pit sizes?

76 % Max Pit ~ 230 um
40 % Max Pit ~ 110 pum

T

2 8
mF I

=S

=4

e 40% RH
® T76%RH

| i [ i L i 1

Deepest measured pit depth afum
5
LI

3

i il
0 20 40 &0 80 100
Exposure duration/weeks

J. Srinivasan, et al. J. Electrochem. Soc. 168 (2021) 021501.
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Improved Prediction for Maximum Pit Sizes

« Current model assumes constant cathode, however, direct observation of
precipitates on surface of alloy

- Above pH_, precipitation occurs and PH > pHcit
can cause:

Changes in conductivity

Changes in WL thickness

- Will directly impact cathodic kinetics
Icmax ~ f@EGCP: Erp)7a,leq)

Rcath w/ precip.,WL

OH"

UNIVERSITY
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Influence of Precipitation on Max Pit Sizes
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Re-Comparison to Long Term Exposures

-  When comparing to exposures, prediction of maximum pit sizes with
precipitation is directly inline for 40% RH

40 % Max Pit ~ 74 pm

[.;R}‘.-’ERSITY
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Overview

Anode Reaction: 2Fe - 2Fe” + de
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—— 2000 rpr 80 |- .
1.0 5 4000 rpr :
~ — 6000 rpr 70 -

Deepest measured pit depth alum
z
LI

Width (b)
40 |
30 =
0 \\‘-
1 M i i
0 20 40 “~CMOD
Exposure dur ;
L - CcTOoD
Thickness -~ ot to seae)
Y = -

UNIVERSITY

TVIRGINIA




SCC Modeling

F-curr-‘ Pex

Width (b)

Thickness =~

]
®
¥ - 4
‘."'\. .-"H

« Current models assume crack tip current density and external potentials to
determine electrochemical conditions in the crack

« Presented model determines equilibrium conditions of the crack with
chemistry dependent boundary conditions

UNIVERSITY

TRGINIA




SCC Modeling

CMOD Le

External

\\\\\ElInternal

———

-

CTOD

Not to
scale

- Looking for trends in

electrochemical parameters \ . Inferences about crack growth
rates

VERSITY
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Solution dependent kinetics

Potential (V)

Performed anodic and cathodic polarizations as a function of metal
chloride concentration

1.0

o | - | - | | - | o | - | - |

0.9
0.8 4
0.7
0.6 -
0.5
0.4 ]
0.3
0.2 4
0.1
0.0 4
0.1
0.2 4
0.3 4
0.4 ]

0.5

Solid - CrCl, + LiCl
Dashed - 3 M NaCl + CrCl, + LiCl
25°C

| | UM
lacem([CIT]) = ipcop - 104M

—>

Lact,M
Lact,M
lcl,pass,M

im ([CI7]) =
1+

- - = - = - .l -
107 10®% 10%° 10* 10° 102 107 10° 10"

Current Density (mA/cm?)

102

Chemistry dependent equations for HER, ORR, and anodic dissolution
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Influence of WL Thickness

« Decreasing WL thickness increases s WL=0.1 mm
: ) =
total cathodic per width S rom0]
£
g 8.0x10°*
E‘ 6.0x10° WL =4 mm
100 L 1 1 L L L L é 4.0x10°
2.0x10* '- Lcathode =20 mm
a=2mm
0.0 . . . : . . .
0 1 2 3 4 5 6 7 8
Time (Hr)
50 | Leatnose = 20 mm WL=4{mm

a=2mm \

Percentage of Cathodic Current (%)

_ - Larger portion of the cathodic
: current on the external surface

Time (Hr)

TRGINIA
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Influence of WL Thickness e

T e e - e o o - —
N —

ORR

External to Crack

- Majority of external current is

60 < o
L =20 mm
ORR 50.] WL Thickness cathode i
Solid = 4 mm a=2mm
40 4

Dashed = 0.1 mm B

- Majority of internal current is
HER

« ORR still present near crack mouth

Percentage of Cathodic Current (%)

WL Decrease

304 L cathode = 20 mm

100 3.0x10-| L L L L L L 1 L 1

= 1 {-- -~ -—-——-—-—-—-== [ —~ WL Thickness

2 -
= g0l [ ‘jg , | selid=4mm HER .-
= 2.5x10" = - -
S Internal to Crack < Dashed = 0.1 mm -7

- 80 4 - _ ”

5 .E' L eathode = 20 mm P
g 70 4 5 < 2.0x10"4 a=2mm -
T 60l WL Thickness [ s
£ Solid = 4 mm & 1.5x10" i
o 501 Dashed=0.1mm [ 3
° 4 © “

g ] i % 1.0x10° 4 L
L 2

S ®

g (&)

@
o

20 - a=2mm L 5.0x107 4 -
10 -
____________ o'o T T T T T T L] L] L]
0 B L B . 00 02 04 06 08 10 12 14 16 18 20
4 5 6 7 8
) Distance From Crack Mouth (mm)
Time (Hr)

Crack Mouth Crack Tip




3.0x10°
Influence Cathode Length
= 2.5x10° 4 L cathode = 100 mm
E
. ) < f
- Increasing cathode length increases £ 20x10°-
. S _
the total current per width 5 15x0° WL=4mm |
 Cathodic current is more external 2 roxtee-
o Lcalhode=20mm
- pH lower at the crack tip s.uxur‘-’)r
A SR S S S S
Time (Hr)
12 L L L L L 100 ==rte
L I ————— 3_"‘:— 90
‘“'/ Cathode Edge 5 g \\—_L:ath_m=100mm
9-,_..-*"' § o External
®] cathode Length T
T 7] Solid=20mm £ o] Wer4mm Leseiose = 20 mm
6] Dashed=100mm E a=2mm ctr{ods
5] WL =4 mm g 40
4 4 aszmm _E’ 30 Internal
3] Crack Tip g 20 - L;m':de = 100 mm
2] —— ST
°T 1 3 3 1 5 &7

Time (Hr) Time (Hr)
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Interactions of WL and Cathode Length

0.08 —paal L 1
3 M NaCl - 25°C Cathode Length (m)

0.07 - -
Full Immersion
0.06 S R
— 0.05 - o-oem—a-w 035 i
E v
»
E— 0.04 4 / -
& p—>-rr—pp 0.25
- 0.03 -
0.18 -LC_,;
0.02 1 B
0.1
0.01 < o
0.05
0.01
0.00 T T T
10 10+ 1073 102 10 100
Water Layer (m)
. , . , . . , 3.ux10-3 L L | ] L L L 1
E
< 1.2x10% WL=0.1 mm =
%’ z 2.5x10° L cathode = 100 mm B
m -
5 1.0x10% 4 B <
c £ 2.0x10° -
= J 5 =
§ 8.0x10* S Wi=a
= =4 mm
S - & 1.5x10° -
O gox10* 4 WL=4 mm s a8 a=2mm
(3] -
: s
2 aox10* | E 1.0x10° - -
8 =] Lca'lhoda =20 mm
E 2.0x10™ - Leamode =20 mm | 5.0x10 - L
g 2
° ,
u-u T L} T L] T L} T ﬂ.ﬂ T T L] T T L] T
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Time (Hr) Time (Hr)
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Comparison to literature

- Steiner et al. performed CGR experiments on AA alloy under full immersion
conditions

- Painted different areas around crack tip to change cathodic area

0.01 ! ' : . 3.0x103

= ) L cathode = 100 mm
cm
4 2 Eyqn3 TAN i
£ 0.001 4
£ Y
Y /
E 1E-4 -
g r , ’ WL =4 mm
: ! Same Trend!! a=2mm
g 1E5- P
u
: j ¥}
S 1E-6 -r., L cathode = 20 mm
f]
0.6 M NaCl // Cathode Increase
1E-7 T T T T 0.0 T T T T T T T
0 5 10 15 20 25 0 1 2 3 4 5 6 7 8
Stress intensity (MPa(m)%%) Time (Hr)

P.J. Steiner, J.T. Burns, CORROSION. 74 (2018) 1117-1131.




Comparison to literature

Harris et al. measured a decrease in threshold for CGR with decrease in
WL thickness

Decrease in pH and increase in HER near the crack tip

0.1

Custom 465-H90

w2 | Possibility for increased HEAC | v _.---|
susceptibility with decreases | :
WL thickness?? / [

1E-5 o

1E-6

"J’

’C/ ORR
1E-7 . . : . 0.0 e

L L L L L T T L L L L L
0 10 20 30 40 50 60 70 80 00 02 04 06 08 10 12 14 16 18 20

/L Decrease

Crack Growth Rate (mm/sec)

Stress intensity (MPa(m)®5) Distance From Crack Mouth (mm)
Crack Mouth Crack Tip




Answered Questions

ORR Dominant Change in ORR Mechanism

NaCl Rich - =

OVERALL SUPRESSION

«  What mechanisms control O1~53M | o s

Mo Ren  COMOSEn = STO%  OF CATHODIC KINETICS

how external (solution 200 —
composition, solution wl  wawe, 0 e ] ation

p ! HighCl'y Lo 1601 J 1 sion
concentration, geometry, S g™
temperature) and internal § 100 ]
(material) factors affect o
pitting and stress corrosion? pH > pHgt OH-

- To what extent can we predict
damage from localized P
corrosion and stress corrosion
cracking and what are the
governing factors in these
predictions? >

Width (b)

L;}{WERSHY

TRGINIA




General Dissertation Question

- Knowing pertinent weather and temperature related data, can we identify
which regions/canisters that are potentially the worse for localized
corrosion related scenarios?

« Can we understand effects of the environment on stress corrosion

cracking?
Temp. °C  pyyi 2012,
Shimizu 4 — - 122 l Figure 7.1
Roof (external) Roof of Raft
(50 cm from Sea Level)
Nishihara - — — B
Roof (external South (vertical
(external) :m{ne :d ] ) 103
Mlyakopma 7 Roof (external) B
Hayato - - 84
Roof (external)
Tsukuba - Roof (external) i 65
Nogi o —-— — - .
Indoor O:::Dor 46 Modeled horizontal
Salt Spray - Sheered — — i canister surface
Diluted (107 M) Seawater 5% NaCl Seawater temperatureS, fuel
r Y r Y ' 27 heat load ~7.61 kW.
-4 -3 -2 -1 0 1 2
log(LD) (g/m?)
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Background — Pit Propagation

S Converted to hemisphere by a

\ geometric factor of 3

cr
- f(MeCl,) '/—

- Limiting anodic current

—Insulating Epoxy

~ Embedded SS Wire

Insulating Wire

+ To sustain pitting, the current (l) at a
given radius (r) must satisfy

I !
(;) > (;)m‘it demand (J{LC ):
+  Critical value ~50% of full saturation Iir= (_) Tanode
of salt film needed r/crit

[UNIVERSITY
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Anodic Kinetics

1.50 1 1 1 1 1 L N M L 1 — 1.50 1 L L 1 1
E + Nacl -0.23 5
<
o
1254w 5 E 1254 - 57 -0.24 4 -
E \ c =
< = = i I
= 1.00 4 | @ 1.004 LN 55°C | 2 025
5 1\ = £
g N\ b \ 5 0.2 i
o 0.754 \.Mgcl - 3 075 4 - ]
z \ : g 2 .27 i
3 76 % RH 3 :
0.50 4 o - o, 5
2 a ™ 25°C 45°C " -0.28 4 s
- NaCl Sea-Salt Brines 2 N §
& .25 - S 0254 S & _9.29 - s
. 40 % RH E
. = -0.30 T T T T T
0.00 T T T T T T T T T T o 000
1] 1 2 3 4 5 6 7 8 9 1m0 M o |I 2‘ :; -I; .; 6 0 1 2 3 4 5 6
Chloride Goncentration (M) Chloride Concentration (M) NaCl Concentration (M)
_0_22 L 1 L 1 L 1 L 1 L 1 1
-0.24 4 I

Repassivation Potential (V. )

4.2 T
0 1 2 3 4 5 6 7 8 9 10 M

Chloride Concentration (M)
(a)
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Anodic Kinetics

6.25 T T T r T T T T
6.00 4
5.75 4
5.50 4
5.25 4
5.00 -
4.75 4
4.50 -

4.25 ] / Increasing C,
4.00 / 1

3.75 T T T

Saturation Concentration (mol/kg)

20 25 30 35 40 45 50 55 60 65

Temperature {(°C)

L%mﬂsmf
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Shape Factor

Narrow Pits
e

- In order to determine the shape
factor, the following ratio was taken:

&)

(i % x)

\ Hemisphere

~

Shape Factor =

i . .\l
Wide Pits

e ]

\I-

Shape Factor from (ix)
o - N w £ (3] o ~ -] ©

I .
;=tota|currentneededatagwen 00 o5 1o 15 20
depth for ellipse
]

|'
r
Depth I: Radius r
1
[
(i *# x) = current density at a given y | x1
pit depth for 1-D pit | |
I f
1

- For wide, shallow pits, diffusion begins to win out and you need more
current to maintain the critical environment at the pit surface

- Conversely, diffusion is hindered by the geometry for narrow pits and
thus less current is required to maintain critical environment

L%mﬂsmf
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Shape Factor

10
94 . I
n Narrow Pits
0] -
£ 71 |
.g 6 - | 1 O Em T == 1 r——-=-=-
= ! | I
L : I I
[} 5 u | B x
e I Hemisphere . ' {
o 4- I (Ix) = (ix) F | I
3 |/ I I
£ 34 I [ |
7]
| | 1 |
2 -+ Wide Pit | \.\ | .f i !
ide Pits | I
14 - | .\.\l‘- | |
| |
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Depth / Radius

- At acertain point the value for I/x decreases below that of ( - )

- Consequence of the entire pit surface being active in an ellipse however
in a 1-D pit, only the bottom is active

L%VERSHY
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Pit Size Increases with Increasing Aspect Ratio

« Maximum pit at
various aspect
ratios taken at
50% saturation

250 +
225 -

200

175 4 — Hemisphere
150 -

.- xlr=2
125 <

Current (pA)

100 -

75 =

50 -

/

cath, with precipitation |

25 - |

L I I I I I I
(] 25 50 75 100 125 150 175 200
Radius (um)
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ldeal cathode assumption

w L L L L L

o] Max Pit Prediction at 50 % Stability
.-;-.. 70 4
@ %0
8
0 5
E

. —— o

£ o )
E 4. /./'/ FEM at 50 % Stability
s
= 50

-
(=]
1

/

10 20 3 4 5 & 70
Cathode Diameter (cm)

(=]

=

« Maximum pit with FEM comparison
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Cathode Supply

Cathode Anode

« Ohmicdrop in cathode
governed by current
densities, water layer
thickness, and conductivity

Eoer Corlres,pondling to C,:u,k= 0.61M NaCl Iﬂ,max ~ f(}{’ M“‘ILJ EQCP’ ERP’ T{I’ lt’.’[}‘)

a00d °% -
8 2004 - 2 rE : .
d %\ 4tkWLAE (’Te’"ﬂ Eegny L ~ ‘P)dE)
—_ - orr
F -300- \ 1 Inl.gm = + In
g S Ieatn AE
S -400- 1

-500 -

00 | + Cathode current function of
1t 100 1wt et Wt o w conductivity, WL, electrochemical
Current Density (mA/cm?) . . .
potentials, anode radius, and equivalent
current density

[UNIVERSITY
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Modeling Cathode Precipitates

« Cathodic reactions cause pH rise oH > pH
. Can calculate OH- production at a i OH"

given pit depth and convert to a pH

Pss * € i
o] [
MDH- = S5
Vcath
3
Cathode: area with radius r_ - Vprecip z
Cathode: Volume (V) Keff = k\1- v v
Cathode: pH s solution T precip

e 3

e

1

J!rnc:r;.',rh,,w,t:.'dat.t?d = f(fceff)

[T IVERSITY

/TIRGINIA



Modeling in a Galvanic Coup

Assign the polarizationscan to
respective anode or cathode

Anything greater than d,,.
utilizes quiescent polarization
scan

Input solution conductivity

Variable cathode length (L)
and WL thickness

Evaluate current per width
(I/W)

0.0 -

0.2 -

Potential (Vgcg)
) S )
o o =

&L
o
[

55304L
1.0 M NaCl - 45°C i

/ﬁn Film Electrolyte /
Y
W AA7050 ‘ S$S304L

L%x-’ﬁzﬂsm-'
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Modeling in a Galvanic Couple

Potential at the interface is
the AA/SS304L coupling
potential

Potential far away from
interface is OCP of SS304L

Current density high near
the interface and decays
when moving from the
interface

Evaluate I./W by integrating
current along the cathode

[_%VERSHY

TRGINIA

0.0

-0.1 =

-0.2 =

Potential (Vgcg)

0.6 -

0.7 +

-0.8

-0.3 4

1 1 MNaCl-25°C
-0.4 4

0.5 4

L.=03m

WL = 40 pm

1
:
1
e
=
=
=

T
. S 3
(;w/v) Aisuaq Juaing

T
=&
=

s

0* 10° 107 10°
istance from AA/SS Interface (m)

\hin Film Electrolyte

\ 4

AA7050 ‘ SS304L

— L, L.

10




Increasing WL Thickness

- Continuously increasing the WL at the same cathode size will not increase
the current

« Currentis now fully limited by the cathode size

n_1n aal PEEErE T | a2 3 aaag] MRS | PSR TTT | PR T |
{1 MNacCl - 25°C Cathode Length (m) 10° 4 — 3
0.09 4 - 1100 pm 1 104
] ] 400 pm X pm
0.08 4 - — N
0.07 1 _&E_ 107 5 WL =5, =714 um 3
T 0.06 - 2
1 k7]
< 0.05 - R S @ 1q2
E ] * a 10~ -
O 0.04 4 / =
r ¢ E
0034 PR 5
£ "x O 1'Dd . !
0.02 4 ‘,* - E
0.0 1 i 1 1 MNacCl -25°C
1 Le=03m
n'nn - 104 - . | - L | - R |
107 104 10~ 10+ 10! 10° 10 1073 10 10
Water Layer (m) Distance from AA/SS Interface (m)
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Increasing Cathode Length and WL

»  Further increasing cathode length increases | /W
- |/W scales with cathode size

uv1u sl i 2l aal M RTeT | Il al

2 22 PEETT PR L PSR TTT A& 2 3 3au h 1L 1 1
11 M Nacl - 25°C Cathode Length {(m) 10° 4 / !
0.09 - -0 - Lc=0.01m
0.08 - Erx"” i ‘ N
. 10
0.07 - A e ]
; s <
= 0.06 4 -
E ] d _ 2 107 4 -
< 0.05 - ,.f'f M_”’ * =
! o
2 oo :
- uu-"-l / E -“}-3-1 -
“*“3': e -———-a E
0.02 4 © 1044 1 MNaCl -25°C !
001+ i Solid - WL = 40 pm '
o O - o Dashed - WL = 1 x 10* um (0.01 m)
0.00 e - e ey - 10 r r T
109 104 102 102 101 10" 107 107 10 10"

Water Layer (m) Distance from AA/SS Interface (m)
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Increasing Temperature

0_05 L ™ | L L
4500 Lcri-t = u-u? m
go--=-0- oA =T
0.04 - o--oo-0" 5
o
E 0.03 e aa T
g Dﬁ E—— -
E ," / 2500 I‘Crit =0.16 m
0 0.02 - of R
0.01 - / i
1 M NaCl
0.00 r o r :
10° 10 10 107 10 10"

Water Layer (m)

- Increasing temperature increases |./W
« Increasing temperature increases k and i,

L.g[}{n-*ERsm-'

TRGINIA

10° 5 =
- LA r—
E 107 - 25°C i
= ~
=y
n
=
8 107 = 2
=
E
3 5.3 MNacCl
O 107 5 -
Lc=03m
Solid - WL = 40 pm
104 Dashed - WL =1 x 10* um (0.01 m)
10" 10° 107 107"
Distance from AAISS Interface (m)
0_35 al ] L L
1 M NacCl Cathode Length =0.5m
0.30 FD R
0.25 4 y L
=1
E 0.20 4 a 5
= ;o
= H 45°C
2 015+ s B
- =
0.10 4 , L
’:,3{ .F.-__,...-l-l
0.05 4 -0 /'/ 25°C
- Pr___._.al—l—l mnt
0.00 - . . r
10°® 10° 10* 10° 10% 107

Water Layer (m)




Increasing Chloride Concentration

n.o‘ 2l L 1 L L 0.20 A i i P i
Critical Cathode Length (L) Cathode Length=0.5m
25°C 0181 25°¢
0.16 4
0.03 -
1 M NacCl -——E-mu—n 0.14 -
_'_"'f,.-—-o—t-n.—t—o
. * —e—e = 0.12 4
g 3 M NaCl g
g 0.02 - /.’ — 0.10 4 1 M Nacl
= :/. . A % 0.08 - ‘,f"”'
ﬁ _a—AAaa-adl——A-AARTAS IS —0—0
oat 5.3 M NaCl 0.06 4 / 3 M Nacl
0.01 - .
0.04 - o ./ -
|=l_1‘ifﬂ
0.02 - - A b — b b A~ A
. - LOOve 5.3 M NaCl
0.00 T T T T T 0.00 T T T T T
10° 10+ 10° 107 10" 10° 10* 10° 107 10"
Water Layer (m) Water Layer (m)

- Increasing chloride concentration decreases | /W in most cases

« Shouldn’t current increase? -> More corrosion damage?

- Limited by the mass transport in the system

TRGINIA

1 2/3. _
Liim = 062?’11:00/2' v 1/6 Cﬂz,bu!kw 1/2
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Impllcatlons Accglerated Testing (ASTM B

Amatore et al.

- Cathode size is very important in 10 mM.FE{CN}g' _os MmN
accelerated testing scenarios

Rotating Disk Electrod#

Atphospheric Dgliquescence

ﬂ_1n aal all al anl al
{1 MNacCl - 25°C Cathody Length (m)
0.09 4 / 05 - T - T - T - T - T
1 Py A 600 800 1000 1200 1400
0.08 < rl;r-r : =
0.07 4 o . 04  r Layer Thickness (pm)
4 =
g 0.06 - {f, "/ ee 03
E VW
< .05 - 2 e |
1 ¥ fow—r2/0.25
fr—rP
= 0847 | 2/ 0.2
0.03 4 ., . 0.16 -LC_, }
1 i " 0.15
0.02 ey a4 01
0.01 —- —a-¢  0.05
0.00 T T - .I._. {_._:r_-'_.',—{_;—'_', |nn1 T
104 104 10°% 102 107 10°
Water Layer (m)

TRGINIA
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Implications

Cathode size is very
important in accelerated
testing scenarios

Using small cathodes

severely underestimates

corrosion damage

« |/Wis 15 times greater at

the lower angle for the
larger cathodes (0.3 and
0.5 m) in comparison to
the smaller cathode (0.01
m)

VERSITY

ngﬂRGINIﬂ

0.10 +
0.09 +
0.08
0.07 1
t 0.06 -
< 0.05-
O 0.04 -
0.03

0.02 -

0.01 4~

aall A

11 M

0.00 -

NaCl

-25

DC

o-0 0.5

Cathode Length (m)

Water Layer (m)




Implications

Cathode size is very
important in accelerated
testing scenarios

Using small cathodes
severely underestimates
corrosion damage

« |/Wis 15 times greater at
the lower angle for the
larger cathodes (0.3 and
0.5 m) in comparison to
the smaller cathode (0.01
m)

0.10 ~paabes

sl

| aaal

11 M
0.09 <

0.08
0.07 1
t 0.06 -
< 0.05-
O 0.04 -
0.03
0.02

0.01 4~

0.00 -

NaCl

-25

DC

o-0 0.5

S~

Cathode Length (m)

Water Layer (m)

Same cathode length at different angles will experience different corrosion

damage

« Tests experience large test-to-test and chamber-to-chamber variability

Difficult to extrapolate corrosion damage to real life scenarios

VERSITY
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Changing Solution

ﬂ'.s - L 'l 1 21
I | Cathode Length (m)
0.4 4 I | L —-0-- 0.01 —m— e
1 | o o adpiico-9
0.2 1 I 0.1+ - 0.32 e -
7 i | i --fe- 0.6 —A— pee?
] I . "
o 0.0+ I | I -~
S 1 I E“ ﬁ,-'_.,-‘
< 02- . i g 0.01- e i
© ) e e meemm===0====0- O-O----0-0O
g ' l = P = oon
§ \ o B
L)
E_M ~———100 rpm, 5 = 64 um N | =
- - - . | =3
SOl gy Rl I | 0.001 - A
-0.8 4~ 1000 rpm, & = 20 um i
2000 rpm, 5 = 14 pm 1
1.0 4——— 4000 rpm, 5 = 10 pm :
6000 rpm, 5 = 8 um ) Open, Dashed - 4.98 M MgCl,
A2 ey . ey — - - — 1E-4 s m
107 10° 105 104 10° 102 10" 10° 10’ 10° 10° 107 107 10° 10°
Current Density (mA/cm?) Water Layer (m)

« MgCl, solutions exhibit no rotational dependence when using an RDE

- I/W only increases with increasing WL
«  Ohmic control
« No M-T limitations

[_I VERSITY R.M. Katona, J.C. Carpenter, A.W. Knight, C.R. Bryan, R.F. Schaller, R.G. Kelly, E.J.

TRGINIA Schindelholz, Corros. Sci. 177 (2020) 108935.



Changing Solution

0.6 4 Al 1 1 L
i | ]Cathode Length (m)
0.4 - 1 | 5  --o--0.01 —m— AA
=T e O
0.2 : : 044 032 - -
i ™ | | = i N 0-5 —h— "\“,:T'
1 [ e
" 0.0 4 1 | B 1 e
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Current Density (mA/cm?) Water Layer (m)

« MgCl, solutions exhibit no rotational dependence when using an RDE

- I/W only increases with increasing WL
«  Ohmic control
« No M-T limitations

[J%I‘.’ERSIT‘I R.M. Katona, J.C. Carpenter, A.W. Knight, C.R. Bryan, R.F. Schaller, R.G. Kelly, E.J.
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Changing Solution

U|03 ™ M | 2 ™ ™ ™ 2 = 2 I ™
0,025 JCathode Length (m) J_
—-0-- 0.01 —m—
0024 --°--0.32 —e—
-l 0.5 —A— e
0.015 4 . T a—a—f
— e iy
5 /-/"'.-'. .‘f"'
< 0.014 P 2
% .,-4/ _,,”’
- T a e BT
"l _ .o
0.005 - e X
-
Closed, Solid - 5.3 M NaCl
Open, Dashed - 4.98 M MgCl,

10° 10"
Water Layer (m)

- At small WL, NaCl has a higher I /W

« Due to current density dependence on WL

«  When increasing WL, NaCl experiences more M-T limitations whereas MgCl,
does not due to a lack of WL dependence on the cathodic kinetics

[_I VERSITY R.M. Katona, J.C. Carpenter, A.W. Knight, C.R. Bryan, R.F. Schaller, R.G. Kelly, E.J.

TRGINIA Schindelholz, Corros. Sci. 177 (2020) 108935.



MgCl, Cathodic Kinetics

Potential

log(current density)

(e)
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MgCl, Cathodic Kinetics

ORR
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MgCl, cathodic kinetics

0.6 L L L L L al - 0.6 !
I ¥
0.4 I 0.4 4 lim :
I
i 1
0.2 1 Lab air g 0.2~ I
e \ | L Lab airw/ |
a% : : § ; pH 4 buffer i
= 0.2 4 I 2 02- Lab air (0 rpm) : B
=1 De-aerated with N ' = 1
E 0.4 4 - : B £ 044 \ \ ! E ner [
s ¥ Eo, HER g '
& o6 , o -0.6- I -
1 De-aerated )
-0.8 - L F 0.8 " =
I
I
1.0 - !k 1.0 1 i -
\ I
-1.2 T T T T T T 1.2 "T T T T T L T
107 10 10°® 10 107 10 10" 10° 107 10 10 10 107 10 10" 10°
Current Density (mA/cm?) Current Density (mAfcm?)
(a) (b)

- Comparison of cathodic polarization scans on SS304L in aerated and N, de
-aerated solutions for (a) 0.189 and (b)4.98 M MgCl, at 25°C and 500 rpm.
Also shown in (b) is a polarization scan with an acetic acid buffer added to
solution. Nernst potentials are calculated for a pH of (a) 6 and (b) 4.5
through Equation 11.
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MgCl, cathodic kinetics

lim, 0.189 M

Surface pH

0.189 M MgCl,

-

| il | Ll i | i |
107 10¢  10% 10* 10 10?7 107 10° 10!

Current Density (mAfcm?)

« Surface pH for SS304L at 6=20 and 19 um in 0.189 M and 4.98 M MgCl2
respectively, calculated using Equation 10. The vertical dashed line labeled

ilim corresponds each 6 calculated from Equation 3 using data from Figure
2.
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In-situ Raman

0.4 4 0.6 M Nacl L 0= = = = — ~ _ 0.189 M MgCL, |
Pt -No Flow™ ~. MgCl,
0z F 0.2 4 el
S — === = ~ o \\\\
- N ~
% Quiescent bim g — T e = \‘
> 02 . = 024 s .
| = . H
5 — | = ss304L  _— H
£ 041 ——Quiescent R, = 04 . " ;
:‘F‘- 0 mL/min | N, ~ E D.?meJ\m!n :
° 06 0.5 mLmi ncreasing A\ o 064 ——1.5mlL/min
o —1-5 mum!l'l Flow Rate o — — 3 mUmin :
08 .'.'.ImEmli.:m \ F 08{ — — 10 mL/imin
04 = — 5mL/min \ = 1.0
— — 50 mL/min i
-2 v o v v — -12 T T T T T
10 10 104 107 102 101 10° 10% 10° 10* 10° 10* 107 10°
Current Density (mAlcm?) Current Density (mAlcm?)

(@) (b)

Effect of solution flow rate on the cathodic polarization of 304L SS in (a)
0.6 M NaCl and (b) 0.189 M MgCl, in the flow cell. Also in (b) is a
polarization scan for Pt alloy under quiescent conditions [9].
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In-Situ Raman

Limiting Current Density {(mA/cm®
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e
I
l
I
I
I
|
s b « 0.189 M MgCl,
l
T : T T T T T
0 1 2 3 4 5 [ 7 8
(Flow Rate)™?
(b}
(d)

« Influence of Q on the limiting current density of SS304L for (a) 0.6 M NacCl
and (b) 0.189 M MgCl,. (c) Calculated effective boundary layer thicknesses
as a function of flow rate for 0.6 M NaCl solutions. (d) Schematic for
boundary layer thicknesses
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WL thickness influences

Corrosion Rate

Water Layer Thickness

U ;[‘-%}Bi%f& N.D. Tomashov, CORROSION. 20 (1964) 7t-14t.




Putting the WL into Perspective

- When using a rotating disk electrode (RDE) a hydrodynamic boundary
layer can simulate WL thicknesses

D1/3v1/6 I
§ i
- Dependent upon diffusion coefficient (D), Q\E%_,m
kinematic viscosity (v) and the rotation rate
(w) .
« Values range from ~7 to 200 um depending 5
on solution values and rotationrate | Tr """
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Natural Convection Boundary Layer

Natural convection occurs in
solutions that have thermally
or compositionally driven
spatially inhomogeneous 02 5
nc

density distributions
When oxygen is being
reduced:
OH-
2+2 tT+4 54 T : ‘/A

Determines the transition between atmospheric and bulk conditions
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Natural Convection Boundary Layer

- Limiting current densities can be

predicted based on Fick’s first law: e
04 - -
0.2-. .
i B HFD(Cbqu - Csurface) = 004 1.0 MNaCl - 45%C I
lim — @ |
) > 00- I
I

- S -0.4- = = 0 rpm '
 If there was no natural convection 8 ;4] ——100rpm,5=70pum I

. ]| =500 rpm, =31 pm
creating a boundary layer, 08 —— 1000 rpm, 5 = 22 ym I
{ — 2000 rpm, & =16 pm !
-1.0 - 4000 rpm, =11 um -
8 — OO —)0 -1.2-—qu5ql:!.u.:£n?’..a..=qa.p:r?.q  mEEmae s e e o]

107  10° 10° 10* 10° 10 107" 10° 107
Current Density ( mAIcmz]

« Liu et al. determined the natural convection boundary layer to be roughly
800 um in 0.6 M NaCl
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Natural Convection Boundary Layer

Filled Symbols - Platinum
Open Symbols - SS304L |

NaCl - 25°C s

2
=

« Increasing NaCl concentration
decreases 0,

Increasing temperature decreases
5?’16

600 -
Filled Symbols - Platinum
Open Symbols - SS304L

=
=
=3
=

=

MgCl, - 25°C

Natural Convection Boundary Layer (um)

B
2
E 400 = =
E' 800 - ——— Liu et al. (25°C) i
'E‘ 200 - "
= 25°C
G Euu- i L L L) L L L | ) n n n
g p 0o 1 2 3 4 5 6 7 8 9 10 11
2 | Chloride Concentration (M)
: |
g 400 | L
s Charles-Granville et al. (25°C) .
O ‘ . .
T — & « Trends hold for MgCl, solutions
=200 - 45°C A .
2
[
z L L | | L | L
0 1 2 3 4 5 6

MacCl Concentration (M)
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Can we predict 0,,.?

- 0, does not scale with i, , or any other singular solution property

(Cn._ ’ Dn__ ’ etc-)
: E: 0.010 . . . . .
« Mass transportin = Filled Symbols - Platinum
electrochemical systems can § | 9pen Symbols -SS304L
be described with 5 0.008 (10na) = 2.849 710727 (Sh) I
.|
dimensionless values E NaCl
g 0.006 = ~ m 258°C F
c.ﬁ Amatore et al. e 35°C
. c A 45°C
K = Liim 2 0.004 - MgCl, .
- Q
nFCbu!k g v 25°C
g NaOH
QO 0.002 - _ . 25°C |
K Tg " ‘t“- Charles-Granville et al. K4Fe(CN)4
Sh - — © Liu et al. * 25°C
D/d Z. 0.000 —_——
- 0 1x107 2x107 3x107 4x107

Sherwood Number

« Literature results match well with fit
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Measuring WL thicknesses

WLl B
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Measuring WL thicknesses

Resistance (ohm)

T
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Slope (ohmimm)

10000 1 s
Conductivity: k = 8 Sim
Electrode Spacing: d = 5 mm
1000 o
E
ALY
E wy W =10mm
3 "ne
w ]
™ 'C‘-\
woE 15 mm
1 l‘\""‘—hl,_\ﬁ:
o 1 2 2 H
‘Water Layer Thickness (mm}
1000000 L L L L
- Conductivity: k = 0.4 S/m
100000 4
10000
1000
Increased
Electrode
1001 ; b
Spacin
pacing d=5 mn:\n_,_.
T T T T
[ 1 2 3 4

Water Layer Thickness (mm)

Reslstance [ohm)

Slope (ohmimm)

!

g

Calibration Using Comsol
d=5mm

&' 04 5im

1 H H H
‘Water Layer Thickness {mmj)

Electrode Spacing: d =5 mm

100 1 1
100 4 iy r
Increased A"“n—_._ —
17 Conduclivity |, - 33 5/m ‘—-—-l';:n r
[} T T T T
[] 1 H a 4 5
Water Layer Thickness [mm)




Measuring WL thickness

Ni wires 1 cm
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Putting the WL into Perspective

- In accelerated corrosion scenarios, WL thicknesses are based on angle of
exposure

3.0 4 In-Situ Water Layer Determination i
Electrode Position: d = 5 mm

.
w
1
T

Variable WL thickness

- . =

prd|
L e I : |

- T s T e T e T -

0O 5 10 15 20 25 30 35 40 45 50
Angle from Vertical (degrees)

iy
=
L

-
=
I

Water Layer Thickness (mm)
w

« Under ASTM B117 (15-30°), WL varies from 660 — 1210 um
- Transient WL present at certain angles of exposure

[I F}R?EG%?'JI& R.M. Katona, S. Tokuda, J. Perry, R.G. Kelly, Corros. Sci. 175 (2020) 108849.




Angle of exposure varies WL thickness
significantly

Increasing angle of exposure
increases WL thickness

1-2 mL/hr

Angle from
vertical

L%x-’ﬁzﬂsm-'

TRGINIA

4 In-Situ Water Layer Determination
| Electrode Position: d = 5 mm

=
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L 1
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.___,..-r."'

5 10 15 20 25 30 35 40 45
Angle from Vertical (degrees)

50




Evaporation occurs during shut-off periods

25000

=
(=]

Resistance taken at f= 3-10° Hz

-~
v

Salt spray halted

e Salt spray was stopped after roughly 45
hours of exposure and measurements
were continuously taken

e
w

20000 +

L 1 L
o o
= (=]

L
o
-3

15000 4

?

60 min after halt

 Lid of chamber was left shut but fan

]
o
tn

Measured Resistance (ohm)
Water Layer Thickness (mm)

started 10000+ 04
* Within 1 hour of the shut-off, the WL 5000 - Ei
thickness decreased 0.15 mm (18.5%) D "\ , ll‘f“““ ':*‘“*" “a“-:;
* No WL after 112 min 00 200 2000 2800 2900 3000

Time (min)

Angle of sample and test interruptions are allowable within ASTM standards
can drastically influence WL thickness and corrosion rate
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Water layer and cathode length impact
cathodic current in a galvanic couple

* Increased current seen at 15° Rlun-off
* Mass transport limitations on Eﬁii
current calculated at a WL ::ﬁﬁ Drying
corresponding to an angle of 0.018+ /
exposure of 30° E :::ﬁ -1 |
* But remember, there is run-off at % ﬂﬁli
high angles of exposure h :::2
e Drying will further decrease WL 0.002 1 | 005m
and current o.om:l's_s — e+ Fun e+ Fanae B
WL/m

C. Liu et al., J. Electrochem. Soc. 164 (2017) C845—C855.

[.;R}‘.-’ERSITY

TRGINIA



Water layer and cathode length impact
cathodic current in a galvanic couple

Run-off
A——
. 0.030 4
* Highest current seen at an angle of . _
exposure of 30° 00251 Drying
. o — 0.020-
* Decreasing angle to 15" decreases E _ /
current % 0.015+
* Run-off and drying further decrease S
current 0.005-
L=0.0925 m
0.000 S —— —rdrrrrp———y—rrrrre
1E-5 1E-4 1E-3 0.01
WL Im

C. Liu et al., J. Electrochem. Soc. 164 (2017) C845—C855.
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CGR Modeling

- Boundary conditions
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Cathode Length
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WL thickness
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Crack Length

Current per Width [Afm)
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Stress intensity
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Modified ORR
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Distributions across a crack
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Influence of crack geometry

K (MPaym) Crack Width (m) m

— Parallel-sided CTOD + CMOD -0.219 0.33
2

“ Trapezoidal CTOD toCMOD -0.332 1.92 2.41
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