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Part I: Introduction & Background
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Overview

I DNNs have proven successful in very high-dimensional image classification problems.

I In practice, this is due to highly parallel and optimized algorithms for training DNNs.

I Approximation theory for DNNs has been developed in an attempt to explain the
success of DNNs.

I At the same time, physics-informed neural networks have shown intriguing potential
for fusing data and physics knowledge in setups that resemble traditional numerical
methods.

I Significant gap between what approximation theory says is optimal and the results
when used with standard architectures and optimization algorithms.

I This talk addresses issues about robustness, reproducibility, and accuracy of DNNs
when used for numerical tasks.
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Deep Neural Networks

I Defining the affine transformation, Tl(x, ξ) = W ξ
l · x+ bξl , and given an activation

function σ, a feedforward neural network “hidden layer” architecture may be

FHL(x, ξ) = σ ◦ TL ◦ · · · ◦ σ ◦ T1. (1)

A typical activation function σ is ReLU, defined by ReLU(x) = x if x ≥ 0 and
ReLU(x) = 0 else.

I For regression, the DNN is typically of the form

NN (x; ξ,W ) = FLL(x;W ) ◦ FHL(x, ξ) (2)

where the linear layer is given by FLL(x;W ) = Wx.

I For example, a DNN of one-dimensional input and output, with one-hidden layer and
ReLU activation, is CPWL function

∑width
i=1 ciσ(wix+ bi) with breakpoints

characterized by hidden layer parameters.

I For classification, the DNN is typically

NN (x, ξ,W ) = FSM ◦ FLL(·; W) ◦ FHL(x; ξ), (3)

where the softmax function is given by F iSM(x) = exp(xi)∑Nc
j=1 exp(xj)

.
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Loss functions and gradient descent

I In a regression problem, the loss function may be of the form

L(ξ,W ) = ‖u(x)−NN (x, ξ,W )‖2`2(X ), (4)

where X is a finite set of points x in Rd over which u(x) is known. This is your
training set.

I In classification problems, the loss function is typically a cross-entropy loss, which
measures the deviation of the (tentative) learned probability distribution
parametrized by NN from the distribution of classes over a fixed, finite set of
training points.

I Using the chain rule, the gradient of L w.r.t. ξ can be expressed in terms of the
values and derivative values of nodes of the DNN through the layers. This can be
calculated in an efficient, parallelizable way from the graph structure of the DNN, an
algorithm known as backpropagation or automatic differentiation.

I DNNs are typically trained using some variety of gradient descent, such as stochastic
gradient descent.
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Physics-informed neural networks

I This involves a simple modification to the loss.

I Suppose in addition to having some data for a field u, you know that Pu = f , where
P is some (possibly nonlinear) differential operator.

L(ξ,W ) = ‖u(x)−NN (x, ξ,W )‖2`2(X ) +
∥∥f(x)−P [NN (x, ξ,W )]

∥∥2
`2(collocation points)

.

(5)

I Can work with this loss function exactly as before, using off-the-shelf tools such as
Tensorflow, Pytorch, etc.

I Typically, the first term is broken up into data on the interior of a domain and data
on the boundaries (ICs and BCs).

I Fuses data on u and PDE for u; can use both.

I Warning: BCs, ICs, and Source term must be treated as scattered data. Question of
what weights to put in front of each term in the loss.
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Approximation Theory for DNNs

I Approximation theory for DNNs has made several recent strides.

I Important Result: DNNs can approximate partitions-of-unity and monomials to an
accuracy which decays exponentially with the depth of the network, i.e., there exist
parameters for such DNNs that give such error rates w.r.t. depth.

I Therefore, DNNs can emulate hp-FEM approximation, among other approximation
classes.

I However, these theoretical results are only about existence of parameters giving such
approximation. Such optimal parameters cannot be found using practical training
methods! They do not address optimization error and generalization error.

I In practice, DNNs exhibit severe issues related to bad initializations (“dead
gradients”), unstable and irreproducible training, and hyperparameter optimization.

I Just getting DNNs to perform well for basic numerical tasks requires a lot of tuning
and art.
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Part II: Least Squares/Gradient Descent Training and Box Initialization
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Problems & Loss functions

I We consider the following class of `2 regression problems:

argmin
ξ

K∑
k=1

εk ‖Lk[u]− Lk [NN ξ]‖2`2(Xk) (6)

where for each k = 1, 2, ...,K, Xk = {x(k)
i }Nk

i=1 denotes a finite collection of data
points, NN ξ a neural network with parameters ξ, and Lk a linear operator.

I In the case where k = 1 and L is the identity, we obtain the standard
regression problem

argmin
ξ
‖u−NN ξ‖2`2(X ). (7)

I In general, the multi-term loss is used, e.g., in physics-informed neural
networks for solving linear PDEs.
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Adaptive basis viewpoint
I We consider the family of neural networks NN ξ : Rd → R consisting of L

hidden layers of width w composed with a final linear layer, admitting the
representation

NN ξ(x) =

w∑
i=1

ξL
i Φi(x; ξH) (8)

where ξL and ξH are the parameters corresponding to the final linear layer
and the hidden layers respectively, and we interpret ξ as the concatenation of
ξL and ξH.
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DNN Architectures
I A broad range of architectures admit this interpretation. We consider both

plain neural networks (also referred to as multilayer perceptrons or MLPs)
and residual neural networks (ResNets).

I Defining the affine transformation, Tl(x, ξ) = W ξ
l · x+ bξl , and given an

activation function σ, plain neural networks correspond to the choice

Φplain(x, ξ) = σ ◦ TL ◦ · · · ◦ σ ◦ T1, (9)

while residual networks correspond to

Φres(x, ξ) = (I + σ ◦ TL) ◦ · · · ◦ (I + σ ◦ T2) ◦ (σ ◦ T1), (10)

where Φ is the vector of the w functions Φi, σ the vector of the w activation
functions σ and I denotes the identity. In both cases ξH corresponds to the
weights and biases W and b.

I In practice, very deep plain DNNs are not trainable. A rule of thumb is if you
have more than 10 layers, you should probably use a ResNet.
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Hybrid Least Squares/Gradient Descent

I We seek

argmin
ξL, ξH

K∑
k=1

εk

∥∥∥∥∥Lk[u]−
∑
i

ξL
i Lk

[
Φi(x, ξ

H)
]∥∥∥∥∥

2

`2(Xk)

. (11)

A typical approach to solving this problem is to apply gradient descent with
backpropagation jointly in (ξL, ξH).

I Given the adaptive basis viewpoint, an alternative is to hold the hidden
weights ξH constant and minimize w.r.t. to ξL, yielding the LS problem (for
simplicity focusing on K = 1):

argmin
ξL

∥∥AξL − b
∥∥2

`2(X )
(12)

Here we have bi = L[u](xi) and Aij = L
[
Φj(xi, ξ

H)
]

for xi ∈ X , i = 1, . . . , N ,
j = 1, . . . , w.
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Hybrid Least Squares/Gradient Descent (LSGD)

I Exposing the LS problem in this way prompts a natural modification of
gradient descent.

I The LSGD algorithm proceeds by alternating between: a LS solve to update
ξL by a global minimum for given ξH , and a GD step to update ξH.
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Illustration of LSGD

Figure: LSGD algorithm. The black dot
denotes the initial guess and the black
star a local minimum. The red line
represents the submanifold (ξH , ξL) for
which ξL is a solution to the least
squares problem for fixed ξH , written
ξL = LS(ξH), on which
∇ξJ = (∇ξHJ ,0).
Since the black star must also be a global
minimum in ξL, it lies on this
submanifold.
The blue curve represents GD, and the
rectilinear green curve LSGD. Each LS
solve (dashed green line) moves the
parameters to the submanifold
ξL = LS(ξH).
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Mean of log10(Loss) over 16
training runs ± one stan-
dard deviation of the same
quantity, for approximating
sin(2πx) on [0, 1] sampled at
256 evenly spaced points.
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The Box initialization for ReLU DNNs

I LSGD ensures optimal representation of data in terms of the basis. Thus, we
want the initial basis to have maximal rank.

I The He/Glorot initializations, for fixed width and increasing depth, rapidly
lead to a set of constant basis functions for plain networks and linearly
dependent basis functions for deep ReLU network.
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I Imagine a DNN with one hidden layer. From a C0 finite element point of
view, it is better to scatter the breakpoints (in one-dimension) or cut-planes
(in higher dimensions) of the ReLU functions randomly in the domain where
data is available. Then, each basis function will be sensitive to local changes
in parameters.
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Box Initialization for Plain networks

Figure: Notation used in the “Box initialization” of each
node. A random point p with random orientation n̂ is used
to define a ReLU function of form σ(k(x− p) · n̂). One may
choose the slope of the ReLU α to impose an upper bound
on the output of each layer. We refer to the hyperplane
normal to n̂, where the ReLU “switches on”, as the cut
plane.

For each output row (1 . . . i . . . w) of the layer:

1. Select p ∈ [0, 1]w at random.

2. Select a normal n at p with random direction.

3. Choose a scaling k such that

max
x∈[0,1]w

σ(k(x− p) · n) = 1. (13)

4. Row wi of W ξ and bξ are selected as bi = kp · n and wi = knT .
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2
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Basis function plots for DNNs of width 8
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Effect of Box initialization on training

I We compare the use of the Box initialization for a residual neural network with
hidden layer width 32 against the He initialization for approximating sin(2πx) using
256 evenly spaced samples in [0, 1]. We average over 16 independent runs.

Figure: Mean of log10(Loss) over 16 training runs of residual width-32 ReLU network
with L = 8, 16, 32, 64 and 128 hidden layers and training rate 2−(k+3) for the He (left)
and Box (right) initializations.
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Application: PINN solver for Advection Eq.

I We consider now a physics-informed neural network (PINN) solution to the
linear transport equation ∂tu(x, t) + a(x, t) ∂xu(x, t) = 0 on the unit
space-time domain (x, t) ∈ [0, 1]2, with initial condition u(x, t = 0) = u0(x)
and homogeneous Dirichlet boundary data u(x = 0, t) = 0.

I The loss function considered here is

J = εJ1 + J2 + J3, J1 =
1

N1

∑
i∈X1

|∂tNN i + ∂xa(x, t)NN i|2,

J2 =
1

N2

∑
i∈X2

|NN i(x, 0)− u0|2, J3 =
1

N3

∑
i∈X3

|NN i(0, t)|2
(14)

where X1,X2 and X3 are Cartesian point clouds with spacing ∆x on the
interior, left and bottom boundaries, respectively.
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Advection Equation with Constant Velocity

I For constant velocity, a(x, t) = 1, the analytical solution is u(x, t) = u0(x− t). We use
a shallow one-layer ReLU network.

I For this case, the exact solution is in the range of the network for width ≥ 3, and at
this point J1 = J2 = J3 = 0, rendering the choice of ε unimportant (we set ε = 1).
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Figure: Left: Loss evolution over training for GD and LSGD. Right: Solution after
5000 iterations for GD and 500 iterations for LSGD. Setting: Box initialization, ReLU
activation function, network width = 32, depth = 1, learning rate = 0.005.
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Advection Equation with Nonconstant Velocity

I We next consider nonconstant velocity, a(x, t) = x, with corresponding analytic
solution

u(x, t) = u0(x exp(−t)). (15)

I In this case we must fix ε independent of the neural network size to realize
convergence. We hypothesized ε = W−α and identified α = 1/2 as revealing O(W

1
2 )

convergence rate w.r.t. width.
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Part III: Partition of Unity Networks (POUnets)
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The POUnet Architecture

I Using practical training methods, it is not possible to achieve
hp-approximation rates using DNNs, despite what is theoretically possible.

I On the other hand, DNNs have proven ability to partition space in very high
dimensions when used for classification problems.

I We propose partition of unity networks (POUnets) which incorporate
hp-approximation directly into the architecture.

I Classification architectures of the type used to learn probability measures are
used to build a meshfree partition of space, while polynomial spaces with
learnable coefficients are associated to each partition.

I The resulting hp-element-like approximation allows use of a fast least-squares
optimizer, and the resulting architecture size need not scale exponentially with
spatial dimension, breaking the curse of dimensionality.
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An abstract POU network
I Consider a partition of unity Φ = {φα(x)}Npart

α=1 satisfying
∑

α φα(x) = 1 and
φα(x) ≥ 0 for all x. We work with the approximant

yPOU(x) =

Npart∑
α=1

φα(x)

dim(V )∑
β=1

cα,βPβ(x), (16)

where V = span {Pβ}.
I For this work, we take V to be the space πm(Rd) of polynomials of order m,

while Φ is parametrized as a neural network with weights and biases ξ and
output dimension Npart:

φα(x; ξ) =
[
NN (x; ξ)

]
α
, 1 ≤ α ≤ Npart. (17)

I We consider two architectures for NN (x; ξ) to be specified later.
Approximants of the form (16) allow a “soft” localization of the basis elements
Pβ to an implicit partition of space parametrized by the φα.
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Figure: POUnet architecture.

Main idea: rather than attempt to emulate POU + monomials, build them directly
into architecture
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Training with POUnets

I While approximation with broken polynomial spaces corresponds to taking Φ
to consist of characteristic functions on the cells of a computational mesh, the
parametrization of Φ by a DNN generalizes more broadly to differentiable
partitions of space.

I In a traditional numerical procedure, Φ is constructed prior to fitting cα,β to
data through a geometric “meshing” process. We instead work with a POU
Φξ in the form of a DNN (17) in which the weights and biases ξ, which are
trained to fit the data.

I We therefore fit both the localized basis coefficients c = [cα,β] and the
localization itself simultaneously by solving the optimization problem

argmin
ξ,c

∑
i∈D

∣∣∣∣∣∣
Npart∑
α=1

φα(xi, ξ)

dim(V )∑
β=1

cα,βPβ(xi)− yi

∣∣∣∣∣∣
2

. (18)
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POU-block Architecture

I A shallow RBF-network implementation of Φξ is given by (16) and

φα =
exp

(
−|x− ξ1,α|2/ξ2

2,α

)
∑

β exp
(
−|x− ξ1,β|2/ξ2

2,β

) . (19)

I Here, ξ1 denotes the RBF centers and ξ2 denotes RBF shape parameters,
both of which evolve during training. A measure of the localization of these
functions can be taken to be the magnitude of ξ1.

I Such an architecture works well for approximation of smooth functions, but
the C∞ continuity of Φξ causes difficulty in the approximation of piecewise
smooth functions.

I We also consider a deep architecture for Φξ given by a residual network
architecture composed with a softmax layer S to define (17).
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Optimal training error estimate

Consider an approximant yPOU of the form (16) with V = πm(Rd). If
y(·) ∈ Cm+1(Ω) and ξ∗, c∗ solve (18) to yield the approximant y∗POU, then

‖y∗POU − y‖2`2(D) ≤ Cm,y max
α

diam
(

supp(φξα)
)m+1

(20)

where ‖y∗POU − y‖`2(D) denotes the root-mean-square norm over the training data
pairs in D,

‖y∗POU − y‖`2(D) =

√√√√ 1

Ndata

∑
(x,y)∈D

(
y∗POU(x)− y(x)

)2
, (21)

and
Cm,y = ‖y‖Cm+1(Ω). (22)
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Training

I The least-squares structure of (18) allows application of the least-squares
gradient descent (LSGD) block coordinate descent strategy.

I To prevent learned partition functions φα from “collapseing” to near-zero
values everywhere. we will also consider a pre-training step,, which adds an `2
regularizer to the polynomial coefficients.

I The intuition behind this is that a given partition regresses data using an
element of the form cα,βφαPβ.

I If φα is scaled by a small δ > 0, the LSGD solver may pick up a scaling 1/δ for
cα,β and achieve the same approximation. Limiting the coefficients thus
indirectly penalizes this mode of partition function collapse, promoting more
quasi-uniform partitions of space.
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Two-phase algorithm
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Smooth example using RBFnets for POU

We consider an analytic function as our first benchmark, specifically the sine function defined on a
cross-shaped one-dimensional manifold embedded in [−1, 1]2

y(x) =

{
sin(2πx1), if x2 = 0,
sin(2πx2), if x1 = 0.

We test RBF-Nets for varying number of partitions, Npart = {1, 2, 4, 8, 16} and the maximal
polynomial degrees {0, 1, 2, 3, 4}. For training, we collect data xi, i = 1, 2 by uniformly sampling
501 {((x1, x2),y(x)}-pairs on each axis. We initialize centers of the RBF basis functions by
sampling uniformly from the domain [−1, 1]2 and initialize shape parameters as ones.
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Figure: Relative `2-errors (log-log scale) of approximants produced by POUnets with RBF-Net
partition functions for varying Npart and varying mmax (left) and standard MLPs for varying
width and depth (right).
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Piecewise smooth functions

I We next consider piecewise linear and piecewise quadratic functions: triangle waves
with varying frequencies, i.e., y(x) = TRI(x; p), and their quadratic variants
y(x) = TRI2(x; p), where

TRI(x; p) = 2

∣∣∣∣px− ⌊px+
1

2

⌋∣∣∣∣− 1. (23)

I We study the introduction of increasingly many discontinuities by increasing the
frequency p = {1, 2, 3, 4, 5}, which results in piecewise linear and quadratic functions
with 2p pieces.

I Based on the number of pieces in the target function, we scale the width of the
baseline neural networks and POUnets as 4× 2p, while fixing the depth as 8, and for
POUnets the number of partitions are set as Npart = 2p.

I For POUnets, we choose the maximal degree of polynomials to be mmax = 1 and
mmax = 2 for the piecewise linear and quadratic target functions, respectively.

I Reproduction of such sawtooth functions by ReLU networks via both wide networks
and very deep networks can be has been discussed theoretically, but to our knowledge
has not been achieved via standard training.
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Ground truth ResNet POUnet
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Snapshots of target functions y(x) and
approximants produced by ResNet and
POUnet (i.e., yPOU(x)) are depicted
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spectively. The target function corre-
spond to triangular waves (left) and their
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Two-phase training (quadratic waves)
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Figure: Triangular wave with two pieces (top) and triangular wave with eight pieces
(bottom): Phase 1 LSGD constructs localized disjoint partitions and Phase 2 LSGD
produces an accurate approximation.
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Figure: Quadratic wave with two pieces (top) and quadratic wave with eight pieces
(bottom): Phase 1 LSGD constructs localized disjoint partitions and Phase 2 LSGD
produces an accurate approximation.
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