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Outline

• Introduce the Discrete-Direct (DD) model calibration and 
uncertainty propagation approach:

• calibrate a material/phenomena/device model to each of 
multiple replicate experiments to incorporate stochastic 
variability effects into the model and propagate them to 
predictions

• Compare DD, Bayesian, and other calibration-prediction 
approaches for stochastic calibration-propagation problems 
under conditions of sparse replicate test data:

• cost
• complexity
• trustworthiness



“Discrete Direct” (DD) Model Calibration and 
Uncertainty Propagation 

• Propagate the discrete values of the calibration parameters
• Straightforwardly extends to problems with multiple calibration parameters
• N runs of model to propagate N param. values or sets from N calibration experiments
• Simple to update w/new experiments/data that may become available (w/out Bayes’ rule & machinery) 
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Testing and Optimization of Sparse-Sample
1-D Tail-Probability Estimation Methods5

• Large numerical study with > 3e+08 performance tests
• ~20 established and newly developed methods: variants, combinations, hybrids
• tail probability magnitudes 10-1, 10-2, 10-3, 10-4, 10-5

• # samples N = 2, 3, 4,…,20
• 16 diverse distribution shapes below
• 10K random sampling trials for each combinations of the above factors studied

Objective: be conservative but not overly conservative (efficient)



Robustness of 95/90 TIs for Bounding 
Central 95% of Non-Normal Distributions
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Empirical success rates on 144 Non-Normal distributions 
(bars capture 90% of the 144 cases)

• Can get higher reliabilities for N≥3 by using Statistical Jackknifing 
and averaging resulting TIs



DD Simplicity, Cost, and Trustworthiness 
Advantages: maps Multi-D UQ  1-D UQ

• Example: 
• a model with 3 calibration parameters
• N=2 replicate experiments

• DD: 2 calibrations  2 parameter sets  2 runs
of prediction model  2 values of response
• get a 1-D UQ problem with 2 samples of response
• empirical confidence levels on bounding estimates of response statistics 

• Some other calibration-propagation approaches would try to 
infer a 3-D Joint PDF of variability of the calibration parameters 
from the 2 calibration parameter sets (data points) in the 3-D 
space, then propagate the JPDF
• get a highly questionable JPDF and predicted PDF of response, 

uncertainty would be difficult and expensive to reliably estimate
• JPDF propagation requires high expense or a surrogate model (added 

complexity, uncertainty, and more runs of the prediction model than DD)
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Bayesian Approaches:

Additional Difficulties and Uncertainties

• Bayesian approaches would typically propose PDF model forms for the 
marginal distributions of the calibration-parameter aleatory variations

• hyper-parameters of the proposed aleatory PDFs are assigned 
prior distributions to describe their uncertainties

• little to no prior knowledge would generally be available 
concerning hyper-parameter values, especially for non-Normal 
distributions which have non-intuitive parameters

• so, broad uncertainties would most prudently be assigned 
• The hyper-parameters are calibrated by Bayesian updating 

using experimental data to reduce their uncertainties
• sparse experimental data  hyper-parameter uncertainties will 

remain relatively broad after Bayesian updating
• The proposed aleatory PDF model forms themselves will likely 

be incorrect in the first place because sparse data does not 
support accurate selection of PDF model forms



Additional Difficulties/Uncertainties 
with Bayesian Approaches (cont’d) 

• The many formulation options in Bayesian approaches can lead to 
substantial analyst-to-analyst and results variability

• Use a hyper-parameter formulation or don’t?

• Use a discrepancy term or don’t?

• What type of parametric and/or non-parametric PDF model forms or 
formulations, and Priors, will be used?

• What sampling approach (MCMC or other) will be used, and what 
surrogate modeling approach will be used to make it affordable?

• A Bayesian-derived JPDF with linear dependency approximations 
will have substantial error/uncertainty that must be appropriately 
characterized and accounted for

• How is this done? Has the effectiveness been characterized in 
realistic and representative test problems under random trials?

• How well can I trust the results in real applications? 



Closing Remarks

• The DD calibration-UQ approach for sparse calibration data is versatile 
and relatively simple, inexpensive, and reliable in terms of 
characterized confidence of giving conservative estimates of response 
statistics

• The methodology has been confirmed on several test problems
• 4 calibration variables, strain-rate dependent material plasticity model 

calibrated to 4 stress-strain curves, 16 Can-Crush output responses
(ASME UQ-Risk journal paper)

• 8 calibration variables, material plasticity model calibrated to 5 stress-
strain curves, Pressure Vessel max load

• radiation-damaged electronics (3 device models calibrated to time-
dependent functional data curves, then used in circuit response tail-
probability predictions)

• A Sandia document with more detailed discussion of these issues will 
likely be available by the time you see this presentation (contact 
vjromer@sandia.gov)


