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DOE AND DOD DEPLOYMENT ACTIVITIES

Figure courtesy of Mike Eldred

High-fidelity state-of-the-art modeling and simulations with HPC

I Severe simulations budget constraints

I Significant dimensionality driven by model complexity
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FORWARD PROPAGATION – WHY SAMPLING METHODS?

UQ context at a glance:

I Challenges: High-dimensionality, non-linearity and possibly non-smooth responses

I Opportunities: Rich physics and several discretization levels/models available

Natural candidate:

I Sampling-based (MC-like) approaches because they are non-intrusive, robust and flexible...

I Drawback: Slow convergence O(N−1/2)→ many realizations to build reliable statistics

Goal of MF UQ: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

I Simplified (low-fidelity) models are inaccurate but cheap
� low-variance estimates

I High-fidelity models are costly, but accurate
� low-bias estimates

Talk’s Contribution: Addressing challenges (and opportunities) introduced by Stochastic Solvers
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EXAMPLES OF STOCHASTIC SOLVERS AT SANDIA

Q: What do I mean in this presentation with stochastic solver?

A: For the sake of this presentation, I mean that in addition to the UQ parameters, the solver has
another source of variability (that we cannot control)

Few SNL-relevant examples:

I Turbulent flows/Combustion: the stochasticity is introduced in the time-windowing used for
statistics (we cannot integrate long enough)

I Computer Networks/Cybersecurity: virtualization of networks that runs real-time on
specialized hardware, i.e. the status of the hardware produces background noise that cannot
be controlled

I Radiation transport: MC transport solvers based on the propagation of a finite number of
particle histories which need to be averaged to obtain the QoIs

I GDSA: stochasticity introduced in the (finite number of random realizations of the)
subsurface modeling

I etc.

Talk’s Focus: I’ll demonstrate the use of MF UQ for stochastic solvers in the context of
Cybersecurity applications
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SIMULATION VS EMULATION: STRENGTHS AND DIFFERENCES

Simulation: based on deep understanding of the underlying processes

" Fast to develop

" Runs faster than real-time since they control the clock

" Easy to run in parallel: neither time-dependent or reliant on virtualized hardware

7 Unable to capture emergent behaviors

Emulation: able to capture unknown or not well-understood behaviors

" Runs the real software therefore closely resembles a physical testbed

7 Requires more hardware and therefore the number of concurrent evaluations are limited

Figure courtesy of David Fritz, SAND2018-3927

Examples of Network modeling at Sandia (Courtesy of David Fritz, SAND2018-39271)

I DevOps: Ensure operation of new hardware, software, services in high-consequence
environments. Detect malfunctions, misconfigurations and malicious consequences

I Malware: Understanding of malware through pseudo-in situ execution
I ICS/SCADA: Best countermeasures for my IT-connected ICS systems? Can we detect

attacks? Can we assess resiliency of the IT-controls over the entire power grids?
I Nuclear Weapons: Assure Communication, Command and Control regardless of network

state and threats?
1http://minimega.org/presentations/gt 2018.slide#7
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PROBLEM DESCRIPTION

Problem Description:
I Multi-stage attack aiming at accessing a power utility’s corporate enterprise network
I Attacker Goal: pivoting on the industrial control system (ICS) to ultimately cause load shed
I Attacker Perspective: Maintaining communication between C2 host and C2 server
I Defender Perspective: Deploying an IDS to identify/mitigate malicious traffic

Analysis Scenario:
I One or more hosts with the network have been infected
I Benign and Malicious traffic co-exist
I The IDS performs packet inspection and issues an alert if the content appears suspicious
I Large packet rates make malicious traffic difficult to detect
I Emotet malware (banking trojan from 2014) and the Snort IDS
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NOTATION AND FEW DEFINITIONS

Few definitions and notation:

I ξ is the vector of UQ parameters

I η is a vector of inaccessible RV that notionally represents the variability in the solver

I Every time we run the solver, we get an elementary realization f = f (ξ, η)

I Running for a fixed ξ(i) multiple times (replicas) generates
{

f (ξ(i), η(j))
}Nη

j=1

I The QoI for UQ is obtained by averaging f (for a fixed ξ):

Q(ξ) = Eη [f ] ≈
1

Nη

Nη∑
j=1

f (ξ(i)
, η

(j)
) = Q̃(ξ)

Sampling UQ, e.g. mean estimator, is accomplished with two nested sampling estimators

E [Q] ≈
1

Nξ

Nξ∑
i=1

Q̃(i)
=

1
Nξ

Nξ∑
i=1

 1
Nη

Nη∑
j=1

f (ξ(i)
, η

(j)
)



Q: How does the noise introduced in the finite averaging over replicas propagate in the estimator?

� The MC estimator is still unbiased...
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MONTE CARLO ESTIMATOR

Q̂MC
=

1
Nξ

Nξ∑
i=1

 1
Nη

Nη∑
j=1

f (ξ(i)
, η

(j)
)

 =
1

Nξ

Nξ∑
i=1

Q̃(ξ
(i)

) −→ Var
[
Q̂MC

]
=

Var
[
Q̃(ξ)

]
Nξ

Law of total variance
Var [·] = Var [Eη [·]] + E [Varη [·]] ,

It follows that

Var
[
Q̃(ξ; η)

]
= Var

[
Eη
[
Q̃(ξ; η)

]]
+ E

[
Varη

[
Q̃(ξ; η)

]]
= Var [Eη [f (ξ, η)]] +

E [Varη [f (ξ, η)]]

Nη

= Var [Q(ξ)] + E
[
σ2
η(ξ)

Nη

]
.

Finally,

Var
[
Q̂MC

]
=

Var [Q(ξ)] + E
[
σ2
η(ξ)

Nη

]
Nξ

NOTES:

I The true variance is augmented by the (average) noise introduced by replicas

I The average noise is the average variance of the inner MC estimator
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EXTENSION TO MULTIFIDELITY (1/3)

Let’s now consider the control variate case2:

Q̂CV
= Q̂MC

HF + α
(

Q̂MC
LF − E

[
QLF

])
,

for which we know a solution that minimizes the estimator cost (for a prescribed variance ε2).

For the control variate case, we need to consider the following properties:

I All quantities depend on the number of replicas, i.e. NHF
η and NLF

η

I The correlation between quantities Q̃HF and Q̃LF increases by averaging more replicas

I The computational cost increases with the number of replicas

Q: Can we optimize the number of replicas in order to maximize the efficiency of the estimator?

2This is equivalent to MFMC or ACV with one low-fidelity model
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EXTENSION TO MULTIFIDELITY (2/3)

Let’s start from the classical control variate solution given the quantities Q̃HF and Q̃LF :

Var
[
Q̂CV

]
=

Var
[
Q̃HF

]
Nξ

(
1−

r̃− 1
r̃

ρ̃
2
)
, with r̃ =

√
C̃HF

C̃LF

ρ̃2

1− ρ̃2
,

where we use a total number of low-fidelity simulations equal to dr̃Nξe.

Q: Can we write this solution such that we separate the stochastic component controlled by the
number of replicas?

STEP 1: Re-write the correlation as

ρ̃
2

=

(
Cov
[
Q̃HF, Q̃LF

])2

Var
[
Q̃HF

]
Var

[
Q̃LF

] −→ ρ̃
2

=
ρ2

1 + ρ2τ̃
,

where τ̃ =

Var
[
QLF

] E
[
σ2
η,HF

]
NHF
η

+ Var
[
QHF

] E
[
σ2
η,LF

]
NLF
η

+
E
[
σ2
η,HF

]
E
[
σ2
η,LF

]
NHF
η NLF

η(
Cov
[
Q̃HF, Q̃LF

])2

NOTES:

I Cov
[
Q̃HF, Q̃LF

]
= Cov

[
QHF,QLF

]
I Var

[
Q̃HF

]
= Var

[
QHF

]
+ E

[
σ2,HF
η

Nη

]
(same for the low-fidelity)
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EXTENSION TO MULTIFIDELITY (3/3)

STEP 2: Re-write the cost as a function of an elementary realization

C̃HF = NHF
η C

HF

C̃LF = NLF
η C

LF

STEP 3: Finally write the sample allocation (for a prescribed variance ε2)

r̃? =

√√√√ 1− ρ2

1− ρ2 + ρ2τ̃

NHF
η

NLF
η

√
ρ2

1− ρ2

CHF

CLF
= R̃r?

Λ̃ = 1−
R̃r? − 1

R̃r?
ρ2

1 + ρ2τ̃

N?ξ =

Var
[
QHF

]
+ 1

NHF
η

E
[
σ2
η,HF

]
ε2

Λ̃

Ctot = NξC̃HF + r̃NξC̃LF = NξCHF

(
NHF
η + R̃r

CLF

CHF
NLF
η

)
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STEP 2: Re-write the cost as a function of an elementary realization

C̃HF = NHF
η C

HF

C̃LF = NLF
η C

LF

STEP 3: Finally write the sample allocation (for a prescribed variance ε2)

r̃? =

√√√√ 1− ρ2

1− ρ2 + ρ2τ̃

NHF
η

NLF
η

√
ρ2

1− ρ2

CHF

CLF
= R̃r? ← LF oversampling

Λ̃ = 1−
R̃r? − 1

R̃r?
ρ2

1 + ρ2τ̃
← variance reduction

N?ξ =

Var
[
QHF

]
+ 1

NHF
η

E
[
σ2
η,HF

]
ε2

Λ̃ ← HF samples

Ctot = NξC̃HF + r̃NξC̃LF = NξCHF

(
NHF
η + Rr

CLF

CHF
NLF
η

)
← Total cost

NOTE: All quantities denoted with ·̃ depend on the number of replicas
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CAN WE EXPLORE THE EFFICIENCY OF THE ESTIMATOR?

The total cost of the MF estimator (for reaching a prescribed variance ε2) is

CMF
tot =

Var
[
f HF
]

+
1

NHF
η

E
[
σ2
η,HF

]
ε2

CHF

(
1−

R̃r− 1

R̃r
ρ2

1 + ρ2τ̃

)(
NHF
η + R̃r

CLF

CHF
NLF
η

)

Q: How costly would it be to obtain the same accuracy with MC?

CMC =

Var
[
f HF
]

+ 1
NHF
η

E
[
σ2
η,HF

]
ε2

C̃HF =

Var
[
f HF
]

1
NHF
η

E
[
σ2
η,HF

]
ε2

CHFNHF
η

Cost ratio:

Θ =
CMF

tot

CMC
=

(
1−

R̃r− 1

R̃r
ρ2

1 + ρ2τ̃

)(
1 + R̃r

CLF

CHF

NLF
η

NHF
η

)

� For all these results, in the limit of no noise and NHF
η = NLF

η = 1 the original allocation

problem is recovered (HINT: τ = 0 and ρ̃2 = ρ2...)
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Analytical Verification
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PROBLEM DEFINITION

I Stochastic Parameter: ξ ∼ U(−1, 1)

I fHF = 5ξ5 + ηHF where ηHF ∼ N (0, ση,HF = 1)

I fLF = ξ3 + ηLF where ηLF ∼ N (0, ση,LF = 0.9)

Q: Can we explore the effect of the number of replicas on the correlation?
A: The polluted correlation ρ̃2 is expected to approach ρ2 for (NHF

η ,NLF
η )→∞
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Cybersecurity – Command and Control (C2)
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MULTIFIDELITY UQ ANALYSIS SCENARIO

Computer Models:

I High-Fidelity is a performed via a Emulation-Based model:
I Set of Virtual Machines (VMs) running full operating systems on virtualized hardware
I minimega (SNL) tool for launching and managing VMs
I SCORCH (SNL) automated scenario orchestration framework
I Background traffic is present in the system (it introduces stochastic behavior)
I Runtime: 162 s

I Low-Fidelity is a performed via a math model:
I Probabilistic and discrete-time representation for both traffic and IDS
I Runtime: 0.001 s
I Cost ratio CHF/CLF is very high (162× 103)
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NUMERICAL APPROACH

Numerical Study:

I We have a pilot set of (Nξ,NHF
η ) = (40, 10) for both model

I From pilot samples we can estimate ρ2 = ρ2(τ̃ , ρ̃)

I Var
[
QHF

]
= Var

[
QHF

] (
Var

[
Q̃HF

]
,NHF

η

)
and

Var
[
QLF

]
= Var

[
QLF

] (
Var

[
Q̃LF

]
,NLF

η

)
I We want to build the most optimal MF estimator given the HF runs, i.e. we need to

optimize the total number of LF simulations (and the number of replicas)

Optimization Solutions:

1 MF estimator given NLF
η = 10: the total number of LF runs is dR̃(10, 10) r?e × 10

2 MF estimator with optimal NLF
η :

argmin
NLF
η

Θ

The total number of LF runs is dR̃(10,NLF,?
η ) r?e × NLF,?

η

3 MF estimator with NLF
η = 10 but total cost equal to [2]: dR̃(10,NLF,?

η ) re × NLF,?
η

4 MC with equivalent cost (of [2] and [3])

� We consider three temporal locations, i.e. 1, 5, 10 s→ select the most restrictive condition
(highest number of LF runs)
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MONTE CARLO ESTIMATED VALUES FROM PILOT

Exploration of Multifidelity UQ for networks 15/20



Background Network Modeling Stochastic solvers in Sampling Methods Numerical Examples ConclusionsCOMMAND & CONTROL EXAMPLE
COMPARING OPTIMIZATION STRATEGIES – 99.7% CONFIDENCE INTERVAL

Estimator Nξ r̃ NLF
η

Λ̃ NHF,eq
ξt = 1s t = 5s t = 10s

MF 40 1762.34 10 0.425 0.091 0.050 41
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OPTIMIZING NUMBER OF REPLICAS

Solving NLF
η for the minimum cost ratio, i.e. maximum MF efficiency
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Estimator Nξ r̃ NLF
η

Λ̃ NHF,eq
ξt = 1s t = 5s t = 10s

MF 40 1762.34 10 0.425 0.091 0.050 41

MF (NLF,?
η ) 40 421 274 0.297 0.056 0.034 43
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COMPARING OPTIMIZATION STRATEGIES – 99.7% CONFIDENCE INTERVAL

Estimator Nξ r̃ NLF
η

Λ̃ NHF,eq
ξt = 1s t = 5s t = 10s

MF 40 1762.34 10 0.425 0.091 0.050 41
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A SLIGHTLY BROADER CONTEXT

Is something similar arising in other contexts?

I This problem can be interpreted as an instance of a Model Tuning problem for MF

I Model Tuning in this context means that you could have additional parameters non-shared
among models that you could consider hyper-parameters for tuning by increasing the
correlation among models, and hopefully the MF estimator efficiency

I For instance, you could select the best spatial resolution of a LF model, the ’optimal’ RANS
coefficients in a LES-RANS MF problem, etc.

I In a Model Tuning exercise you can only optimize LF model parameters
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Background Network Modeling Stochastic solvers in Sampling Methods Numerical Examples ConclusionsCLOSING REMARKS
RESEARCH OPPORTUNITIES

Summary:

I Stochastic Solvers are widely used for several computational applications

I UQ with Sampling-based methods needs to incorporate the noise introduced by these solvers

I We demonstrated that the number of replicas can be optimized for maximizing the MF
estimator efficiency

Work-in-Progress:

I Maximizing the MF efficiency is a Model Tuning exercise (more on this in Mike Eldred’s talk)

I Extension to ACV (or similar approaches) is possible (and possibly more interesting)

(Incomplete) list of references:
CV Pasupathy, R., Taaffe, M., Schmeiser, B. W. & Wang, W., Control-variate estimation using estimated control means. IIE

Transactions, 44(5), 381–385, 2012

MFMC Ng, L.W.T. & Willcox, K. Multifidelity Approaches for Optimization Under Uncertainty. Int. J. Numer. Meth. Engng 100, no.
10, pp. 746772, 2014.

MFMC Peherstorfer, B., Willcox, K. & Gunzburger, M., Optimal Model Management for Multifidelity Monte Carlo Estimation. SIAM J.
Sci. Comput. 38(5), A3163A3194.

ACV A.A. Gorodetsky, G. Geraci, M.S. Eldred & J.D. Jakeman, A Generalized Framework for Approximate Control Variates. Journal of
Computational Physics, 2020.

COMPNETW G. Geraci, J. Crussell, L.P. Swiler & B.J. Debusschere, Exploration of multifidelity UQ sampling strategies for computer network
applications. International Journal for Uncertainty Quantification, Vol. 11(1), 2021.

MF-ROM P. Blonigan, G. Geraci, F. Rizzi, M.S. Eldred, Towards an integrated and efficient framework for leveraging reduced order models
for multifidelity uncertainty quantification. AIAA SciTech 2020, 2020.
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Background Network Modeling Stochastic solvers in Sampling Methods Numerical Examples ConclusionsNETWORK MODELS
SIMULATION VS EMULATION

Why are we interested in network models?

I Network operators: understand the potential impacts of changes before implementing them

I Network designers: understand trade-offs before network creation

Network modeling refers to:

I Simulation: similar to their physics-modeling counterparts and they are based on a deep
understanding of the underlying processes to simulate network components and interactions
in software

I Emulation: run the real software on virtualized hardware thus it is able to capture unknown
or not well-understood behaviors

Examples of Network modeling at Sandia (Courtesy of David Fritz, SAND2018-39273)

I DevOps: Ensure operation of new hardware, software, services in high-consequence
environments. Predictive analysis to detect malfunctions, misconfigurations and malicious
consequences

I Malware: Understanding of malware through pseudo-in situ execution

I ICS/SCADA: Under uncertain threats, what are the best countermeasures for my
IT-connected ICS systems? Can we detect attacks? Can we assess resiliency of the
IT-controls over the entire power grids?

I Nuclear Weapons: Can we assure Communication, Command and Control regardless of
network state and threats?

3http://minimega.org/presentations/gt 2018.slide#7
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