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ANOTHER DIGITAL TWIN

Given uncertainty in future loads and material
properties predict displacement y using model
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Y = f(X) X = (A, E;, Py)



MEASURES OF RISK

Risk measures quantify is Y < C when
uncertainty may occasionally lead to

Y>C

Common risk measure is
probability of failure

R(Y) =P(Y > ()




COMPUTING PROBABILITY OF FAILURE WITH SURROGATES @ |

Evaluating risk using high-fidelity
model is intractable

Use surrogates instead

Surrogates can under-estimate
probability of failure

Surrogates that conservatively
estimate (do not under-estimate)
risk are needed




CONSERVATIVELY ESTIMATING RISK MEASURES @ |

This talk will present methods for
building surrogates that:

Conservatively estimate a
SINGLE risk measure

Conservatively estimate a SET of
risk measures




DIFFERENT RISK MEASURES

Mean:
R(Y) = E|Y]

Mean-plus-standard deviation:

1

R(Y) = E[Y] +AV[Y]z
Upper-quantile:

R(Y) = qplY] :=inf {y | Fy(y) = p}
Average-value-at-risk (AVaR):

R(Y) = AVaR,[Y] := E|max(0,Y — g, (¥))]
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DIFFERENT RISK MEASURES

* Mean:
R(Y) = E|Y]

* Mean-plus-standard deviation:

1

R(Y) = E[Y] +AV[Y ]2
* Upper-quantile:

R(Y) = qplY] :=inf {y | Fy(y) = p}
* Average-value-at-risk (AVaR):

R(Y) = AVaR,[Y] := ﬁ E|lmax(0,Y — g, (Y))]

E[max(0,Y; — gp(Y1)]
E[max(0, Y2 — ¢,(Y2)]




ELICITING RISK MEASURES:
UTILITY/REGRET

Risk measures are subjective and must
be tailored to beliefs of decision makers

First elicit regret function that quantifies
displeasure with the outcomes y

Then formulate a regret measure that
quantifies anticipated displeasure

V(Y)=E[v(Y)]

We want to avoid large values so we focus on

regret instead of utility
VY)=—U(-Y)

v(y) | Risk Averse
Risk Neutral

Risk Seeking



ELICITING RISK MEASURES:
OPTIMIZED UNCERTAINTY EQUIVALENT MEASURES I

Regret measures can be used to construct
optimized uncertainty equivalent risk measures
that encode stakeholder beliefs

R(Y) = inf {d + V(Y — d)}

deR
d: additional capacity added today
V(Y —d): quantifies displeasure in future capacity shortfall -

d+ V(Y —d): anticipated total (current + future) displeasure
R(Y): smallest possible anticipated future shortfall |



SURROGATE LOSS FUNCTIONS MATTER

Typically least squares loss function is used to
train surrogates

£(Z) = E[Z?], Z=YV-Y

This approach frequently under-estimates risk

We can limit underestimation by tailoring loss
function to risk measure

Frequency of
under-estimating
risk

LstSq
89%

NELG
tailore
d
w



TAILORING LOSS FUNCTIONS TO ESTIMATE RisSk MEASURES @ |

Loss functions (error functions) used to train
surrogates should be tailored to the risk
measure

E(Y) = E[v(Y)] - E[Y]

Mean+variance (A = 1 LstSq loss) __ |
v(y) =y + Ay’
e(y) = Ay?




TAILORING LOSS FUNCTIONS TO ESTIMATE RisSk MEASURES @ |

Loss functions (error functions) used to train
surrogates should be tailored to the risk
measure

E(Y) = E[v(Y)] - E[Y]

Quantile __ :

v(y) = ] max |0, y|

e(y) = —pmax[O y| + max[0, —y]




ESTIMATING A SINGLE RISK MEASURE:
TwO STEP PROCEDURE [2] ® |

Build surrogates of the form |
V=6,+9X,0)~fX)=Y
From M training data

Xm¥ m

Step1: Solve the regression problem using the
loss associated with the decision makers regret

min &Yy — 06, + g(Xy, 0
8, R HERN (Yu o+t 9(Xu,0))
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ESTIMATING A SINGLE RISK MEASURE:
TwO STEP PROCEDURE [2] ® |

Build surrogates of the form |
Y =6,+9X,0)~fX)=Y
From M training data

Xm¥ m

Step1: Solve the regression problem using the
loss associated with the decision makers regret

6o€ER,0€ERK Surrogates are guaranteed to satisfy
Step 2: Introduce the bias

) R(6; +9(X,0)) =R(Yy)
0y = R(Yy —9(X,0))



CONVERGENCE FOR ORTHONORMAL SYSTEMS

If bias is large enough any approach will produce conservative surrogates
We produces surrogates that both conservatively and accurately estimate risk

Consider orthonormal surrogates e.g. PCEs

~90+Z¢k )0k =00 + gr (x,0)

If
E[(Y — 00 — gx(X,0)] =7 := Y O, £(Z) < CE[Z%]?
kE=K+1

(and some other assumptions) then minimizing difference between true and

surrogate risk measures yields
0<0)+R(gr(07)) —R(Y) <2CTg



COMPUTATIONAL ASPECTS

A number of regression problems arising from risk quadrangles can be
solved efficiently for linear models. For example,

R(Y) = AVaR, [Y]

We solve the following optimization problem via a linear program

M
- (m) {<m>_9 — ol g
W, ST [ .0

where ~,|u] = pmax(0,u) + (1 — p) max(0, —u)
We the compute the shift
05 = AVaR, [Y — g(X, 6%)]

M
* 1 (1t m
0o = ap(R) + 1_ 4, Z m >(7°( ) — qp(R))
P m=k-+1



FIRST-ORDER STOCHASTIC DOMINANCE (FSD) @ |

Risk preferences of two different
stakeholders may differ

Stochastic dominance can be used to
construct surrogates that conservatively
estimate a set of risk measures

prob[Y; > 3.65|=0.2
prob|Y, > 3.65]=0.4

First-order stochastic dominance
% ?(1) Yy &©1-— Fyr(tj >1—-F/(t)VteR

Guarantees that for all law invariant risk
and monotonic risk measures

R(Y'") = R(Y)



INCREASING CONVEX ORDER (ICX)

 FSD can be to risk averse
« |CX ordering is a weaker condition than FSD

Y' 2y Y & E[max(0,Y’ — t)] = E[max(0,Y — t)] Vt € R

* |ICX guarantees

AVaR,,[Y'] > AVaR,[Y] Vp € (0,1)

 In fact for any convex, monotone, translation
equivariant, law invariant risk measures

R(Y') =R(Y)




COMPUTATIONAL ASPECTS @

* We construct FSD surrogates using constrained
least squares regression

mln 1 )M D(m)(y(m) - H) - g(X(m) @)2 .i = = Train '__'_l:.l_:
2R, 020 2m=1 j 184 T FSD Train g==—f ==
subject to
M@ - N < My - - g0 [
m=1 m=1
1=1,...,M.

« Constraints are enforced at the training data
« Smooth the constraints to use gradient based

optimization -1 op(t) < hy(t)

* We adopt similar smoothing approach for ICX



COMPUTATIONAL ASPECTS

* We construct FSD surrogates using constrained
least squares regression

min 1)M D(m)( (m) _ — (m) 2
2R, 120 2m:1 Y 07 gL 0)
subject to
A™h(d™ D - @) < O™h(!™ - - ¢ (D) IS
m=1 m=1
I=1...,M.

« Constraints are enforced at the training data
« Smooth the constraints to use gradient based

optimization -1 op(t) < hy(t)

* We adopt similar smoothing approach for ICX

Exact

= = TTrain
== S Train




CONVERGENCE |

* For any continuous function I
* If we enforce ICX constraints on set S’ (training data) and

]§UP(S ) ’f(ﬂf) _ (9_0 +gK(QU,H_))| = 5K f_l(S/) — {ZIZ c RD | f(ll?) c S/} |
ref-1(8

e Then ICX and thus FSD surrogats, ¢*) satisfy

E[(Y — 65 — 9 (X,07))°] < 7 + 0%

* The convergence rate is no worse than mean-squared error plus the metric
Ok based upon the uniform approximation quality :



INUIVIENIUAL LLAANIFLEO. LLO TINVIATIING M DIINOLLEC IT\NION

MEASURE @ |

 (Consider Gaussian random variables X
Y = f(x) = exp(1'x) Linear PCE

* Y is lognormal (exact statistics known)

fatel ] #1.5¢ SO Chul. LsiSgB




INUIVIENIUAL LLAANITLEO. LLOTINVIATIINGO M V|1 UI I\NION

MEASURES

e Consider Gaussian random variables X

Y = f(x) = exp(1'x) Quadratic PCE

* Y is lognormal (exact statistics known) D=1, M=30

— Exact
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INUIVIENIUAL LLAANVITFLEO. LLO1IIVIATIINGO T NUDADILIT T U

FAILURE

Consider Gaussian random variables X

Y = f(x) = exp(1'x) Quadratic PCE

=
o

[
ol

|

o
E.
o

Y is lognormal (exact statistics known)

) — PoF (Y]

D=3, M=30 D=3, M=100 I



NUMERICAL EXAMPLES: CONVERGENCE

 Consider Gaussian random variables X
Y = f(x) = exp(1'x) Quadratic PCE

* Y is lognormal (exact statistics known) Over sample ratio: 5
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NUMERICAL EXAMPLES: TRUSS - AVAR

Use quadratic PCE in 10 dimensions with 66 terms

Use 80 training samples
9,000 validation samples
Compute AVaR with p=0.90
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NUMERICAL EXAMPLES: TRUSS - PROBABILITY OF FAILURE @ |

Use quadratic PCE in 10 dimensions with 66 terms
Use 80 training samples

9,000 validation samples
Compute PoF with. prob (Y > qp (Y)) = 0.1

0.00

Q.




NUMERICAL EXAMPLES: DIMENSION REDUCTION @

* Consider model of 10D wing weight

A 0.6 100t, —0.3
f(:l?) — 0.036 53.758W0£035 (00q2(/\\) qO.OOG)\O.OZL ( ) (Nszg)O'49 P Spr

cos(A)

 Compute 1D active subspace

» Signed relative error in AVaR (p=0.9) using 30 il
samples |
« FSD: 0.029
« SSD: 0.008
* Quantile: 0.010




CONCLUSIONS

When estimating uncertainty the loss (error) function matters
The risk measures should be elicited from stakeholder preferences

The surrogate regression problem should be tailored to the risk
measure (especially for limited data)

The resulting surrogate is assured to conservatively (over-estimate) a
chosen risk measure

If single risk measure is agreed upon the risk quadrangle is most
effective

Stochastic dominance can be used to enforce conservativeness with
respect to multiple risk measures
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RISK QUADRANGLE |
The risk quadrangle formulates risk from regret |
The risk quadrangle tailors the error (loss) function used to build surrogates with regrelr

We can use these connections to ensure surrogates conservatively estimate risk

Risk R <+— D Deviation
Optimization N S 11 Estimation i
Regret V <+— &£ [Error

R(Y) = E[Y] + D(Y) DY) = R(Y) — E[Y] |
V(Y) = B[Y] + E(Y) E(Y) = V(Y) — E[Y]
R(Y) = inf{t + V(Y ~ 1)} DY) = inf (Y ~ 1

S(Y)=argmin{t + V(Y —¢)} = argminE(Y — ¢) |

tcR tcR



