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• Acid gases are commonly found in complex chemical streams, and 
metal-organic frameworks (MOFs) are being evaluated for their 
separation and removal [1,2] 

• Porous materials for acid gas separation need to be robust during 
exposure to multicomponent gas streams 

• Density functional theory (DFT) and ab initio molecular dynamics (AIMD) 
are applied to identify fundamental acid gas-framework interactions in 
tertiary gas mixtures 

• Vienna ab initio Simulation Package (VASP)
• Generalized Gradient approximation with PBEsol functional [3]
• Plane wave basis set with Projector Augmented Wave (PAW) psuedopotentials
• Dispersion corrections treated by DFT-D3 method with Becke-Johnson Damping 
• AIMD protocol: NVE thermalization at 300 K followed by NVT at 300 K for 15 ps [4,5]

Y-DOBDC Unit Cell Model
Atom Colors: O (red), H (white), C (brown), Y* (teal) 

*can be substituted for any RE metal

Competitive Binding 

Reaction Mechanisms 

• Ab initio molecular dynamics simulations of multi-component acid 
gas mixtures were used to identify reactivity of acid gases with 
metal and linker sites 

• Dynamic competitive gas binding results in SO2 and H2O binding 
on metal sites providing resistance to framework degradation 

• NO2 reacting with the linker and forming secondary gas species, 
including a new HONO formation mechanism, was due to 
deprotonation of the linker 
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Rare Earth 
Metal 

Gas Molecules 
(#) Gas Composition 

Eu, Tb, Y, Yb 

1 H2O or NO2 or SO2 
12 H2O or NO2 or SO2 

2
1:1 H2O:NO2
 1:1 NO2:SO2
 1:1 H2O:SO2 

12
6:6 H2O:NO2
6:6 NO2:SO2
6:6 H2O:SO2 

3 1:1:1 H2O:NO2:SO2

12 4:4:4 H2O:NO2:SO2 

14 gas compositions in 4 DOBDC MOF structures = 56 
unique simulations 

Static calculated gas binding energies 
follows a NO2 < H2O < SO2 trend. [6] 

Dynamic competitive gas binding identifies preferential binding 
of SO2 over NO2 and H2O in binary and tertiary gas mixtures. 

• Multiple secondary gas species are spontaneously 
formed in the MOF pore 

• NO2 is the most reactive of the gases investigated 
• HONO accounted for 60% of intermediate 

species, and formed at low and high gas loadings 
• Additional species formed: N2O4, H3O-, SO3

2-, 
HSO3

-

SO2 Adsorption in Eu-DOBDC

• HONO formation is via deprotonation of the DOBDC linker. 
No reaction with a second gas molecule is necessary  

• SO2 based intermediate formation 
requires reactions with additional 
confined gas molecules 

Gas Composition Binding Ratio Binding Preference
NO2:H2O 2:5 H2O 
NO2:SO2 5:6 SO2

NO2:H2O:SO2 3:3:5 SO2
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• Results are used to design new materials for acid gas separation and adsorption based on binding 
energies and reactive intermediates identified via AIMD trajectories 

• Provides a road map for the application of advance computation for materials design

Atom Colors: O (red), H (white), S (yellow), 
C (grey), Eu (teal) 

Atom Colors: O (red), H (white), S (yellow), C (brown), N (blue)  Deprotonation of the linker is an initial degradation mechanism. 

• Additional, potentially damaging, intermediate gas molecules were identified: HSO3
-, N2O4, H3O+ 

• Similar ab initio molecular dynamic methodologies can be applied for further evaluation of the 
impact of multicompetent gases on MOF framework stability and acid gas separation for future 
material design  

• Future work: Application of ab initio molecular dynamic methods for simulated mixed acid 
gas adsorption in MOFs to predict selectivity with increasingly complex gas mixtures.

Atom Colors: O (red), H (white), C (brown), N (blue)  
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