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MagLIF relies on three components to
oroduce fusion conditions at stagnation

Magnetization Preheat Implosion Stagnation
e Suppress radial thermal * Increase fuel adiabat to limit ¢ PdV work to heat fuel * Several keV temperature
conduction losses required convergence « Amplify B-field through e Several kT B-field to trap
* Enable slow implosion with flux compression charged fusion products

thick target walls




Our MaglLIF effort aims to increase confidence
in its ability to scale to multi-MJ yields

1GJ; | | o ; .
. . . . . 1 Simulation o { Material
= Simulations and analytic theory predict multi- | Optimized © | properties
. o / : v O
MJ yields on possible future generators 100 MJ | M0 e T neutron
: - '3 ST I g !
= We are pursuing a multi-pronged strategy to 10 MJ + R sl.r:a;“ | sources
. . . - E oY 4w cons® oS N “__ . i Fusion-
pair down scaling risks g SO éiﬂ{aifﬁ;gao - | fsior
= Explore scaling predictions over the currently- = v *_- aﬁqasm |
accessible parameter range | ¢ *-“con” | Charged
. . 100 kJ ¢ 7 P < particle
= |ncrease our capabilities on Z to generate high ! 2 | transport
performance anchor points ok Le * | 1 TNBsmix
= Explore aspects of the physics at scale where 5
possible 1k — . . . .
20 30 40 50 60 70

= Focused physics studies (mix etc.)

Peak load current [MA]
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The past few years have focusec
our MaglLIF input parameters on Z

= Developing high yield anchor points and
exploring scaling requires improving inputs 100 kJ ¢

= We are increasing all three input parameters —
current, B fields, preheat energy

= Reduce current losses with lower inductances and
more robust feeds

= |ncrease B fields with advanced coil designs

= Improve preheat efficiency by reducing losses to
LEH foil and LPI through cryogenic cooling

DT yield
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= Developing and integrating each capability L
and integrating has been challenging!
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We have changed almost every aspect of
the MagLIF experimental setup

Un-smoothed Z-beamlet laser
delivers preheat energy —
significant losses to LPI

1.8-3.5 um LEH foil contains the gas

Sptelely Magnetic field coils limitedto 10 T
R EuEsssans but with good diagnostic access

Sweeping feed provides room for coils
Losses limit current delivery to 17 MA




‘We

the MagLIF exper:

Z-beamlet with 1.5 mm DPP *
reduces LPI losses Fe

nave changec

almost every aspect of
mental setup

/ 0.5 um LEH foil contains the gas

Advance magnetic field coil designs

enable >20 T with a lower profile

Conical feed reduces losses enabling ~20 MA

Cryostats above and below the liner control
the temperature at 70 K



MaglLIF performance is sensitive to the preheat
energy coupled

2D LASNEX simulations 1.1 mg/cc, ARG liner, 17.5 MA current
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= There is an optimum preheat energy —too much energy impacts B field by Nernst

S. Slutz et al., Physics of Plasmas 25, 112706 (2018)



Preheat configurations are designed in offline
“Pecos” experiments
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Preheat configurations are designed in offline
“Pecos” experiments

Best performing “warm” preheat configuration
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‘ Preheat configurations are designed in offline
“Pecos” experiments

Best performing “warm” preheat configuration
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Primary sources of losses:

Laser Shadowgram
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Schlieren g = Energy invested in heating LEH foil
Scattered light T et "= LPI backscatter losses from LEH foil and gas
M. Geissel et al., Physics of Plasmas 25, 022706 (2018) ® Laser overshooting the imploding region
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“Warm” preheat configurations are sufficient for
experimentsat 10 T

2D LASNEX simulations 1.1 mg/cc, ARG liner, 17.5 MA current
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* Assumes 75% transmission, 4 kJ max ZBL energy
S. Slutz et al., Physics of Plasmas 25, 112706 (2018)



More preheat is required to optimize at higher
fields —we are preheat starved

2D LASNEX simulations 1.1 mg/cc, ARG liner, 17.5 MA current

’U? 30 3 | P | | '
S h
% 20_; 20T Ypp=2.7€14
o) .

(e 3

‘—JO E

E 10

S 4

Q@

] I
C

@)

=

-

()

Z

1 2 3 4 5
Preheat energy deposited (kJ)
= Solution: Increase coupling efficiency through Cryogenic cooling

= | ower fuel temperature and pressure, reduce LEH thickness, increase spot diameter
S. Slutz et al., Physics of Plasmas 25, 112706 (2018)




Cryogenic cooling enables lower pressures,
thinner LEH foils
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Conditions at shot: 22.83 psi, D2, 71.94 K, 1.06 mg/cc

Front temperature
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Cryogenic cooling enables lower pressures,
thinner I_E fO”S = 1100 um, DPP, 5.5 ns pulse, 1.6 um LEH

= 1500 um, 5.5 ns pulse, 0.5 um LEH
2600 -
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Jcoupled

Back temperature sensor p100.
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Total energy deposited in gas (J)

1000 - - | - T - T - T - |
N\ 1800 2000 2200 2400 2600 2800
LEH foil | 9 - Energy delivered (J)

Principle changes from warm to cryo:
=sReduced LEH foil thickness from 1.6 to 0.5 um
"|Increased spot diameter from 1.1 to 1.5 mm

Front temperature
sensor



‘ Advanced dual cryostat improves temperature
control in integrated experiments

Temperature measured at:

Final pressure: 22.05 psi. Final temperature: 70.05+/-0.07 K.
Final density: 1.045+/-0.001 mg/cc

Coolant out Coolant in Previous cryo configuration: Awe et al., Rev. Sci. Instrum. 88, 093515 (2017)
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‘ /3576 coupled >2 ki preheat energy, compare

well to similar warm shots
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Summary
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= \We have increased the performance of key aspects

of MagLIF experiments — current delivery, applied R S I

Peak load current [IMA]

magnetic field and preheat

= Cryogenic cooling enabled more efficient preheat
allowing >2 kJ coupled for the first time

= Experiments on the NIF allow us to directly test
preheat scaling at coupled energies >20 kJ




