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MagLIF relies on three components to 
produce fusion conditions at stagnation

Implosion
• PdV work to heat fuel
• Amplify B-field through 

flux compression

Preheat
• Increase fuel adiabat to limit 

required convergence

Magnetization
• Suppress radial thermal 

conduction losses
• Enable slow implosion with 

thick target walls

Stagnation
• Several keV temperature
• Several kT B-field to trap 

charged fusion products



Our MagLIF effort aims to increase confidence 
in its ability to scale to multi-MJ yields

 Simulations and analytic theory predict multi-
MJ yields on possible future generators

 We are pursuing a multi-pronged strategy to 
pair down scaling risks
 Explore scaling predictions over the currently-

accessible parameter range
 Increase our capabilities on Z to generate high 

performance anchor points
 Explore aspects of the physics at scale where 

possible
 Focused physics studies (mix etc.)

Fusion-
fission

TNB+mix

Charged 
particle 
transport

Neutron 
sources

Material 
properties

S.A. Slutz, et al., Phys. Plasmas 23, 022702 (2016).
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P.F. Schmit and D.E. Ruiz, Phys. Plasmas, 27, 062707 (2020).
D.E. Ruiz, in preparation (2021).
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The past few years have focused on increasing 
our MagLIF input parameters on Z

 Developing high yield anchor points and 
exploring scaling requires improving inputs

 We are increasing all three input parameters – 
current, B fields, preheat energy
 Reduce current losses with lower inductances and 

more robust feeds
 Increase B fields with advanced coil designs
 Improve preheat efficiency by reducing losses to 

LEH foil and LPI through cryogenic cooling

 Developing and integrating each capability 
and integrating has been challenging!

TNB+mix

Charged 
particle 
transport



We have changed almost every aspect of 
the MagLIF experimental setup

Sweeping feed provides room for coils
Losses limit current delivery to 17 MA

1.8-3.5 µm LEH foil contains the gas

Magnetic field coils limited to 10 T 
but with good diagnostic access

Un-smoothed Z-beamlet laser 
delivers preheat energy – 
significant losses to LPI



Conical feed reduces losses enabling ~20 MA

0.5 µm LEH foil contains the gas

Advance magnetic field coil designs 
enable >20 T with a lower profile

Z-beamlet with 1.5 mm DPP 
reduces LPI losses

Cryostats above and below the liner control 
the temperature at 70 K

We have changed almost every aspect of 
the MagLIF experimental setup



MagLIF performance is sensitive to the preheat 
energy coupled

S. Slutz et al., Physics of Plasmas 25, 112706 (2018)
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 There is an optimum preheat energy – too much energy impacts B field by Nernst

Preheat starved
Optimum preheat

Too much preheat!
(Nernst effect)

2D LASNEX simulations 1.1 mg/cc, AR6 liner, 17.5 MA current
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Preheat configurations are designed in offline 
“Pecos” experiments

Laser Shadowgram
Schlieren
Scattered light
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– energy deposited
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A. Harvey-Thompson et al., Physics of Plasmas 26, 032707 (2019)
M. Geissel et al., Physics of Plasmas 25, 022706 (2018)
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Preheat configurations are designed in offline 
“Pecos” experiments

Primary sources of losses:

 Energy invested in heating LEH foil

 LPI backscatter losses from LEH foil and gas

 Laser overshooting the imploding region
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“Warm” preheat configurations are sufficient for 
experiments at 10 T

z3236
~1400 J
1.05 mg/cc
YDD=1e13

S. Slutz et al., Physics of Plasmas 25, 112706 (2018)
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* Assumes 75% transmission, 4 kJ max ZBL energy

2D LASNEX simulations 1.1 mg/cc, AR6 liner, 17.5 MA current
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More preheat is required to optimize at higher 
fields – we are preheat starved

 Solution: Increase coupling efficiency through Cryogenic cooling 
 Lower fuel temperature and pressure, reduce LEH thickness, increase spot diameter

YDD=2.7e14
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S. Slutz et al., Physics of Plasmas 25, 112706 (2018)
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Cryogenic cooling enables lower pressures, 
thinner LEH foils

Optical window

LEH foil
(0.5 µm)

Xray window

Cryostat

LHe lines

B21040606

Front temperature 
sensor

Back temperature sensor

Conditions at shot: 22.83 psi, D2, 71.94 K, 1.06 mg/cc



Cryogenic cooling enables lower pressures, 
thinner LEH foils

Optical window

LEH foil

Xray window

Cryostat

LHe lines

Front temperature 
sensor

Back temperature sensor

Principle changes from warm to cryo: 
Reduced LEH foil thickness from 1.6 to 0.5 µm
Increased spot diameter from 1.1 to 1.5 mm



Coolant inCoolant out

Advanced dual cryostat improves temperature 
control in integrated experiments

MagLIF 
liner

Top 
cryostat

Bottom 
cryostat

Final pressure: 22.05 psi. Final temperature: 70.05+/-0.07 K. 
Final density: 1.045+/-0.001 mg/cc

Previous cryo configuration: Awe et al., Rev. Sci. Instrum. 88, 093515 (2017) 



Coolant inCoolant out

Z3576 coupled >2 kJ preheat energy, compare 
well to similar warm shots

MagLIF 
liner

Top 
cryostat

Bottom 
cryostat

Shot no. Z3289 (warm)* Z3576 (cryo)

B field (T) 15 15

Preheat energy (J) 1146+/-109 2250+/-250 J

Density (mg/cc) 1.03 1.045+/-0.001

DD yield (x1012) 11.1+/-3.1 7.6+/-2.7

DT yield (x1012) 0.22 0.10

DD/DT 55 74.8

Tion (keV) 3.3 ± 0.6 2.7 ± 0.1

z3289 z3576
Stagnation columns

Stagnation parameters for similar shots

Current delivery



Summary

 Simulations and scaling theory suggest MagLIF may 
scale to high yields

 Our MagLIF effort aims to increase confidence in 
this scaling

 We have increased the performance of key aspects 
of MagLIF experiments – current delivery, applied 
magnetic field and preheat 

 Cryogenic cooling enabled more efficient preheat 
allowing >2 kJ coupled for the first time

 Experiments on the NIF allow us to directly test 
preheat scaling at coupled energies >20 kJ


