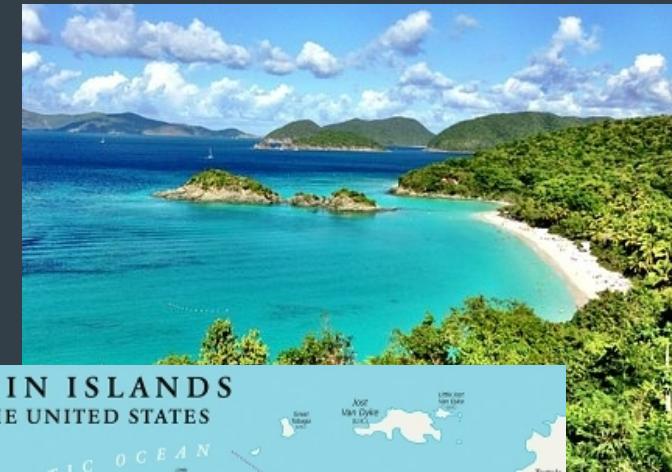


NOVEMBER 2020

Sandia
National
Laboratories

TEXAS
The University of Texas at Austin

WATER DISTRIBUTION SYSTEM DISASTER HARDENING IN THE US VIRGIN ISLANDS

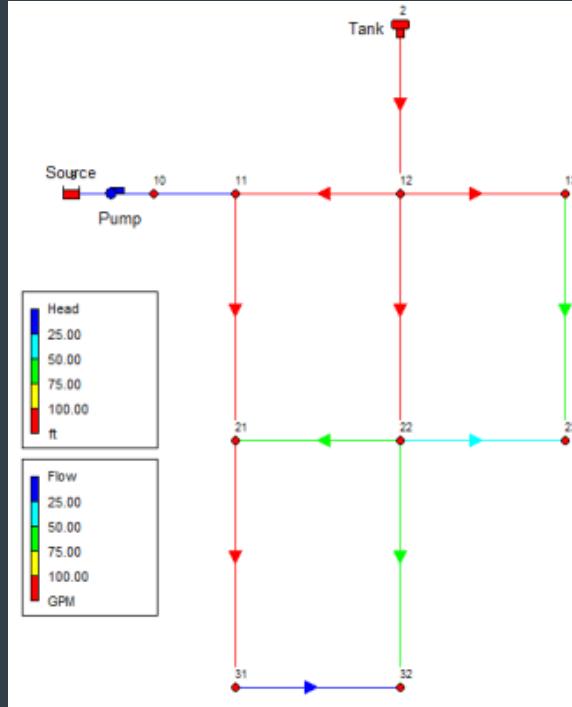


RACHEL MOGLEN¹, KATHERINE KLISE², BENJAMIN LEIBOWICZ¹

¹The University of Texas at Austin, ²Sandia National Labs

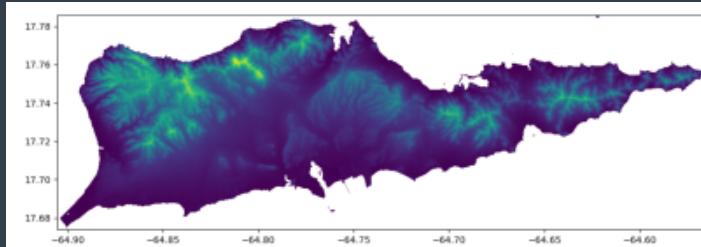
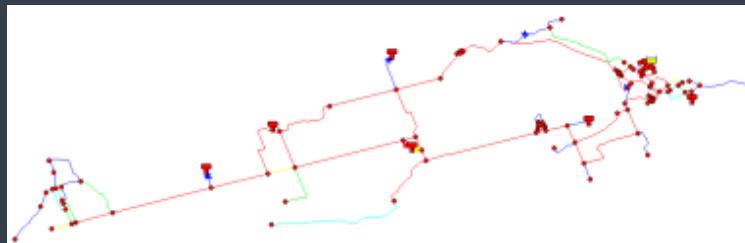
US Virgin Islands Overview

- 1917 US territory
- Population 100,000
- STX: 28 mi x 7 mi, STT: 13 mi x 4 mi
- Water Distribution
 - Only 70% of residents on utility water
 - Alternate water: water trucks + cisterns
 - STX separate from STT/STJ system
 - STX system losses: 40%
- Fun fact: Drive on the left!


*vulnerable to low pressure conditions from pumping outages

Motivation: Hurricanes in the USVI

- 2017 Hurricanes Irma (Sept 6.) and Maria (Sept. 20)
- Emergency generators for pumping lasted 3 months
- 90% of power restored by Jan 1, 2018
- **More Resilient:** cisterns, buried power lines
- **Less Resilient:** power generation, power lines, pumping stations, pipes*

Water Network Tool for Resilience (WNTR)

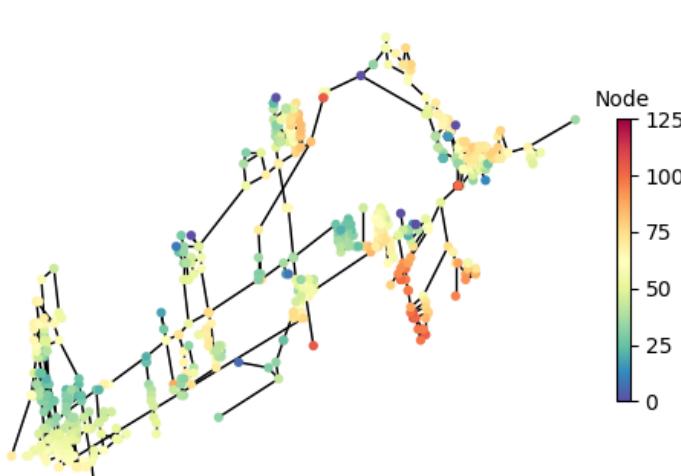
- Open source Python package
- Compatible with EPANET
- Iteratively solves the constraint-satisfaction problem of resolving pipe pressures flows
- Some out-of-the box resilience analyses:
 - Water age analysis
 - Peak ground acceleration (earthquakes [2])
 - *Power Outages*
 - *Pipe Criticality*

St. Croix WDS Model Building

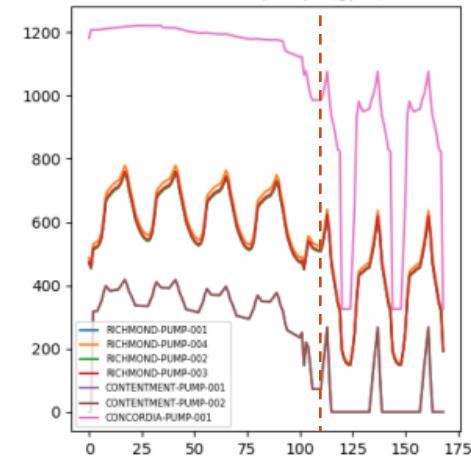
VIWAPA Data

- Node and Pipe configurations
- Demands
- Valves

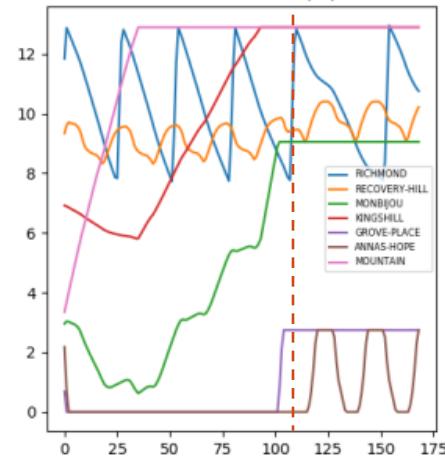
December 2019 VIWAPA Master Plan


- Pump operation and curves
- Storage tanks
- Controls

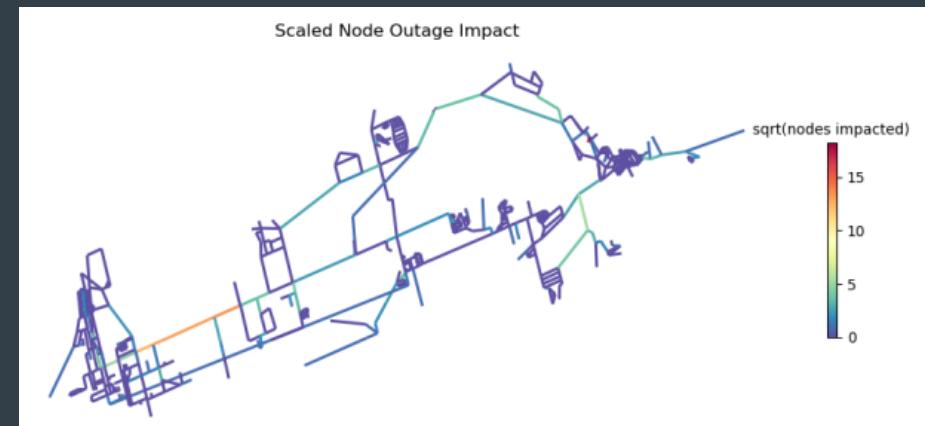
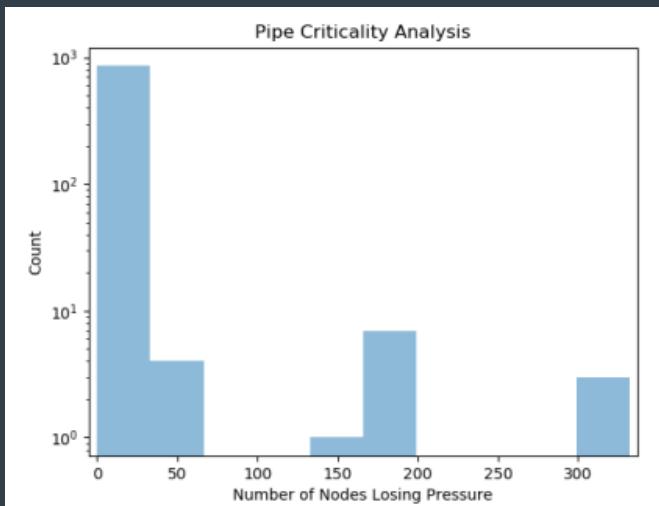
USGS Elevation raster


- Asset Elevations

St. Croix Standard Operating Conditions

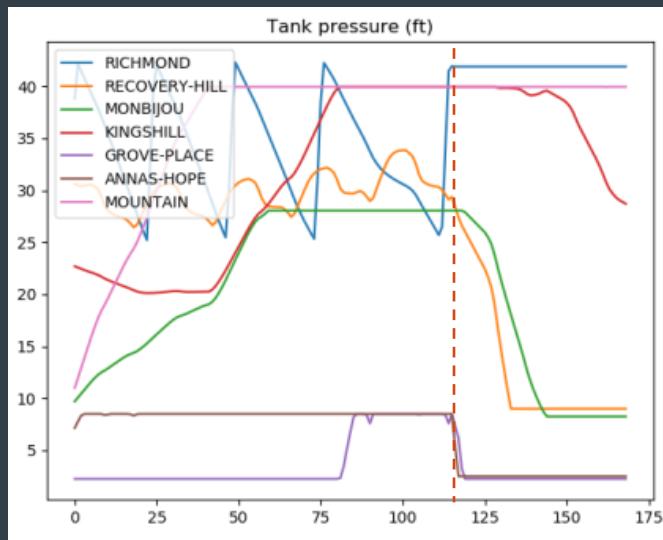

Pressure at hour 36 (psi)

Flow rate in pumps (gpm)

Tank water level (m)

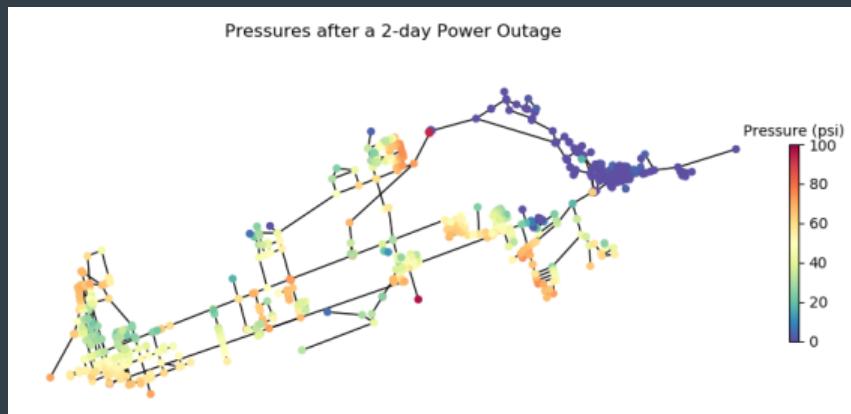
St. Croix WDS Pipe Criticality


Are some pipes more important to preserving pressure than others?

Do some geographic regions have less pipe redundancy?

St. Croix WDS Pump Outage Vulnerability

*After reaching steady state,
how well does the system
maintain pressure with no
pumping?*



Pumping Station Outage	Junctions Losing Pressure
Richmond	35.5%
Concordia	0%
Contentment	0.8%
All	36.7%

Which pumps are most critical for maintaining system pressure?

St. Croix WDS Pump Outage Vulnerability

*After reaching steady state,
 how well does the system
 maintain pressure with no
 pumping?*

Pumping Station Outage	Junctions Losing Pressure
Richmond	35.5%
Concordia	0%
Contentment	0.8%
All	36.7%

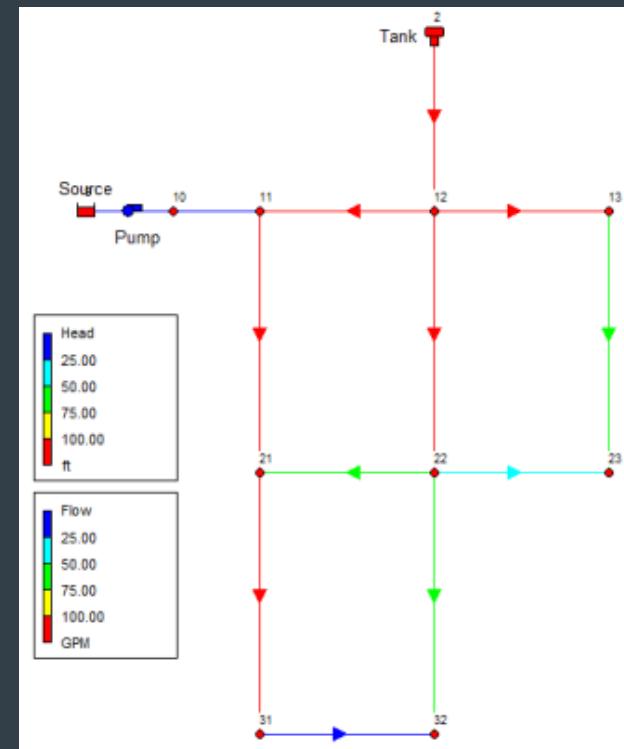
Which pumps are most critical for maintaining system pressure?

Conclusions and Future Work

- Challenges in the USVI: threats and mitigation logistics
- Model building in WNTR
- Resilience Analyses:
 - Pipe criticality
 - Pump Outage
 - *Hurricane hardening*

Conclusions and Future Work

- Challenges in the USVI: threats and mitigation logistics
- Model building in WNTR
- Resilience Analyses:
 - Pipe criticality
 - Pump Outage
 - **Hurricane hardening**


Which system components should be fortified to optimally protect against hurricanes?

The centralized (WDS) or decentralized (Water Trucks) system?

Formulation: Variables

- Time Horizon T

<u>Nodes</u>	<u>Links</u>
<ul style="list-style-type: none"> • Tanks \mathcal{T} • Reservoirs \mathcal{R} • Junctions \mathcal{J} • Nodes $\mathcal{N} = \mathcal{T} \cup \mathcal{R} \cup \mathcal{J}$ 	<ul style="list-style-type: none"> • Pumps \mathcal{P} • Valves \mathcal{V} • Pipes \mathcal{L} • Edges $\mathcal{E} = \mathcal{P} \cup \mathcal{V} \cup \mathcal{L}$
<ul style="list-style-type: none"> • Pressure head p_{it} for $i \in \mathcal{N}, t \in T$ • Water truck supply w_{it} for $i \in \mathcal{N}, t \in T$ 	<ul style="list-style-type: none"> • Head change h_{kt} for $k \in \mathcal{E}, t \in T$ • Flowrate q_{kt} for $k \in \mathcal{E}, t \in T$ • Pump power m_k for $k \in \mathcal{P}$

Formulation: WDS constraints [3]

$$\frac{\delta}{A_i} (\sum_{k \in \mathcal{E}} a^+(i) \mathbf{q}_{kt} - \sum_{k \in \mathcal{E}} a^-(i) \mathbf{q}_{kt}) + \mathbf{p}_{i(t-1)} = \mathbf{p}_{it} \quad \forall i \in \mathcal{T}, t \in T \quad (2: \text{tank head})$$

$$\mathbf{h}_{kt} \leq C_k^0 (\mathbf{q}_{kt})^2 + C_k^1 (\mathbf{q}_{kt}) + C_k^2 \quad \forall k \in \mathcal{P}, t \in T \quad (3: \text{pump operation: pump curve})$$

$$R_k = (\mathbf{p}_{it} + \bar{e}_{it}) - (\mathbf{p}_{jt} + \bar{e}_{jt}) \quad \forall (i, j) = k \in \mathcal{V} \quad t \in T \quad (4: \text{valve setting})$$

$$h_{kt} = F_k (\mathbf{q}_{kt})^2 \quad \forall k \in \mathcal{L}, t \in T \quad (5: \text{friction losses})$$

Formulation: WDS constraints [3]

$$h_{kt} = (p_{it} + \bar{e}_{it}) - (p_{jt} + \bar{e}_{jt}) \quad \forall (i, j) = k \in \mathcal{E}, t \in T$$

(6: head change along edge)

$$m_k = \frac{\rho g}{\eta_k} h_{kt} q_{kt} \quad \forall k \in \mathcal{P}, t \in T$$

(7: pump power consumption)

$$p_{it} \geq p_i^{\min} \quad \forall i \in \mathcal{J}, t \in T$$

(8: pressure minimum)

$$h_{kt} \geq 0, p_{it} \geq 0, q_{kt} \geq 0,$$

$$w_{it} \geq 0, m_k \geq 0 \quad \forall i \in \mathcal{N}, k \in \mathcal{E}, t \in T$$

(9: nonnegativity)

Formulation: WDS and Water Trucks

Max Water Service Availability (WSA)

$$= \sum_{t \in T} \sum_{i \in \mathcal{J}} [\sum_{k \in \mathcal{E}} a^+(i) \mathbf{q}_{kt} - \sum_{k \in \mathcal{E}} a^-(i) \mathbf{q}_{kt} + \mathbf{w}_{it}] / d_{it}$$

s.t.

$$\sum_{k \in \mathcal{E}} a^+(i) \mathbf{q}_{kt} - \sum_{k \in \mathcal{E}} a^-(i) \mathbf{q}_{kt} + \mathbf{w}_{it} \leq d_{it} \quad \forall i \in \mathcal{J}, t \in T$$

(1: conservation of flow)

(2-9: previous constraints)

$$\sum_{k \in \mathcal{P}} C_k^p \mathbf{m}_k + \sum_{i \in \mathcal{J}} \sum_{t \in T} C_i^w \mathbf{w}_{it} \leq b \quad (10: \text{budget constraint})$$

Acknowledgements and Disclaimers

This material is based upon work supported by the National Science Foundation under Grant No. DGE-1828974.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This presentation describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government

Selected References

1. DL Alderson, BB Bunn, DA Eisenberg, AR Howard, DA Nussbaum, and J Templeton. Interdependent infrastructure resilience in the US Virgin Islands: Preliminary assessment. Naval Postgraduate School Technical Report NPS-OR-18-005, 2018.
2. Katherine A Klise, Michael Bynum, Dylan Moriarty, and Regan Murray. A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study. *Environmental modelling & software*, 95:420–431, 2017.
3. Ahmed S Zamzam, Emiliano Dall’Anese, Changhong Zhao, Josh A Taylor, and Nicholas D Sidiropoulos. Optimal water–power flow-problem: Formulation and distributed optimal solution. *IEEE Transactions on Control of Network Systems*, 6(1):37–47, 2018.