SAND2020-11259PE

Sandia National Laboratories H, FCydrogen and Fuei Gelis Program

) m— ~— T ——
SAND2020-XXXX PE

R&D for
Hydrogen Compatibility of Materials:
Safety, Codes and Standards
and H-Mat

Joe Ronevich and Chris San Marchi
Sandia National Laboratories, Livermore, CA

Joint Hydrogen Delivery and Storage (HDSTT) and
Codes & Standards (CSTT) Tech Team Meeting
October 15, 2020

I This presentation does not contain any proprietary, confidential, or otherwise restricted information I

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly

owhed subs|d|ary of HomSa ndialNational'Laboratories isiaxmultimission laboratoryamanaged:and oper. ated|b\g 'National Technology |&:EngineeringiSolutionsrofiSandia rLLC, )awvhollvlownedmtract DE-NA-0003525.
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's’National Nuclear Security Administration‘under contract DE-NA0003525




1| Sandia National Laboratories H, FCydrogen and Fuei Gelis Program

*pproach to Hydrogen Compatlm{y Studies: .
Integrate innovative computational & experimental studies across
length scales to unravel mechanisms at nanometer length scale
and quantify performance at engineering length scale
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" Framework for deconstructinMsics of —_—

Hydrogen Effects on Materials Environment

e Low temperature
* High pressure
* Impurities
» Gas mixtures

Material Stress /
ateriais MGChanics Hydrogen-assisted \_H"
““fract;;e H

Materials Mechanics
« High-strength | Hydrogen embrittlement - Autofrettage
* Hydrogen-enhanced plasticity occurs in materials under | « Short crack behavior
 Boundary cracking the influence of stress in « Fatigue crack initiation
* Surface passivation hydrogen environments | -« Fracture resistance




Hydrogen
Materials
Compatibility
Consortium

Task M1
Hydrogen-resistant high-
strength ferritic steels
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Task M2

High-strength aluminum alloys
for hydrogen service
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Task M3

Hydrogen-assisted crack
nucleation in design
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Task M4

Microstructural effects on H-
deformation interactions

Task C1

Materials for cryogenic

hydrogen service " [ @) %
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Hydrogen-resistant, high-;?rength ferritic steels

Question: Are there high-strength steel microstructures
with improved resistance to hydrogen effects?

10° p————
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‘Managed’ strength
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Atomistic simulations inform baseline character of steel
phases and inform microstructural design efforts

ferrite FeCo 03 martensite 1o
N 2 Q .
- - 5§ 09 A ferrite octahedral site -
~ @ 0.8 reference —
Z : 2 07
% } \ 2 06 -
g ( 2 tetrahedral site
D] g 05F ! 7
| T 03 '
§ 02
10 A 10 A g 01y :u'”T .
. - : = 0.0 ' -
HOW does hydrogen interact Wlth Ste_el 2 275 250 225 2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50
microstructure? (Fe-C-H MD simulation) hydrogen insertion energy E; (¢V)

- Can model microstructures enable evaluation of modeling results?
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Question: Can crack nucleation be predicted and l
integrated into a design strategy? Structure map (red: hep, green: feo

Circumferentially
notched tension (CNT)

Engineering-scale / e —
models evaluate S WWW

mechanics of the
problem

—

Atom-scale models '

| inform models of
damage evolution

Transverse hole tube
tension (THTT)
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Deformation / damage observations and modeling advance
understanding and inform physics-based models

° i - i i i collision of an e-martensite band (screw Burgers vector)
High-resolution microscopy (in
deformation-induced
martensitic transformations
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" Microstructural effects on hyoMén-defof 1ation —_—
interactions in austenitic stainless steels

Question: How does hydrogen affect deformation and
damage accumulation in austenitic stainless steels?

Atomic scale observations

show that

 Hydrogen promotes
formation of e-martensite

 Hydrogen suppresses
deformation twinning

* Overall changes in
deformed microstructures
are relatively subtle (nm-
length scale), whereas
fracture is substantially
affected by hydrogen
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Hydrogen-deformation interactions in austenitic stainless steels

Mesoscale models are needed to understand the
macroscopic evolution of the fracture process

Specimen with pre-test EBSD , EBSD mapping Grain scale simulation
and post-test DIC overlays gt after 1% strain of deformation

Tmm

Exp model

L2 Gl 5 N B j 2
« Can state-of-the-art characterization of deformation in small ensembles
of grains illuminate mesoscale damage leading to H-assisted fracture?

« Can complementary simulations of grain-level deformation inform
microstructural design strategies?
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Safety, Codes and Standards activity in materia;; mechanics
complements the H-Mat materials science approach

Objective: Enable technology deployment by applying foundational
research toward the development of science-based codes and
standards

* Subject Matter Expertise (SME)

— Develop and maintain material property database and informational
resources to aid materials innovation for hydrogen technologies

 Test method development

— Develop science-based materials test methods and guidelines by
working with SDOs and the international community to validate and
incorporate methods in globally harmonized testing specifications

* Implementation of critical testing and understanding

— Execute materials testing to address targeted data gaps and
technology deployment

— Coordinate activities with strategic and international partners

11
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II.hAdvancing test methods: Welds

Question: Can other geometries be implemented to
evaluate fatigue of welded configurations?

T: Tube

displays fatigue performance
consistent with non-welded

tubing and bar material 1.0E+03 1.0E+04 1.0E+05 1.0E+06
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—Contributions to ASME cc;TéS: Code Eése 2938

Question: Can fatigue trends be captured with simple
and ‘universal’ empirical relationship for design?

dN 1—R

Relatively simple power law
relationship implemented in
ASME design code for PVs
* Eliminates need for

extensive testing
(of common steels)

 Extends design life (by
analysis) by a factor of 2-5
times for typical designs
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Fatigue crack growth rate, da/dN (m/cycle)
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— : > P
Demonstrating opportunity for ‘life extension’
through assessment of service environment

14000

Actual data from PV at HRS

« Evaluation of service
data shows actual
pressure cycles are
significantly less than
design cycle

Pressure (psi)

* Design calculations
using actual pressure
cycles suggests

significant remaining Design AP > Service AP 8.9 ksi

life

Time (days)
8000
4/13/2016 0:00 4/15/2016 0:00 4/17/2016 0:00 4/19/2016 0:00

Life can be extended by analysis after the original
design life is reached (presumably) using existing Code

14
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II”‘Demonstrating opportunity for ‘life extension’
through assessment of service environment
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Life can be extended by analysis after the original
design life is reached (presumably) using existing Code
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Summary
- H-Mat

— Vibrant research activities across length-scales (atoms to engineering) on
relevant materials compatibility challenges

— Focused on foundational understanding and predictive computational materials
science to inform materials and microstructural design

* Test method development

— Test method for difficult-to-test welds was developed; other geometries could be
considered to accommodate unique manufacturing or welding configurations

— FCGR design curves for steels in hydrogen included in ASME BPVC
» Curves extrapolate well over wide range of AK (including near threshold)
» Higher fidelity data suggest longer life of vessels for high-P storage

 Standardization

— International coordination has resulted in a relatively simple fatigue metric for
materials evaluation in vehicle applications: SAE J2579 and UN GTR no. 13

— Analysis shows that more accurate accounting of actual pressure cycles can
extend useable life > 2X

— Evaluating pressure dependence in fatigue rules for application to low-pressure
and blended gas applications

16
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Backup/Extra
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Collaborations

- National Laboratories
— Task teams integrated across laboratories, leveraging expertise at
individual labs
* Academic partners

— Colorado School of Mines: identification and custom heat treatment of high
-strength ferritic steels

— University of California Davis: fatigue behavior of austenitic stainless
steels

— Rutgers University. atomistic simulation of defects
 New H-Mat partners

— Colorado School of Mines, Hy-Performance Materials Testing LLC, MIT,
Univ Alabama, Univ lllinois (UIUC)

* Industry partners
— Swagelok: letter of support and interest in high-strength microstructure
— Luna Innovations: SBIR on NDE to identify damage prior to cracking

* International research institutions (informal)

— Kyushu University, University of Stuttgart, Korea Research Institute of
Standards and Science: regular communications on capabilities, data

18
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" Collaborations (SCS)

Standards Development Organizations (SDOs)

— SAE & UN GTR: Test method for SAE J2579 and proposed method for GTR no. 13
Phase Il is based on extensive international discussion with organization stakeholders
and automotive OEMs

— ASME BPVC: Code case adds design guidance to Article KD-10; ASME community
and stakeholders are engaged in tank life extension discussion as well as requesting
assistance on fatigue life versus fatigue crack growth methodologies

Industry partners

— Partners communicate materials testing gaps/needs and provide technology-relevant
materials (FIBA Technologies, Tenaris-Dalmine, JSW, Swagelok)

— International MOU: evaluation of Ni-Cr-Mo PV steels, motivation of Code Case for
ASME BPVC and future testing plans (threshold fatigue crack growth and R < 0)

— NASA-WSTF and Digital Wave: non-destructive evaluation of metal liner in tanks
— Becht Engineering and Air Products: comparison of actual service environments and
design criteria, evaluation of margin in design and opportunity for life extension
International research institutions

— Performance-based fatigue evaluation in the context of SAE is focus of R&D
collaboration with international community, including collaborative research activity in
Japan (Kyushu Univ) and Germany (MPA Stuttgart)

« Korea and China have expressed interest to participate as well
19



