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2 I Hydrokinetic (marine) energy technologies:What are they!?

Renewable energy in waves, water currents, osmotic/thermal gradients, solar, wind
and marine biomass

Energy conversion technologies:

Wave energy converters (WEC) Current energy converters (CEC)

USDOE’s Reference
Model CECs
[Neary et al. 2013]
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RM3 - oscillating body

RM1 - Tidal energy converter RM2 - River energy converter



Ocean energy sailing ships: Wind

Windsail power drives hydrokinetic turbine
inflow speeds between 5 to 10 m/s

Mobility provides high capacity factors, 70-
80% avoids hazards, and reduces market
barriers and costs

Most subsystems at TRI. 9
Can be scaled to deliver 3-30 MW per ship

Millions of energy ships can satisty the
global energy demand

A variety of energy storage options, €.g.,
battery-stored electrical energy, sustainable
liquid fuels, compressed or liquefied
hydrogen

Autonomous operation in international
waters subject only to the Law of the Sea

and hydrokinetic energy converters
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4 ‘ Migration of renewable kinetic energy generation technologies

Land-based wind turbines Bqttom-fi)fed offshore Flaning wind Far offshore wipcgl turbjnes
wind turbines, wave turbines, wave energy and energy sailing ships
energy converters, converters, current
current energy energy converters
converters

OR

Adapted from,
“Positioning of far-
offshore wind energy
conversion” © Charlotte
Ruel - Ecole Centrale de

Nantes

Shoreline - 50 m water depth - 100 kms Far-offshore



s | How & where are hydrokinetic energy resources available!?

The Ocean Wave, Ocean Current, Tidal Current, and
River Current Resource in the United States
Terawatt-hours per year (TW-hr/yr)
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Marine renewable energy; Opportunities and challenges

teBLUE ECONOMY

Opportunities

Urgency to move to renewable energy dominant portfolios [IPCC
2018]

Vast resources with large power densities close to population centers

[NASA 2012]

Blue economy — local energy sources for maritime markets, e.g.,
desalinization, aquaculture, observation & navigation[USDOE 2019]

WEC Extreme Condition
Modeling Wnrkshup ik
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CORROSION

FOR ALL WET CORROSION ISSUES
www. marinecorrosionforum.org

Challenges

High capital, installation, operation and maintenance (IO&M) costs
[Neary et al. 2013]

Difficult engineering - Harsh marine environment
Complex and costly permitting process for environmental compliance

Market opportunities unclear, and no established supply chains
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7 ‘ USDOE R&D Program

2030 Target LCOE
~$0.12/kWh

‘ Market

acceleration
‘ e Potential markets and
supply chains
Resource. . * Environmental
characterization & compliance
assessment * Stakeholder/user
* National resource and conflict avoidance and
. ORI mitigation
regional distribution 5270 q
. Statistics e Standards and 3" party
‘ atistics to certification
Technolo characterize resource
gy attributes
development
e Performance & LCOFE
assessment

* Open-source modeling tools
* Demonstration projects
* Harly stage concepts

2015 LCOE * Component & subsystem
~$1.20 /kWh innovations

e Test infrastructure

Neary et al, (2015). DOE Reference Model Project, SAND2019-6109 M, http://energy.sandia.gov/rmp
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9 I Resource characterization needs in project life cycle

Resource information, data |
Energy- Project Design, Type- Installation Operation & Decommission- |
Infrastructure development certification, maintenance ing

planning (Site selection, Product-line
Feasibility) development

Ocean energy project life-cycle

-




10 ‘ Motivation

National resource assessments quantified potential
contribution of wave energy to electricity
production nationally and regionally [EPRI 2011,
Chawla et al. 2013]

More refined and comprehensive characterization
needed to support energy planning, project
development and WEC design

Three assessment levels (area, Ax, At)

> Reconnaissance (>300 km), 5 km, 3 h

Vi

° Feasibility (20-500 km), 500 m, 3 h

° Design (<25 km), 50 m, 1 h
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The MHK Atlas wave power density map.
Source:[NREL 2019].https://maps.nrel.gov/mhk-atlas/

Theoretical Resource
Waves 3,500 TWh/year

Tidal streams  |445 TWh/year

Ocean currents (200 TWh/year

Resource

Source: USDOE 2015 Quadrennial Technology Review, http://energy.gov/qtr
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‘ Goals

Generate high-resolution resource data source covering all US economic exclusion zones (EEZ)
from 32-40 year wave model hindcast

e
Improve data source (V]

Improve characterization D\/

Improve data/information dissemination [v]

= ALASKA REGION

Region Area, km? _ Status e ! ovion Y S, wf‘g‘:?ﬂ
West Coast 825,549 Complete g ; N\ H‘E"’“’"
East Coast 915,763 Complete ’ ’ ——— :
Alaska 3,770,021 Complete | owindid |

Hawaii Islands 1,579,538 2019 \ # . Kogmantert

Gulf of Mexico 707,832 2019 W o, o | ey

Pacific Islands 3,328,925 2020 S ? swombind .

Puerto Rico, US Virgin Islands 211,429 2020 Nt mc.

US Economic Exclusion Zones (EEZ)

U.S. EEZ consists of following sub-regions: (a) Pacific West Coast; (b) East Coast (Northeast and Southeast regions); (c) Alaska; (d) Gulf of Mexico; (e) Puerto Rico and U.S.
Virgin Islands; (f) Hawaii and Pacific Islands. EEZ is defined as a sea zone that extends 370 km (200 nmi) offshore from its coastal baseline. The image is obtained from
NOAA National Ocean Service. https://www.worldatlas.com/articles/countries-with-the-largest-exclusive-economic-zones.html
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‘ Open source tools: Resource data and information dissemination

Cumulative frequency
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MHK Data Repository (In-progress)
> 2D spectra, O(100) points each region
o Partitioned bulk parameters, O(1,000) points each

region
o JTEC parameter time series, O(1M) points e :
Functional GIS dissemination platforms (TBD) ; . =1 ¥ 5 I
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Sea state scatter plots Environmental contours
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Open-source modeling tools
for WEC design & analysis
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Significant Wave Height, H"|U [m]

‘ Open-source tools: WEC-Sim [Coe et al. 2018, Neary et al. 2018]

WEC device specification Relevant numerical methods WE(_: performance,
¥ motions, and loads
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15 I Open-source tools: WEC design response toolbox (WDRT)
[Coe et al. 2018, Neary et al. 2018, Coe & Neary 2014] |
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Select 200 random sea states
[Eckert-Gallup et al. 2016]
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200, 3h design waves
for wave site

WEC-Sim

r=Float-SurgeExcitation (MN)

— Full sea state survival

1 Individual sea state survivals | | I
ear return; LR R LR . i

200 short term response distributions
averaged to generate one long term
distribution extreme loads (Heave,
Surge, etc.)

https://wec-sim.github.io/WDRT/index.html



6 I Concluding remarks

USDOE R&D roadmap provides comprehensive framework for

advancing marine energy systems to commercialization with primary goal
of reducing LCOE

Knowledge of resource attributes and extreme conditions, critical inputs
to planning WEC projects, and design and analysis of WECs

Accurate resource data & information, and validated models and tools
critical for reducing LCOE of 1°* generation technologies
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Sandia National Laboratories: Background

“...exceptional service in the national interest.”
President Truman 1949
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Sandia National Laboratories: Securing Our Nation’s Future
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Benchmarking LCOE for |t generation marine energy converters

CECs — 10 MW Projects
> =~ $0.31-0.45/kWh

> Cost drivers PTO, structure, O&M e Mo | R

WECs — 10 MW Projects

Turbine
! & RM1: Tidal Current Turbine
° $0.98/kWh for RM3, RM5 L | S e erCurent o
. ) 1 W RM3: Wave Point Absorber WEC
10 MW RAM4: Ocean Current Turbine

¥ RMS5: Oscillating Surge WEC

© $1 .53 / kWh for RM6 T o sc?'e > RM8: Oscillating Water Column WEC

RM3 RM5
o Cost drivers power absorption, structure, Wavepot - Osalaing surge

mooring, O&M

RM6

Install Capacity (MW)

Oscillating Water
Column

Jenne, D.S., Yi-Hsiang, Y. and V.S. Neary, (2015). Levelized cost of energy analysis of marine and hydrokinetic reference models. Proceedings of 37 Annual Marine Energy Technology
Symposium 2015 (METS2015), Washington, D.C., April 27-29.
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