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SNL grid energy storage program overview2
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Develop advanced energy storage technologies and systems, in collaboration with industry, academia, and government institutions, that 
will increase the reliability, performance, and competitiveness of electricity generation and transmission in the electric grid and in 
standalone systems.



Energy storage safety and reliability focus areas3

David Rosewater



System operation and safety prediction: closing the data 
gap between cells and systems4

David Rosewater

Open-source repository 
to consolidate cell and system data
(Dedicated SNL labs in parentheses) 

Lab Cells Data (BTF, BATLab)
Design industry-relevant performance & abuse testing and 

quality assurance checks using data from all layers

DC-Rack Data with Power Electronics (ESCAL, APEX)
Determine the impact of DC power quality (pulses and 

harmonics) on cell behavior

Module-Level Data (BEST, BATLab)
Assess the effect of cell-to-cell variation on safety and 

performance

BLC1

Field Application Data (ESTP, Demonstrations, NITE2)
Collect normal & abuse data and environmental effects (T, 

humidity) from field systems (EPRI/SNL Report3)
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Cell and system data in one dashboard
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(3) D. Rosewater, Y. Preger, J. Mueller, S. Atcitty, S. Willard, M. Smith, J. Thompson, D. Long, “Electrical Energy Storage Data Submission Guidelines, v 2” Electric Power Research Institute & SNL, 2021. 3002022119.

(1) V. De Angelis, Y. Preger, B. Chalamala “Battery Lifecycle Framework: A Flexible Repository and Visualization Tool for Battery Data from Materials Development to Field Implementation” ECSarXiv, 2021
(2) B. Chalamala, D. Rosewater, Y. Preger, J. Lamb, R. Wittman, A. Kashiwakura “Ensuring Safety of Grid-scale Energy Storage Systems” IEEE Electrification, Vol. 9, No. 4, Dec. 2021

We built labs and software to collect and consolidate data from all levels of battery operation for rapid technology iteration.
The testing conditions are informed by environmental and system-level effects we have observed in field applications. 



System operation and safety prediction: closing the data 
gap between cells and systems5

David Rosewater

Open-source repository 
to consolidate cell and system data
(Dedicated SNL labs in parentheses) 

Lab Cells Data (BTF, BATLab)
Design industry-relevant performance & abuse testing and 

quality assurance checks using data from all layers

DC-Rack Data with Power Electronics (ESCAL, APEX)
Determine the impact of DC power quality (pulses and 

harmonics) on cell behavior

Module-Level Data (BEST, BATLab)
Assess the effect of cell-to-cell variation on safety and 

performance

BLC1

Field Application Data (ESTP, Demonstrations, NITE2)
Collect normal & abuse data and environmental effects (T, 

humidity) from field systems (EPRI/SNL Report3)

Cu
rr

en
t (

A)
Vo

lta
ge

 (V
)

Cell and system data in one dashboard

       BTF                BEST           APEX                     ESCAL Prosperity (PNM) 

Time

ESCAL 24V system data

(3) D. Rosewater, Y. Preger, J. Mueller, S. Atcitty, S. Willard, M. Smith, J. Thompson, D. Long, “Electrical Energy Storage Data Submission Guidelines, v 2” Electric Power Research Institute & SNL, 2021. 3002022119.

(1) V. De Angelis, Y. Preger, B. Chalamala “Battery Lifecycle Framework: A Flexible Repository and Visualization Tool for Battery Data from Materials Development to Field Implementation” ECSarXiv, 2021
(2) B. Chalamala, D. Rosewater, Y. Preger, J. Lamb, R. Wittman, A. Kashiwakura “Ensuring Safety of Grid-scale Energy Storage Systems” IEEE Electrification, Vol. 9, No. 4, Dec. 2021

We built labs and software to collect and consolidate data from all levels of battery operation for rapid technology iteration.
The testing conditions are informed by environmental and system-level effects we have observed in field applications. 



What is the remaining useful life (RUL) of a battery?6

• 80% capacity is a common reference point in manufacturer spec sheets

• 80% capacity retention is a holdover from early EV days
o USABC 1996: “EV batteries should be removed from automotive use when current battery capacity is 80% of 

initial battery capacity and current battery power capability is 80% of initial battery power capability”
o At this time, EVs were primarily powered by Ni-based batteries

• Understanding RUL is critical for first life valuation and a deal-breaker for second life 
applications



Remaining useful life depends on the aging trajectory7

Batteries with identical 
SOH have different RUL

What causes superlinear degradation (aka knee, rollover failure, nonlinear aging, two phase degradation, etc.) 
and how do you avoid it? 



Remaining useful life depends on the aging trajectory8

How do you avoid this? 
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Stanford (Peter Attia) 
Sandia (Yuliya Preger)
Carnegie Mellon University (Shashank Sripad, Alec Bills)
Hawai’i Natural Energy Institute (Matthieu Dubarry)
NREL (Paul Gasper)
University of Cincinnati (Abhishek Soni)

University of Michigan (Anna Stefanopoulou, Valentin Sulzer)
RWTH Aachen University (Philipp Dechent)
University of Edinburgh (Goncalo dos Reis, Richard Gilchrist)
University of Warwick (Ferran Brosa Planella)
University of Oxford (David Howey, Sam Greenbank)
A*STAR (Edwin Khoo, Ouyang Liu)

Multi-institution team reviewing empirical causes and 
mechanisms of knee points



1) Review all literature on knees: every experimental example + modeling explanation

2) Identify classes of degradation pathways

3) Determine how these pathways lend themselves to predictive capability

10 Project approach
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“Perturbation” of Any Variable Can Induce Knees – Cell 
Design

Variable Knee Acceleration Reference

Electrode loading
Higher positive electrode loading Ma et al. 2019 

Positive electrode coating
Uncoated positive electrode Ma et al. 2019 

Graphite type
Natural graphite Ma et al. 2019 

Additive package and 
concentration

FEC consumed Petibon et al. 2016 

FEC consumed Jung et al. 2016 

Higher methyl acetate concentration Ma et al. 2019 

Salt concentration
Higher salt concentration Aiken et al. 2020 

Lower salt concentration Ma et al. 2019

Higher salt concentration Wang et al. 
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“Perturbation” of Any Variable Can Induce Knees – Testing 
Conditions

Variable Knee Acceleration Reference

Charging rate

Higher charging rate Lewerenz et al. 2017

Higher charging rate Petzl et al. 2015

Higher charging rate Burns et al. 2015

Higher charging rate, constant voltage Waldmann et al. 2015

Higher charging rate Schuster et al. 2015

Higher charging rate Severson et al. 2019

Higher charging rate Schindler et al. 2018

Higher charging rate Keil et al. 2019

Discharging rate

Lower discharging rate Keil et al. 2016

Lower discharging rate Keil et al. 2019

Lower discharging rate Atalay et al. 2020

Higher discharging rate Omar et al. 2014

No difference at 10-45 °C Diao et al. 2019
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“Perturbation” of Any Variable Can Induce Knees – Testing 
Conditions

Variable Knee Acceleration Reference

Voltage limits

Higher SOC Broussely et al. 2005 

Higher voltage Aiken et al. 2020 
1) Higher DOD
2) Extreme midpoints Ecker et al. 2014, Pfrang et al. 2018 

Higher DOD Klett et al. 2014

Higher DOD Schuster et al. 2015
1) Higher DOD
2) Higher midpoint SOC Ma et al. 2019 

Higher DOD Petzl et al. 2015 

Lower SOC Zhu et al. 2021 

Rests

Longer rest time Keil et al. 2019 

Longer rest time Ma et al. 2019 

Shorter rest time Epding et al. 2019 
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“Perturbation” of Any Variable Can Induce Knees – Testing 
Conditions

Variable Knee Acceleration Reference

Temperature

Temperature above and below 25 °C Zhang et al. 2019 

Higher temperature Broussely et al. 2005 

Temperature above and below 35 °C Schuster et al. 2015 

Higher temperature Safari et al. 2011 

Temperature above and below 25 °C Waldmann et al. 2014 

Lower temperature Coron et al. 2020 

Temperature below 25 °C Waldmann et al. 2015 

Pressure

More rigid bracing or zero bracing Wunsch et al. 2019 

Higher stack pressure or zero pressure Cannarella et al. 2014 

Heterogeneous compression Bach et al. 2016 



Impact of cell to cell variability15

Baumhofer et al. J. Power Sources, 2014, 247, 332.  Harris et al. J. Power Sources, 2017, 342, 589.  
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Knees are complex and occur under many conditions

• Higher charging rate and wider DOD consistently accelerate knees
• Temperature/pressure have a ‘sweet spot’ outside of which knee is accelerated
• Discharge rate/rest time – it varies

• Knees can occur during cycling within manufacturer specifications
• Knees observed as high as 90% remaining capacity and as low as 40% 
• No specific range of values to avoid – specific value depends on the other variables 

Next step: link all experimental observations to broader classes of degradation pathways

General assessment of experimental studies



Six pathways to knees17
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Ex. Mechanical deformation
Extrapolation of exponential function 
difficult if there’s noise

Ex. Additive depletion
Requires knowledge of internal 
state trajectory AND threshold

Ex. Electrode saturation
Need to track two internal states

Defining internal state trajectories



Pathway 1: Li plating19

What is it: Li ions form metallic lithium on surface of 
negative electrode rather than intercalating

Cause
• Rate independent: Loss of active material from 

delithiated negative electrode

• Rate dependent: High transport/reaction 
overpotentials cause local electrode potential to 
drop below Li/Li+

• salt depletion, low temperature, high charge 
rate

• mechanical compression reduces porosity
• LAM increasing local current density
• pore clogging from SEI build-up

Trajectory: snowball, hidden, threshold



Pathway 2: Electrode saturation20

What is it: electrode “saturates” and reaches cutoff 
potential before all Li transferred

Cause
• Rate of active material loss for one electrode outpaces 

lithium inventory loss
• Applicable to both electrodes (can be hidden for some 

time by oversized negative electrode)

Trajectory: threshold, hidden



Pathway 3: Resistance growth21

What is it: cell internal resistance increases, with 
additional overpotential causing cell to reach cutoff 
voltage quicker

Cause
• Growth of side reaction products (electrolyte 

oxidation/reduction) on surface of electrode 
particles

Trajectory: threshold



Pathway 4: Additive depletion22

What is it: quantity of electrolyte additive in cell 
reduced over time

Cause
• Additive consumed in side reactions
• More likely in commercial cells without excess 

electrolyte

Trajectory: threshold



Pathway 5: Percolation-limited connectivity23

What is it: electronic/ionic conductive network does 
not span the full electrode

Cause
• Electrode dry-out results in loss of ionic contact 

between active material and electrolyte, leading to 
loss of active material

Trajectory: threshold



Pathway 6: Mechanical deformation24

What is it: physical changes at the micro- and macro-
scale due to mechanical processes

Cause
• Micro-scale

• particle cracking due to (de)intercalation stress
• delamination

• Macro-scale
• heterogeneous internal pressure distribution 

from cell components (e.g. tab)
• jelly roll deformation causes loss of active 

material
• uneven external pressure causes plating

Trajectory: snowball, threshold



Implications for modeling and prediction25

• Goal of knee pathways evaluation: provide fundamental understanding of physics of knees to 
assess limits of today’s models

• Lithium plating, electrode saturation, resistance growth
• dependent on bulk internal states (LLI, LAM, etc.), so they are straightforward to detect and model via 

electrochemistry

• Additive depletion, percolation-limited connectivity, microscale mechanical deformation
• involve subtle effects that are challenging to measure (e.g. porosity decrease, remaining additive amount)



Value of resistance measurements for knee prediction in the 
field26

• Capacity knee onset is nearly always correlated to 
onset of rapid resistance growth (elbow)
• many intertwined degradation mechanisms

• Correlation is important because measuring 
capacity in the field can be hard, but measuring 
resistance at various SOCs is not

Ecker et al. J. Power Sources, 2014, 248, 839.  



Role of data-driven methods in knee prediction27

• Methods are well-suited for knee pathways with bulk electrochemical signals

• Models trained on cycling data are poorly suited for knee pathways with signals that are 
challenging to measure via electrochemistry

• Datasets that span many pathways for various cell designs + use cases are needed for training 
generalizable models



28 Conclusions

• Reviewed all examples of knees in the literature
• Knees are complex and occur under many cycling + design conditions
• No specific range of values to avoid – specific value depends on the other variables 

• Identified classes of degradation pathways and underlying state trajectories
• Li plating, electrode saturation, resistance growth, additive depletion, percolation-limited connectivity, mechanical 

deformation
• Internal state trajectories (snowball, hidden, threshold) each pose unique challenges for monitoring

• Determined how pathways lend themselves to predictive capability
• Need to consider which pathways have bulk electrochemical signals
• Resistance is a useful value for field predictions
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For questions about this presentation: ypreger@sandia.gov
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