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A mechanism-based assessment of ‘knees’

in lithium-ion battery aging trajectories
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2 I SNL grid energy storage program overview

Develop advanced energy storage technologies and systems, in collaboration with industry, academia, and government institutions, that
will increase the reliability, performance, and competitiveness of electricity generation and transmission in the electric grid and in
standalone systems.

Materials Safety & Power
Reliability Electronics
Advancing battery chemistries Testing, Analysis, Reduce installed cost and
through development and Standards, Protocols footprint
commercialization Improve control capability
Increase reliability
Regulatory Demonstration
Outreach Projects

Support, Analysis,

Collaborating with States , v
Implementation, Monitoring

and other National Labs

State Policy Analysis



; ‘ Energy storage safety and reliability focus areas
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Materials R&D

*  Thermal stability and impact of aging on battery
components

* Vent gas composition

Cell and Module Testing

= High precision cell cycling and degradation

* Electrical, thermal, mechanical abuse testing

* Failure propagation testing on batteries/systems

Simulations and Modeling

*  Multi-scale models for understanding thermal runaway

*+ Fire Dynamic Simulations to predict the size, scope, and
consequences of battery fires

System Level Design and Analysis

* Hazard analysis methods to avoid fire and explosion
* Predictive maintenance

* Power electronics control

Outreach, Codes, and Standards

= Energy storage safety working group

* |EEE battery management system standard
= EPRI data submission guidelines




System operation and safety prediction: closing the data
4% gap between cells and systems

The testing conditions are informed by environmental and system-level effects we have observed in field applications.

Open-source repository Cell and system data in one dashboard
BLC to consolidate cell and system data ety ot oy ESCAL 24V sytem e

(Dedicated SNL labs in parentheses) — s v 15051

We built labs and software to collect and consolidate data from all levels of battery operation for rapid technology iteration. I
i

Current (A)

Field Application Data (ESTP, Demonstrations, NITE?2)
—» Collect normal & abuse data and environmental effects (T,
humidity) from field systems (EPRI/SNL Report3)

DC-Rack Data with Power Electronics (ESCAL, APEX)
—> Determine the impact of DC power quality (pulses and
harmonics) on cell behavior

Voltage (V)

Time

Module-Level Data (BEST, BATLab)
—»  Assess the effect of cell-to-cell variation on safety and _ . - _ _
performance .\ . ] ] & 6 o 6\6 ‘ i :- Y 3 T e .‘ e

Lab Cells Data (BTF, BATLab)
_» Design industry-relevant performance & abuse testing and
quality assurance checks using data from all layers

APEX

(1) V. De Angelis, Y. Preger, B. Chalamala “Battery Lifecycle Framework: A Flexible Repository and Visualization Tool for Battery Data from Materials Development to Field Implementation” ECSarXiv, 2021
(2) B. Chalamala, D. Rosewater, Y. Preger, J. Lamb, R. Wittman, A. Kashiwakura “Ensuring Safety of Grid-scale Energy Storage Systems” IEEE Electrification, Vol. 9, No. 4, Dec. 2021
(3) D. Rosewater, Y. Preger, J. Mueller, S. Atcitty, S. Willard, M. Smith, J. Thompson, D. Long, “Electrical Energy Storage Data Submission Guidelines, v 2” Electric Power Research Institute & SNL, 2021. 3002022119.

i
ESCAL Prosperity (PNM) |



System operation and safety prediction: closing the data
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The testing conditions are informed by environmental and system-level effects we have observed in field applications.
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(1) V. De Angelis, Y. Preger, B. Chalamala “Battery Lifecycle Framework: A Flexible Repository and Visualization Tool for Battery Data from Materials Development to Field Implementation” ECSarXiv, 2021
(2) B. Chalamala, D. Rosewater, Y. Preger, J. Lamb, R. Wittman, A. Kashiwakura “Ensuring Safety of Grid-scale Energy Storage Systems” IEEE Electrification, Vol. 9, No. 4, Dec. 2021
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6 ‘ What is the remaining useful life (RUL) of a battery?

*  80% capacity is a common reference point in manufacturer spec sheets
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* 80% capacity retention is a holdover from early EV days

o USABC 1996: “EV batteries should be removed from automotive use when current battery capacity is 80% of
initial battery capacity and current battery power capability is 80% of initial battery power capability”

o At this time, EVs were primarily powered by Ni-based batteries

* Understanding RUL is critical for first life valuation and a deal-breaker for second life
applications



7 I Remaining useful life depends on the aging trajectory
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What causes superlinear degradation (aka knee, rollover failure, nonlinear aging, two phase degradation, etc.)
and how do you avoid it?



s I Remaining useful life depends on the aging trajectory

Retention (%)

95 -

{o)
o
]

oo
a
]

80 -

] —— Sublinear degradation

— Linear degradation

1 — Superlinear degradation

0

] T T T T I L L} T L] l T
100 200 300
Cycle number

L l L]
400

LI 'I T T T
500

How do you avoid this?




Multi-institution team reviewing empirical causes and
mechanisms of knee points
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w0 | Project approach

1) Review all literature on knees: every experimental example + modeling explanation

2) Identify classes of degradation pathways

3) Determine how these pathways lend themselves to predictive capability



“Perturbation” of Any Variable Can Induce Knees — Cell
11 Design

Variable Knee Acceleration Reference
Electrode loading . N .
Higher positive electrode loading Ma et al. 2019
Positive electrode coating -
Uncoated positive electrode Ma et al. 2019
Graphite type .
Natural graphite Ma et al. 2019
FEC consumed Petibon et al. 2016
Additive package and
concentration FEC consumed Jung et al. 2016
Higher methyl acetate concentration Ma et al. 2019
Higher salt concentration Aiken et al. 2020
Salt concentration
Lower salt concentration Ma et al. 2019
Higher salt concentration Wang et al.




12

“Perturbation” of Any Variable Can Induce Knees — Testing

Conditions

Variable

Knee Acceleration

Reference

Charging rate

Higher charging rate

Lewerenz et al. 2017

Higher charging rate

Petzl et al. 2015

Higher charging rate

Burns et al. 2015

Higher charging rate, constant voltage

\Waldmann et al. 2015

Higher charging rate

Schuster et al. 2015

Higher charging rate

Severson et al. 2019

Higher charging rate

Schindler et al. 2018

Discharging rate

Higher charging rate Keil et al. 2019
Lower discharging rate Keil et al. 2016
Lower discharging rate Keil et al. 2019

Lower discharging rate

Atalay et al. 2020

Higher discharging rate

Omar et al. 2014

No difference at 10-45 °C

Diao et al. 2019
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“Perturbation” of Any Variable Can Induce Knees — Testing

Conditions

Variable

Knee Acceleration

Reference

Voltage limits

Higher SOC

Broussely et al. 2005

Higher voltage

Aiken et al. 2020

1) Higher DOD
2) Extreme midpoints

Ecker et al. 2014, Pfrang et al. 2018

Higher DOD

Klett et al. 2014

Higher DOD

Schuster et al. 2015

1) Higher DOD
2) Higher midpoint SOC

Ma et al. 2019

Rests

Higher DOD Petzl et al. 2015
Lower SOC Zhu et al. 2021
Longer rest time Keil et al. 2019
Longer rest time Ma et al. 2019

Shorter rest time

Epding et al. 2019




“Perturbation” of Any Variable Can

.4 1 Conditions

Induce Knees — Testing

Variable Knee Acceleration Reference
Temperature above and below 25 °C Zhang et al. 2019
Higher temperature Broussely et al. 2005
Temperature above and below 35 °C Schuster et al. 2015
Temperature . .
Higher temperature Safari et al. 2011
Temperature above and below 25 °C Waldmann et al. 2014
Lower temperature Coron et al. 2020
Temperature below 25 °C Waldmann et al. 2015
More rigid bracing or zero bracing Wunsch et al. 2019
Pressure .
Higher stack pressure or zero pressure Cannarella et al. 2014
Heterogeneous compression Bach et al. 2016
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Capacity retention (%)

Impact of cell to cell variability
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General assessment of experimental studies

Knees are complex and occur under many conditions

* Higher charging rate and wider DOD consistently accelerate knees
 Temperature/pressure have a ‘sweet spot’ outside of which knee is accelerated
e Discharge rate/rest time — it varies

* Knees can occur during cycling within manufacturer specifications

* Knees observed as high as 90% remaining capacity and as low as 40%
* No specific range of values to avoid — specific value depends on the other variables

Next step: link all experimental observations to broader classes of degradation pathways



Six pathways to knees

Lithium plating Electrode saturation Resistance growth

Additive depletion Percolation-limited connectivity Mechanical deformation



° | Defining internal state trajectories
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” " Pathway 1: Li plating

What is it: Li ions form metallic lithium on surface of
negative electrode rather than intercalating

Cause
« Rate independent. Loss of active material from
delithiated negative electrode

* Rate dependent: High transport/reaction
overpotentials cause local electrode potential to
drop below Li/Li*

« salt depletion, low temperature, high charge
rate

* mechanical compression reduces porosity

* LAM increasing local current density

« pore clogging from SEI build-up

Trajectory: snowball, hidden, threshold




® " Pathway 2: Electrode saturation |

_ What is it: electrode “saturates” and reaches -cutoff

Li* Li* Li* Li* Li* Li* Li* Li* potential before all Li transferred I

******** Cause

« Rate of active material loss for one electrode outpaces
lithium inventory loss

* Applicable to both electrodes (can be hidden for some ‘

time by oversized negative electrode)

Trajectory: threshold, hidden



“ " Pathway 3: Resistance growth

What is it: cell internal resistance increases, with
additional overpotential causing cell to reach cutoff
voltage quicker

Cause

« Growth of side reaction products (electrolyte
oxidation/reduction) on surface of electrode
particles

Trajectory: threshold



“ " Pathway 4: Additive depletion

What is it: quantity of electrolyte additive in cell
reduced over time

Cause

« Additive consumed in side reactions

 More likely in commercial cells without excess
electrolyte

Trajectory: threshold



» Pathway 5: Percolation-limited connectivity

What is it: electronic/ionic conductive network does
not span the full electrode

. . Cause

. . * Electrode dry-out results in loss of ionic contact
between active material and electrolyte, leading to

loss of active material

Trajectory: threshold



“ " Pathway 6: Mechanical deformation

What is it: physical changes at the micro- and macro-
scale due to mechanical processes

Cause

* Micro-scale
» particle cracking due to (de)intercalation stress
e delamination

* Macro-scale
* heterogeneous internal pressure distribution
from cell components (e.g. tab)
« jelly roll deformation causes loss of active
material
* uneven external pressure causes plating

Trajectory: snowball, threshold

I I Em B



® " Implications for modeling and prediction

* Goal of knee pathways evaluation: provide fundamental understanding of physics of knees to
assess limits of today’s models

* Lithium plating, electrode saturation, resistance growth

* dependent on bulk internal states (LLI, LAM, etc.), so they are straightforward to detect and model via
electrochemistry

e Additive depletion, percolation-limited connectivity, microscale mechanical deformation

* involve subtle effects that are challenging to measure (e.g. porosity decrease, remaining additive amount)



Value of resistance measurements for knee prediction in the
field
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27 : : C
Role of data-driven methods in knee prediction
* Methods are well-suited for knee pathways with bulk electrochemical signals

* Models trained on cycling data are poorly suited for knee pathways with signals that are
challenging to measure via electrochemistry

e Datasets that span many pathways for various cell designs + use cases are needed for training
generalizable models



28 ‘ Conclusions

* Reviewed all examples of knees in the literature
* Knees are complex and occur under many cycling + design conditions
* No specific range of values to avoid — specific value depends on the other variables

* |dentified classes of degradation pathways and underlying state trajectories

* Liplating, electrode saturation, resistance growth, additive depletion, percolation-limited connectivity, mechanical
deformation

* Internal state trajectories (snowball, hidden, threshold) each pose unique challenges for monitoring

* Determined how pathways lend themselves to predictive capability
* Need to consider which pathways have bulk electrochemical signals
* Resistance is a useful value for field predictions
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