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Simulations of Longitudinal Beam Dynamics

of Space-Charge Dominated Beams for Heavy lon Fusion

Abstract

The longitudinal instability has potentially disastrous effects on the ion beams
used for heavy ion driven inertial confinement fusion. This instability is a “resistive
wall” instability with the impedance coming from the induction modules in the accel-
erator used as a driver. This instability can greatly amplify perturbations launched
from the beam head and can prevent focusing of the beam onto the small spot nec-
essary for fusion.

This instability has been studied using the WARPrz particle-in-cell code. WARPrz
is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model
for the impedance of the induction modules.

Simulations with resistances similar to that expected in a driver show moderate
amounts of growth from the instability as a perturbation travels from beam head
to tail as predicted by cold beam fluid theory. The perturbation reflects off the
beam tail and decays as it travels toward the beam head. Nonlinear effects cause the
perturbation to steepen during reflection.

Including the capacitive component of the module impedance has a partially sta-
bilizing effect on the longitudinal instability. This reduction in the growth rate is
seen in both cold beam fluid theory and in simulations with WARPrz.

Instability growth rates for warm beams measured from WARPrz are lower than

cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this




decrease in the growth rate. A mechanism for coupling the transverse thermal spread
to decay of the longitudinal waves is presented. '

The intermittency of the axial confining fields (“ear” fields) is expected to be a
major source of beam perturbations. Simulations with intermittently-applied “ear”
fields have shown that, if applied carefully, these fields do not generate large pertur-
bations. Errors in these fields can, however, excite the longitudinal instability.

The longitudinal instability is no longer a threat to the heavy ion fusion program.
The simulations in this thesis have shown that the growth rate for this instability
will not be as large as earlier calculations predicted. These studies have shown that
including the capacitive component of the module impedance, which was neglected
in early calculations, greatly reduces the growth rate of the instability. In addition, a
transverse thermal spread on the beam can reduce, and in some cases stabilize, this

instability.




Chapter 1

Introduction

1.1 Heavy Ion Fusion

Heavy ion beam driven inertial fusion is an attractive candidate for inertial fusion
energy production because of the high efficiency of the accelerators used as drivers[11].
The US Heavy lon Fusion program is based on a linear induction accelerator, with
cost savings through a recirculating induction accelerator also being pursued|2, 29].

Figure (1.1) shows a cartoon of a heavy ion fusion (HIF) driver. Ions of mass
about 200 amu are injected at 10 MeV with a current of 15 Amps. The ions then
go into an induction accelerator with electrostatic focusing. An induction accelerator
can be thought of as a 1-turn transformer with the beam acting as the secondary.
The beam has a large current density and so the space charge forces are large (space-
charge-dominated) and focusing is important.

The beam is focused with an alternating gradient (AG) focusing structure. In
AG focusing, quadrupole fields are used for focusing. One set of quadrupoles focus
the beam in the z-direction and defocus the beam in the y-direction. On the next
element, the focusing/defocusing is reversed. There is a net focusing because the field
is larger close to the quadrupole focusing elements. Thus, the beam is focused more

than defocused because the beam is farther from the elements when it is defocused.

In the low energy end of the accelerator, electrostatic AG focusing can be used. In
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10 MeV 100 MeV 10 GeV 10 GeV
15 A 75 A 3 ka 30 ka
20 microsec 4 microsec 100 nsec 10 nsec
I 64 Beams 16 Beams
50 m
. Electric } | Magmetic 7
Injector Focus :>_ Focus
e 400 M I 4000 M me—

Figure 1.1: A cartoon of a heavy ion fusion driver showing the particle energy, beam
current, and pulse duration at several locations along the device.

the higher energy sections, magnetic AG focusing is needed because the force on the
beam due to magnetic fields increases along with the beam speed via the Lorentz force
law, Finagnetic = ¢v X B whereas the force due to the electric field remains constant.
As the beam speed increases the time spent in the region with the focusing fields
decreases and thus the particle velocities are less affected when electric focusing is
applied. For magnetic focusing, the time spend in the focusing region decreases, but
the force increases as the beam speed increases. Thus, we must use magnetic focusing
in the high energy parts of the accelerator.

In the accelerator section, the current is carried in 16-64 beams. The current
is divided up and the beams shielded from one another so that the space charge
forces are not so large. The MBE-4 experiment at Lawrence Berkeley Laboratory

demonstrated the ability to accelerate, focus, and handle the current spread over four

beams[1, 9].




CHAPTER 1.- INTRODUCTION 5

Each beam is accelerated from 10 MeV to 10 GeV. A longitudinal velocity tilt
is added to the beam so the beam tail is moving faster than the beam head. This
makes the beam compress as it drifts. The beam is compressed by a factor of 10 in
length giving it a pulse duration of 10 nsec and current of 30 kA. As the beams drift
compress, they are curved around and focused with magnetic lenses onto a two sided
ICF target.

Most of the physics issues for HIF revolve around manipulating the ion beam while
keeping the beam’s emittance (proportional to the beam’s phase space volume) small.
The emittance must remain small so that the necessary power density is delivered to
the target. In the longitudinal direction, chromatic aberration in the ﬁmgnetic lens
system causes particles with different longitudinal velocities to be focused at different

locations and thus keeping the longitudinal momentum spread small is also important.

1.2 The Longitudinal Wall Impedance Instability

The longitudinal wall impedance instability is a “resistive wall” instability. The
physics is the same as in resistive wall amplifiers[3], which have been around for 40
years. In an HIF driver, the impedance which drives the instability is the impedance
of induction accelerating modules. The instability is set up because a perturbation in
the beam current produces a corresponding perturbation in the return current which
flows through the wall. Ohm’s law tells us that the return current flowing through
a wall resistance (or more generally, an impedance) requires an electric field. This
electric field acting back on the beam can enhance the perturbation in the beam
current and thus an unstable situation develops. One dimensional cold beam, fluid
theory (presented in section 1.3) predicts two waves—a wave which travels forward in
the beam frame that decays exponentially in time and a wave which travels backward
in the beam frame that grows exponentially in time.

This instabilify has potentially disastrous effects on beams used in a heavy ion

fusion driver because it can cause small perturbations launched from the beam head
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(from errors in the accelerating fields for example) to be amplified as they travel the
length of the beam. These large perturbations can cause the spread in momentum to
become too large. It is generally believed that a momentum spread of Ap/p < 1%
is acceptable at the focusing system. If the beam is drift compressed by a factor of
10, we are allowed a maximum momentum spread of Ap/p = 0.1% at the end of
the accelerator. Early calculations predicted tens of e-foldings of growth due to the
instability[20] which caused much concern for the the heavy ion fusion program.

Due to the lohg growth times, the longitudinal instability will not be seen in near-
~ term HIF éxperiments which are small in size. This makes a complete study of this
instability important for the HIF program.

An experimental effort to study longitudinal beam dynamics in space charge dom-
inated electron beams is underway at the University of Maryland under the direc-
tion of Martin Reiser[27, 24, 7, 28, 25]. These experiments are being modeled with
WARPrz[13]. The UM group plans to study the longitudinal instability by passing
the electron beam through a tube with a high resistance coating. The large resis-
tance, small mass, and scaling of other parameters increases the growth rate by two
orders of magnitude over an HIF driver[22]. Even so, the resistive tube used in this
experiment is only 1 meter long and so theory predicts increases in wave amplitude
of only about 25% in this experiment.

To do a complete study of this instability, we have written the WARPrz particle-
in-cell code. This code is part of the WARP family of codes written specifically to
model HIF driver physics quickly and efficiently. The code will be described fully in
chapter 2. With this code, we have simulated this instability over distances of several
kilometers, have seen wave reflection off the beam bunch ends, and have seen the
partially stabilizing effect of the capacitive component of the module impedance. We
have studied the effects of beam temperature on this instability. In addition, we have
studied intermittently applied axial confining fields as a source of perturbations for
this instability.

These studies have shown that the longitudinal instability is not as serious a
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problem for HIF as was once feared. The simulations in this thesis include physics
neglected in the early calculations which reduced the growth rate of the instability
considerably. This reduction in the growth rate, coupled with an understanding
of perturbations generated on the beam, has reduced the threat to HIF from the

longitudinal instability.

1.3 1-d Model for the Longitudinal Instability

Most of the analytical work done on this instability has used a one dimensional,
cold fluid model in the long wavelength limit. This instability is worst when the
wavelength is long compared with the beam radius. Although the purpose of this
thesis is to explore two dimensional and thermal effects, the 1-d, cold fluid theory is

an appropriate starting point.

1.3.1 Long Wavelength Approximation to the Cold Fluid

Equations -

The longitudinal dynamics of the ion beam can be approximately described using a
1-d cold fluid model. The description is done in terms of the fluid velocity, u and the
line charge density, A. The line charge density, which has units of charge per length,

is defined to be
2r pa
Az) = / / p(r,0,2)r dr d6 (1.1)
o Jo
where p is the charge density and a is the beam radius. If we assume an incompressible

fluid, then the line charge density can be written as
Mz) = pra*(2) (1.2)

We write a continuity equation for the line charge density

8x  90w)
ot e O
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The conservation of momentum equation is written in the usual way:

ou ou Ze
5 T = | (14)

where M is the ion mass and Ze is the charge.

Here E, includes the beam’s self field plus any external fields. We need to describe
the z component of the self electric field in terms of the line charge density and the
‘ﬂuid velocity. A physically motivated derivation of self electric field can be obtained
by doing the following. Imagine a beam of charge with constant radius, a, in a

conducting pipe of radius ry.y. From Gauss’ law, the radial electric field is given by

=, ifr<a,
o
E(r) =9 o

2¢or?

(1.5)

ifa<r<ryan.

We calculate an electrostatic potential from E, = —0¢/0dr and require that ¢ be
continuous at r = a and ¢ = 0 at r = ry,y (perfectly conducting wall). This results

in the electrostatic potential:

4¢o

_ £(a? — r2) + 22 In(rya/a), ifr < a,
¢(T)={ ( )+ 86 In(rwan/a) = (1.6)

2 .
fee (T wan/T), ifa<r<rya

Let the beam radius vary slowly with z. If the wavelength of this variation is long
compared with the beam radius, we can get the z component of the electric field by
using the chain rule.

0¢ _dﬁ _ _pa Ja

T Badz —6-0-5;

Ez(z) = ln(rwan/a) (17)

inside the beam. For an incompressible beam, use equation (1.2)

1 dX da

This leaves us with an expression for the z component of the self electric field in terms

of the line charge density,

_ In(ryan/a) X 09X
E. = 2mey Oz gaz

(1.9)
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where we define the “g-factor,”

g=9ﬂﬂﬂﬂ (1.10)

27‘(’60
which depends on the geometry and the system of units (MKS).
The = component of the self field is constant across the beam radius when the

density is constant. In the beam frame, the fields are electrostatic and so,

VxE=0 (1.11)
For a cylindrically symmetric system, this reduces to
o0FE. OF,
S~ 5 =0 (1.12)
The radial self field (equation (1.5)) is independent of z inside the beam (r < a), so
OFE,
=0 1.1
% (1.13)
and equation (1.12) then becomes
OF,
== =0 (1.14)

This tells us the z component of the self electric field is independent of ».

1.3.2 Long Wavelength, Cold Beam Dispersion Relation

We can calculate a dispersion relation for a beam in a pipe with a resistive wall using
the fluid equations (1.3), (1.4). Linearize these equations with v = @ in the beam
frame, and A = Ao + A where @& and X are small quantities. The perturbed electric
field consists of the self field from equation (1.9) plus the electric field due to the
resistive wall.

Ez=—y%%~n5h (1.15)

where 7 is the resistance per unit length. The perturbed beam current is given by
§1, = vyA + Ag@l, where v, is the beam velocity. If we let. A, & ~ eik==“8) and use

equations (1.3), (1.4), and (1.15), we find the dispersion relation in the beam frame,

k*v? N iT—)—z- (kvp + w)

w? g w?

0=1- (1.16)
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where the wave phase velocity is

2 _ Zeghg

2= (1.17)

v

If we assume v, >> w/k and nuy/gk << 1, then the dispersion relation can be

w .MU .Uy
— —— 1] — 71— 1.1
P :f:”l 2 Z +( ) Z (1.18)

The real part of this equation gives a wave traveling with the phase velocity, wreal/ k =

rewritten as

+v,. The forward traveling wave (wrea = +kv,) damps with decay rate w; =
—nvyv,/2g, while the backward traveling wave (wpea = —kv,) grows with growth
rate w; = +nuvp/2g. For long wavelength perturbations, we expect to see forward

traveling waves damp and backward traveling waves grow independent of wavelength.

1.3.3 Methods for Controlling the Longitudinal Instability

The derivation presented in the previous section is a worst case for this instability.
Since forward traveling waves damp, it is possible for a backward traveling wave
to reflect off the beam end, become a forward traveling wave, and decay. Others
have found that reflections off the beam end can limit the amount of growth if the
perturbation undergoes a small number (~ 1) e-folding in the time it takes to travel
from the beam head to tail[16, 5]. We see a similar effect in chapter 4 when we vary
the size of the wall resistance.
Longitudinal temperature can also stabilize this mode. The limit on Ap/p < .1%
at the end of the accelerator puts a restriction on the longitudinal temperature,
Ap? Ap\2 p2
T, = 51% = (TP) 2_111\7 (1.19)
At the end of the accelerator, the maximum longitudinal temperature is given when
Ap/p = .001 and the beam energy p*/2M = 10 GeV This gives a maximum longitu-

dinal temperature of

T, = 107°10"%V = 10 keV (1.20)
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In chapter 5, we will follow the derivation due to Reiser which shows that given a
maximum longitudinal temperature of T, = 10 keV, longitudinal temperature has
little or no effect on the growth rate. ,

Because the beams for HIF travel at a small fraction of the speed of light (v, <
¢/3), it is possible to use “feed-forward” stabilization. With this technique, per-
turbations on the beam are detected at one point along the accelerator, a signal is
sent ahead, and a correcting field i1s applied downstream. Hahn has developed an
algorithm for “feed-forward” stabilization and has suppressed growth from the longi-

tudinal instability[14].

1.4 Organization of the Thesis

This thesis discusses several aspects of longitudinal dynamics of beams needed for
HIF.

Chapter 2 discusses the WARPrz code which was used to simulate the physics in
the rest of the thesis.

Chapter 3 describes the model for the module impedance used in WARPrz. A
physical equivalent of this model is discussed. The dispersion relation for the longitu-
dinal instability including both resistive and capacitive components of the impedance
is derived from a 2-d cold beam fluid theory. Tests of the model in WARPrz when
WARPrz is run with a cold beam are compared with the cold beam fluid theory.

Chapter 4 describes simulations of the longitudinal instability in finite length,
warm beams. Simulations are done with and without a capacitive component of the
module impedance. In each case, a wave is launched from the beam head and grows
as it travels the length of the beam. Reflection of the perturbation off the beam tail
and non-linear effects are seen. Growth rates are measured to be smaller than cold
beam theory predicts due to finite temperature.

Chapter 5 discusses the effect of temperature on the growth rate of the longitudinal

instability. Longitudinal temperature is shown to have little effect on the growth rate
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in the long wavelength limit. A mechanism for coupling perpendicular temperature
and wave damping is proposed. The effect of temperature on the growth rate is
explored with WARPrz.

Chapter 6 describes simulations including intermittently-applied axial confining
fields. These fields can excite perturbations on the beam that are amplified by the
longitudinal instability. The effect of errors in the confining fields is shown.

Chapter 7 contains conclusions and future directions.

The main purpose of this thesis was to study the effects of the longitudinal in-
stability on a heavy ion fusion driver. If early predictions of 10’s of e-foldings of
growth were correct, this instability could have ended the heavy ion fusion program.
Instead, this instability is no longer considered a major problem for HIF, in part due
to the simulations presented here. These simulations show that the capacitive com-
ponent of the module impedance and transverse thermal spread in the beam reduce
the growth rate considerably from the value predicted by the early calculations. In
addition, simulations of the intermittently applied axial confining fields (thought to
be a major source of “seed” perturbations for the instability) show that these fields
can be applied without creating large beam perturbations. The major conclusion of
this thesis is that the longitudinal instability is no longer a “show stopper” for the

heavy ion fusion program.
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Chapter 2

The WARPrz Code

2.1 The WARPrz Code

WARP is a family of codes begun by Alex Friedman and David Grote specifically for
studying heavy ion fusion driver issues. The code currently consists of five physics
packages—-WARP3d, a 3 dimensional (6 phase space variables) Cartesian coordinate
particle in cell code; WA.-RPrz, a 2 1/2 dimensional, cylindrically symmetric particle
in cell code; F3d, the 3-d, electrostatic field solver; Frz, the RZ, electrostatic field
solver; and Envelope, an envelope equation solver. The code is built upon the BASIS
code development system which allows us to use dynamically allocated arrays and
an interpreter from which we can make changes in variables, call subroutines, and
make plots at any time during the simulation. Thanks to work done by David Grote,
we are able to use the NCAR graphics package as well as the GRAFLIB graphics
package. The code has run on a CRAY YMP (at Livermore’s Secure Computing
Facility), CRAY 2’s and the C-90 (at NERSC), IBM RS6000’s (at Livermore’s Open
Computing Facility) and on SUN workstations.

WARPrz is a 2 1/2 dimensional particle in cell code. The particles exist in a
cylindrical geometry and it is assumed that there are no variations in the azimuthal

(theta) direction. The particles have two coordinate positions (r and z) and three

components of velocity (v,, vs and v.). Since the particles are all moving with velocity
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Vpeam down the z axis, we use a mesh moving with the beam for the field solves. In
this frame, the magnetic field is down from the electric field by a factor of (u/c)?
where u is the axial particle velocity in the beam frame. In the beam frame, particles
move very slowly compared with the speed of light, and so self fields are electrostatic
in that frame. Due to the modular structure of a BASIS code, we could replace the
electrostatic fields by electromagnetic fields by adding another field solve package if
that were necessary.

Since our beam contains ions without any electrons, we must model the external
confinement fields in order to keep the beam from breaking up. In experiments, the
radial confinement is done through an alternating gradient focusing system. This AG
focusing is inherently three dimensional and so we must mock it up in the axisymmet-
ric code. This is done by simply adding an external, radial electric field that is linear
in r. This field is calculated at the beginning of the run and then used throughout the
simulation. Three options are ava.iléble for specifying this external field-the slope of
the radial field can be specified, the radial field can be gotten from the charge density
and Gauss’ law, or a linear least squares fit can be done to the radial self-field and
then a field with the opposite sign is applied.

The confinement in the axial direction is done through “ears” fields. The ears
are external axial electric fields which are applied at the ends of the beam to keep it
confined (hence the name). In the experiment, these fields will be applied at certain
laboratory positions as the beam travels down the accelerator (e.g. every 100 meters).
This means that the beam is continually expanding and contracting as it passes the
ears fields. WARPrz generally uses continuously applied ear fields. These fields are
applied at every time step and keep the beam from expanding or contracting. These
ear fields are composed of two pieces: an electric field to compensate for the space
charge effects and a smaller electric field to compensate for the pressure[21]. Since
there is little change in the electric field due to space charge at different radii, this
part of the ears fields is gotten from the initial electric field on the beam axis:

We have also done some simulations of intermittently applied ears (which would
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be closer to the experimental set up). These simulations will be discussed in detail

in chapter 6.

2.2 Particle-in-Cell Method

Particle-in-cell (PIC) codes are heavily used in both plasma physics and accelerator
physics. For an electrostatic PIC code, the computational cycle is as follows. Particle
velocities are updated using the Lorentz force. Once the new velocity is found, the
particle position is updated. The charge density is calculated on a mesh by assigning a
fraction each particle’s charge to nearby gridpoints. Once the charge density has been
calculated, the electrostatic potential is found on the grid from the Poisson equation
and the components of the electric fields are calculated at each gridpoint. The fields
are then interpolated to the position of each particle and the cycle continues.

For an electromagnetic code, both the charge density and the current density are
gathered from the particles on the mesh. Maxwell’s equations (or an approximation
to Maxwell’s equations, such as the Darwin model) are then solved instead of the
simple Poisson equation.

WARPrz is an electrostatic PIC code with the addition of the resistive wall bound-
ary condition used in modeling the longitudinal instability, The scheme is based heav-

ily on the one presented by Birdsall and Langdon[4].

2.2.1 Particle Advance

Velocity Advance

The particles are moved by integrating the equations of motion

dv

m—=q(E+v xB) (2.1)

ax _ (2.2)

i
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Since we want a centered difference scheme with x known at integer time steps, we
need to calculate v at half time steps. We write a centered difference approximation
to equation (2.1)
v71.4}-1/2 _ V-n—1/2 vn+1/2 Vn—]/2
=4 (E“ + +
At m 2

The velocities are updated using the well-known Boris method which is described

x B“) (2.3)

in Birdsall and Langdon[4] sections 4-3 and 4-4. The Boris scheme separates the elec-
tric and magnetic forces completely. The scheme breaks down into three steps: add
half the electric impulse to the velocity, apply a rotation which applies the magnetic
force, then add the other half of the electric impulse. _

Having the particle velocities at half time steps gives a scheme which is second
order accurate in At, but it is inconvenient for doing diagnostics since the fields and
positions are known at integer time steps. To circumvent this problem, WARPrz has
three types of particle velocity advance. First is the “fullv” advance which advance
the velocities from time n—1/2 to time n+1/2 as described above. This is the advance
done for most of the run. Just before diagnostics are done a “synchv” (synchronize
velocity) step is done to synchronize the velocity and position. In a sychronizing step,
we apply half the electric field contribution to the velocity advance and then rotate
half way. At the beginning of the run and just after diagnostics have been done, we
need to advance the velocity by one half a step and so a “halfv” step is done by doing

half the rotation followed by half the electric field contribution.

Position Advance

In cylindrical coordinates, the origin can be a problem. To avoid this, we do the
particle advance in Cartesian coordinates as is done in Birdsall and Langdon[4] section
14-12. If we have a particle at position 7y, z; at time n and its velocities v, , vg,,

vz, at time n + 1/2, then we update the positions by
Ty =11 + v, Al (2.4)

Yy = ve At (2.5)
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then at time n + 1 we have r,
re = /(22)* + (92)? (2.6)

We also have to rotate the coordinate system because the velocities v, and vy all

refered to the coordinate system used before we updated the particle positions.

Uy cosa  sina OR
= ] (2.7)
vg/ —sina  cosa vg/,

where sina = y/r; and cosa = z}/r;. If a particle stops at 7, = 0, the code sets
cosa = 1 and sina = 0 and all the particle’s momentum is in the radial direction.

This rotation is possible because the system is azimuthally symmetric.

2.2.2 Interpolating the Particles to the Mesh

j+1,k j+1,k+1

Ar

ik FAY - j,k+1

Figure 2.1: Area weighting is used to determine the fraction of each particle’s charge
that goes to the four surrounding gridpoints
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An area weighting scheme is used to interpolate the charge of each particle to the
four surrounding gridpoints. Figure (2.1) shows the areas used in the interpolation
scheme. The contribution of the particle shown in figure (2.1) to gridpoint (7, k) is

calculated by
Qjx = quA/(ArAz) (2.8)

where w is the number of real particles that each simulation particle represents. the

charge density is calculated from the charge by
pik = Qik/Vik (2.9)

For j # 0, the volume is
Vig = 'WAZ(7.?+1/2 - "'12'-1/2) (2.10)

where 7,1/, is the radius half way between the gridpoints, r;41/2 = %(7'j+1 +r;). For

a constant grid spacing, Ar, this simplifies to
Vik = 2nr;ArAz (2.11)
For 7 = 0, the volume is
Vo = wAzry), = Z—(Ar)zAz (2.12)

The interpolation of the charge to the grid is the most time consuming parts of
the WARPrz code because this step does not vectorize well. We can vectorize the
deposition of one particle’s charge to the surrounding gridpoints. In WARPrz, this
results in a vector length of only 4. In the 3-d code, this gives a vector length of 8,
since each particle has 8 nearest neighbors.

Horowitz[17] used a technique for vectorizing the particle deposition that involved
sorting the particles into groups so that no two particles in a group contributed to
the same gridpoint. The cost of such a technique is the cost of sorting the particles.
In Horowitz’ code, which was a 3-d electromagnetic PIC code, the cost of sorting the
particles was smaller than the gain he got from the vectorized deposition and so it

was worth it to sort the particles.
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We tried a sorting similar to that of Horowitz with WARPrz. The time spent
sorting was about the same as Horowitz found. However, the gain from the vectorized
deposition was about the same as the sorting time. So the total time to deposit the
charge, including the sort, was about the same as it was when we vectorized over
vector length 4. This is a difference between an electrostatic and an electromagnetic
PIC code. In the electrostatic code, we only deposit the charge density while in
an electromagnetic code, we also deposit three components of current density. In the
electromagnetic code, one sort is offset by vectorizing the deposition of four quantities
(charge density and three current density co-mponents). In the electrostatic code, for
the price of one sort, we only get to vectorize the deposition of one quantity. Because
we didn’t get any gain in speed by sorting the particles, we went back to the original

deposition and vectorized over a length of 4 for each particle.

2.2.3 Field Solutions

The field solutions are done in a window moving with the beam. At present, the
beams in WARPrz do not accelerate, so this window moves with a constant beam
velocity, Ubeam- In this moving frame, the forces due to self magnetic fields are very
small and we can ignore them and use electrostatic fields. We can easily see that the
magnetic forces are small by writing down the electric and magnetic forces from a
cylinder of charge moving down the 2 axis. From Gauss’ law, the radial electric field

at a point inside the cylinder is

]
E.(r) = -2"6—0 (2.13)

The force on a particle due to the electric field is then

Felectric -

E,f (2.14)

3=

where p is the charge density and 7 is a unit riormal in the radial direction. From

Ampere’s law, the magnetic field is

_ ﬁg_lenclosed .
B = S (2.15)
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The current enclosed in the loop can be written in terms of the charge density and
the axial velocity as

Ienclosed = PWTzUz . (2.16)

So that the magnetic field can be written as
pr
By = povz? = po€ov, E, (2.17)

The force due to the magnetic field is then,

1)2

qvi .
Fmasnetic = E_""Err = "C%Felectric (2'18)

2

This tells us that the force on the particles due to the magnetic field is down by (v/c)?
from the force due to the electric fields. In the beam frame (v/c) is much, much less
than 1% so the fields are electrostatic. ’

The scheme used to solve Poisson’s equation in WARPrz is a slight variation on
the method described in section 14-10 of Birdsall and Langdon[4]. In this method,
we derive our difference scheme using the Gauss’ law form of field equation because
it avoids problems at the r=0 origin. F igure 2.2 shows the grid used in this method.
Gauss’ law is applied to the volume shown by the dashed line in the figure. The
volume at the origin is done as a special case. The result is given in Birdsall and

Langdon, section 14-10, equations (9) and (10)

%;E = 2tA2(rip12Er o172k = Tim172Erjo1p2k) +
T(riease = Ti-172)(Erjpersz — Ezjr-ry2) (2.19)
for j # 0 and
—Q-e%'ﬁ = 27r1~1/2AzE'r,1/2,k: + 7rrf/2(Ez,o,k+1/2 — E.pk-1/2) (2.20)

where 711/ is the radius half way between the gridpoints, 1172 = 1/2(rj41 + 75).
Define the charge density as p;x = Q;x/Vix where the volume is V;;, = n(Ar?);Az

with (Ar?); =72,y —72 ;) for j > 0 and (Ar?)o = 1}/, for j = 0. The grid spacing,
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Figure 2.2: The grid used for the field solution. The dashed line indicates the volume
used to calculate the density from the charge.
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Ar, is a constant. Use the finite difference approximation for the electric field from

the electrostatic potential,

i1k — ¢',
E‘r,j+l/2,k = —M_EA_T—Z_I:. (2.21)
E.jkyz = ———¢j’k+lA: Bik (2.22)

We get a 5-point difference representation of Poisson’s equation for 7 > 0

_Pik o Piwgr ooy P
€o - (A7.2)jA7.(¢J+1J‘ ¢.7JC) (Ar-z)jAr(éj,k ¢]—1,k) +
1
A2 (Dik+1 — 205k + Dik-1) (2.23)
and for 7 =0

Po.k 2r . 1
_ :0 =1 Ar;)/ozN(qu,k ~ ¢3,k) = 25 (b0 - 260 + Pok-1) (2.24)

where

(A7'2).1‘ = 7'34-1/2 - 7'12‘-1/2 (2.25)

and

(Ar*)o =1, (2.26)

For this field solution scheme it is only necessary to calculate the charge at each
gridpoint-not the charge density. By introducing the charge density, we are dividing
by the volume to get the density, then multiplying by the same volume in equation
(2.23). We have chosen to calculate the charge density in WARPrz to keep the
parallelism between the r-z model and the 3d model used in WARP3d which uses the
charge density.

This is the scheme given in Birdsall and Langdon section 14-10. We slightly
modify this scheme by using a fast Fourier transform in the z direction. This is done
by recognizing the last term in equation (2.23 as the finite difference approximation

to the 8%¢/02% term in Poisson’s equation. We can then replace this term by —k%¢
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and replace ¢ and p by their Fourier transforms. This gives as our final scheme: for

>0,
Pik _ 2ri4172 7 iz o 3 kg 2.97
T T rar s T ) T i e = o) m e (20
and for j =0
3 27y ~ ~ 27
— Po.k = 1/2 ((ﬁj.{.],k - ¢j,k) - k§¢0,k (2'28)

€g (A7‘2)0A7'
where 5 and ¢ are the transformed quantities.

The general method used in the field solve routine is then:

1. Use an FFT routine to transform the charge density which was gotten from the

accumulated particle data.

2. For each value of , solve the tri-diagonal system given by equation (2.27) using

the boundary conditions described below to get the electrostatic potential, .

3. Use the inverse FFT routine to back transform this potential.

Boundary Conditions for the Field Solve

We have three boundary conditions available in WARPrz: a perfectly conducting wall,
a wall with a resistance per unit length, and a wall with resistance and capacitance
in parallel.

The perfectly conducting boundary is done by simply setting the electrostatic
potential to zero along the wall (r = r,.n)

The wall with resistance or resistance and capacitance is used to study the longi-

tudinal instability and will be discussed in chapter 3.

2.2.4 Interpolating the Field to the Particles

Since WARPrz does not use excessive amounts of memory, we calculate the two

components of the electric field from the potential and store them. The electric field
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components are

¢j+] k= ¢j—1 k
rik = — . 2 2.29
E 1Jyk 2Ar ( )
ikt — Pk o
Ezik = Sy (2.30)

The fields are then interpolated to the particle positions using the same area
weighting used in the charge deposition and shown in figure (2.1). The fields at a

particle ¢p are then

A A2 A3 A4 B
E. ., = mEr,j,k + —AT&;ET,,'HJ:H + MET,J'-H & +VmEr,j,k+l (2.31)
A1 A2 A3 A4

E,ophp=——F, ;t +——FE,; ——F,; —F,; 2.32
T ArAz + ArAz  #tHAH + ArAz »tH + ArAz w0kt (2.32)

Unlike the charge deposition, the interpolation of the fields to the particles does
vectorize. In WARPrz, we take the particles in groups of 256 and vectorize over that

length.

2.3 Diagnostics

The major diagnostics used in WARPrz are described below. Many of the quantities
computed directly during the PIC cycle are plotted at times specified by .the user.
Some of the most useful quantities include the electrostatic potential on the » = 0
axis as a function of z, and the particle (z,v,) and (r, z) phase spaces. Since WARPrz
is built with BASIS, we can calculate any additional quantities and plot any quantity

of interest through the interpreter.

2.3.1 Line Charge Density

The line charge density is

27 ra
A(z) =/0 /0 p(r, z)rdrdd (2.33)

In the code, 1t is calculated by

nr

Ap =27 2 pikTiAY (2.34)

—0
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2.3.2 Beam Current

The z component of the current is calculated using a one dimensional weighting

scheme so that the contribution from the ipth particle to the current is

I, = Z]:l;wq'uz,g,, (2.35)
L2 [
Iy = A WUz (2.36)

where L, is the distance between the particle and the axial grid point z44; and Ly is

the distance between the particle and the axial gridpoint z.

2.3.3 Particle Moments

Many moments of the particle distribution are taken. Among the most useful for the

longitudinal work in WARPrz are the average v,

1 & :
b= 3 v (2.37)

ip=0

and the RMS v, and v, -
(2.38)

with v2

(2.39)

and v, gms calculated in the same way using v, instead of v,.
These moments can be calculated over various subsets of particles. They are
calculated as a function of z, with particles contributing to the moments at near-

- est gridpoints. The user can also specify slices or windows in z and moments are

calculated based on the particles inside these windows.
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Chapter 3

Model for the Module Impedance

In order to study the longitudinal instability with WARPrz, we need a model for the
Iﬁodule impedance in the code. We have chosen to model the modules with a contin-
uous gap approximation, as a resistive wall. In this approximation, the impedance of
the gap is applied as an impedance per unit length. Thus a module which has gap
impedance of 100 Ohms and total length (gap length plus nongap length) of 1 meter
would be represented as a wall with a continuous 100 Ohm/meter resistance. This
model contains all the relevant physics for the low frequency longitudinal instability
and compares nicely with analytic work. It does not include gap transit time effects

or module resonances.

3.1 Model for the Resistive Wall in WARPrz

We formulate our model first for a purely resistive wall since this is the simpler case.
We generalize this model to include capacitance in section 3.3.

We could includé€ the resistive wall component of the electric field using the beam
current as we did in the fluid model (E = —n[). In a particle-in-cell code, however,
the current is calculated by summing over the particles. Unless there are a very large
number of particles in each cell, the current tends to be a noisy quantity. Instead, we

want to calculate the resistive wall contribution to the electric field using the Poisson
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solve at the boundary. There is some smoothing of high frequencies which takes place
because a finite number of Fourier modes. By using the electrostatic potential at
the boundary to calculate the resistive wall part of the electric field we will get a
smoother, less noisy, more physical result.

The model is derived by assuming a continuity equation for the wall surface charge,

o, which has units of charge/area.

where K, is the surface current. We also have Ohm’s law, 27bm K, = E, where 7 is

the resistance per unit length. Substituting this into the continuity equation yields

do J/ E.
% = 5:(aet) (32)
Integrating this equation over the surface and assuming cylindrical symmetry gives
0 [ odz = = [Bufe) — Eu(0)] (33)
9t oy T Tompy AR T B '

where we have taken the limits on 2 to be z; to 2z,. Define the electrostatic potential,

é, by
_9¢
Oz

Consider the case of z; = 2y + Az where Az is small. Over this range, we can assume

E,(2") = (3.4)

zl

that o doesn’t change much and we can evaluate the integral over o giving us
= odz = Az— (3.5)

Defining the surface charge, °Q, as *Q = 2rbAzo, and using the results of equations
(3.4) and (3.5) in equation (3.3) gives
Q) _1 [a«s ] |
= ~]== 3.
ot L0z 2 (3.6)

Since we have assumed that Az is small, we can expand 3¢/0z in a Taylor series.

9¢

2n1+Az az

Taking the first two terms of this expansion and substituting into equation (3.6) gives

the result ,
) _2:%s o

9t 7 0822
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This equation is then solved simultaneously with Poisson’s equation in the code.
The solve is done by -Fourier transforming equation (3.7) with respect to z and

then using a finite difference approximation to the time derivative. Doing this gives,

~ ~ AtAz , -
sQn+l =5 Qn _ kl¢n+1 (38)
n
where the superscript denotes the time level and the tilde denotes the Fourier trans-
form. We can write Poisson’s equation as

. ~n+1
(V2= By = -F

(3.9)

€9

where V2 is the radial part of V2. At the wall, **! is composed of the charge
density due to the beam plus the charge density due to the surface charge, *Q"+!.
We substitute for *Q™*! in Poisson’s equation at the wall from equation (3.8) and are
left with an equation for ¢"*! in terms of the surface charge at the last time step,
sQ", and the plasma density. The radial part of the Laplacian is differenced to give
a tridiagonal system of equations for each value of k. These systems are solved via
Gaussian elimination using the boundary condition that the radial electric field is
zero for r > 7y to give <Z>"+1. We then update the surface charge using equation
(3.8).

The above derivation does not take into account the fact that we are doing the
calculation in a moving window. To take this into account, we advect the surface
charge backward in the window. Currently we use a simple advection scheme. We
require that the time step be such that we move an integer number of grid cells per
step; that is, At = NAz/vpeam Where N is an integer. If this is time step criterion is
met, then the advection of the surface charge becomes a simple remapping since our
system is assumed to be periodic. Figure (3.1) shows this remapping.

In this derivation, we have assumed that the radial electric field is zero outside

the wall. In section 3.4, we discuss how one could build such a wall.
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Value
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Figure 3.1: The advection is just a remapping of the values to the correct array index
if the mesh moves by an integer number of grid cells per timestep

3.2 Comparirig the Model to 1-d Theory

We require our model reduce to the simpler model used in the 1-d fluid model in the

long wavelength limit. Recall equation (3.2) which was used to derive the wall model

for WARPrz:
do _ _2_(E_)
ot 0z \2xby

Fourier transform this equation in space and time and note that the lab frame fre-

quency must be used
2rbon(w’ + kvy) = kE, (3.10)

where the prime on the w indicates that it is the beam frame frequency.

In the long wavelength limit the line charge density can be written as A = —2xbo.

We also note that the phase velocity in the beam frame (w'/k = v,) is small compared
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with the beam velocity (vpeam). This leaves
E, = —nu,) (3.11)
In terms of the beam current, I = v,

P-4

E, = —nl (3.12)

which is the contribution to the electric field that we used in the linear analysis in
equation (1.12). We conclude that our model reduces to the simple model used in the

linear theory in the long wavelength limit.

3.3 Adding the Capacitive Component of the Mod-
ule Impedance

The capacitive part of the accelerating module impedance can be added to the deriva-

tion of section 3.1. From elementary circuit theory,

av o 1
] —_— C‘;i"t_ (3-13)

If we use this and add a capacitor and a resistor in parallel we get an Ohm’s law:

2rbn K, = E. + nCdd—Eiz (3.14)

where b is the pipe radius, 5 is the resistance per unit length, and 5C is the “RC”

time. If we let K, E, ~ exp(—iwt) then we get an impedance,

n .
(W)= 1= ionC (3.15)
which is the impedance of a resistor and capacitor in parallel given that we have

chosen a minus sign in the exponential. We can then go through the same derivation

with this Ohm’s law that we did when we had resistance alone. This gives the result:

9o _ Li[% (‘% + e ‘%)} (3.16)

8t ~ 2xb0zln\dz | dtoz
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where o is the surface charge density and has units of charge/area. By saving ¢
at the previous time step, we can use a finite difference approximation for the time
derivatives and then solve simultaneously with the Poisson equation. We also define
the surface charge, °Q) = 2wrbAzo.

In the case of  and 7C constant, we can Fourier Transform this equation in z and
we get

SQLH-] _s QZ AZ 2(~ ~7&+}c _In x
2 S 1 g ———— o s C_L'e_v_.___’_:"»_> 3.17
At 7 z Twk + 7 At ( )

where Q and ¢ are the Fourier transforms of Q and ¢.

3.4 A Physical Picture for This Model

The model that we have used to approximate the impedance of the accelerating
modules is that of a wall with a continuum of resistors and capacitors in parallel.
When we solve Poisson’s equation with the resistive wall, we’ve also assumed that
the radial electric goes to zero for radii larger than the wall radius. Although this
system is an approximaﬁon to the impedance of the accelerating gaps, we wonder if
it is possible to build such a device. In this section, we will discuss a physical model
for our continuum approximation proposed by E. P. Lee.

The device under consideration is a cylindrical tube which is filled with metal -
irises. The tube wall has a resistance per unit length, n. The irises have an inner
radius of b and an outer radius of ry (see figures (3.2) and (3.3)). This inner radius
(b) corresponds to the wall in the WARPrz code. The space between the irises can
be filled with a dielectric material. We want to show that this configuration has an

impedance of the form,

Z(w) = 1= an - (3.18)

where 7 is the resistance and 7C is the “RC” decay time in the low frequency limit

- (w < ¢m/ro Where ¢, is the speed of light in the dielectric material).
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Figure 3.2: Side view of iris structure. Structure is cylindrically symmetric about
center axis

3.4.1 Calculating the Radial Electric Field Between Irises

We want to show that if the irises are close together, the radial electric field is shorted
out in the space between the irises. Consider the case of a conducting tube with two
metal irises as is shown in figure (3.4). We want to show that between that if the
irises are close together, the radial electric field between the irises is close to zero.

From physical intuition we guess that the radial field is zero between the irises
if the distance between irises (h) is small compared with the radial depth of the iris
(ro — b). When this is the case, physical intuition leads us to suspect that the radial
field will be shorted out.

To verify this mathematically, consider Poisson’s equation in the region between

irises.

19 9¢ 0%
rdr or 022

=0 (3.19)
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Figure 3.3: End view of iris structure

We separate variables by assuming ¢ has the form

é(r,z) = R(r)Z(z) - (3.20)

Substituting this in and using the usual tricks gives us equations for Z(z) and R(r)

8%*Z(z 4 '
Eg—) +kZ(z)=0 (3.21)

19 JR(r) 2 ooy Q o
5 e E’R(r) =0 (3.22)

where k? is the separation constant.

Equation (3.21) has a solution of sines and cosines. The boundary conditions in

z are that ¢ = 0 at z =0 and z = h. This leads us to

Z(z) = sin(kz) (3.23)

and

= — | (3.24)

33
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Figure 3.4: Side view close up of a single pair of irises and their dimensions

where n is an integer.
The radial equation (equation (3.22)) is a modified Bessel equation. This leads to

the solution

é(r, z) = Asin(kz)[Blo(kr) + Ko(kr)] (3.25)

where A and B are constants. At the boundary r = ry, ¢ = 0 since we’ve assumed a

conducting wall there. This allows us to solve for the constant B,

A’g(kTo)
B=- 3.26
Io(kro) ( )
Using this, we can write the electrostatic potential as

Asin(kz
b(r,2) = A8 To(ro) — Ko(kro)To(kr)] (3.27)

Io(k'f'o)

and the radial electric field as

E,r — kA sin(kz) {IX](kT)IQ(kTQ) + Iﬁo(kro)ll(kr)] (3_28)

Io(kro)
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Figure 3.5: The radial electric field (as a fraction of its value at the inner radius) as
a function of £ = nxr/h for irises 5 times deeper than long. The dashed, vertical line
shows the position of the inner radius at z¢ = 5=.

Figures (3.5), (3.6), and (3.7) show plots of [K1(z)lo(z0) + Ko(zo)l1(z)]/Io(zo)
which is proportional to the radial electric field as a function of * = nwr/h for
various values of o = nwro/h. In each case, we have kept the inner radius of the
irises (b) fixed such that z,y, = nwb/h = 5.

Figure (3.5) shows the relative radial electric field when zo = 107. This corre-
sponds to an iris which has a radial depth (rq — b) of five times its length (k). We see
that the radial electric field falls off to 10% of the value at » = b about 15% of the
distance into the irises.

Figure (3.6) shows the relative radial electric field when zo = 5.57. This corre-
sponds to an iris which has a radial depth (ro — b) of 1/2 its length (). Our physical
intuition was that the radial field would never be very small in this case and the figure

bears this out. The radial field never falls below 30% of its value at r = b.

Figure (3.7) shows the field for zo = 507, which is an iris with depth 45 times its
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Figure 3.6: The radial electric field (as a fraction of its value at the inner radius) asa
function of z = nxr/h for irises half as deep as long. The dashed, vertical line shows
the position of the inner radius at zo = 5«.

length. In this extreme case, we see that the radial electric field falls off very quickly

compared with the length.

3.4.2 Calculating the Impedance of the Iris Structure

We now know that if the irises are close together the radial electric field in the region
b < r < r¢ is shorted out and we can ignore it when we calculate the impedance of the
iris structure. If we take advantage of the cylindrical symmetry of the system, there
are only only two components of the electri:c and magnetic fields and two Maxwell’s

equations to solve between the irises.

JF, 0By
T or ot (3:29)
19(rBs)  OF, :
ror M (3-30)
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Figure 3.7: The radial electric field (as a fraction of its value at the inner radius) as
a function of z = nxr/h for irises 45 times deeper than long. The dashed, vertical
line shows the position of the inner radius at zo = 57

We assume that E, and By vary as exp(—iwt) and combine the equations.

lirgﬁi + wzeﬂoEz =0 (3.31)

raor r

This gives us Bessel functions as the solution,
E. = AJy(z) + BNy(x) (3.32)

where
T =wrfey, (3.33)

and c,, is the speed of light in the dielectric material, ¢,, = 1/,/€fig. The magnetic
field is given by

i OF, 1 OF,
= —_—— == — —— . : .: 4
Bs w or cm Oz (3.34)
Which becomes '
By = —(AJi(z) + BNy(z)), (3.35)

Cmn
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where we use J} = —J; and Nj = —N;.

At r = 79, there is a resistive tube (neglected in section 3.4.1) which leads to
the boundary condition, E, = 2xrypK where K is the surface current. The other
boundary condition comes from the discontinuity in the magnetic field where the
surface current is located and is given by — By = poK where we assume the magnetic
field outside is zero. These boundary conditions lead to conditions on the constants
A and B,

2nron K = AJo(zo) + BNo(zo) (3.36)

where z¢ is  evaluated at r = rg.
Solving these two equations for A and B gives,

2rron  No(zo) w20

A/K = 7o) - To(zo) 2 (27rronJi(zo) + iptocmJo(zo)) (3.38)
and
B/K = E?(QwrgnJl(:co) + ipocm Jo(20)) (3.39)
where we use '
J1(z)No(2) — Jo(2) N1(z) = 2/7z (3.40)
Using these expressions, we get the electric and magnetic fields.
27T .
EJK = 721 = T2 Nowo) (o) Jofa) + 7 aorands(o) No(a)
Jg((L‘o) 2
+i%pocm(,]0(xo)_1vo(x) ~ No(zo)Jo(z)) (3.41)
2 )
enBolK = —i— 21— T2 Ny(z0) s (w0)| a(2) — inzorans(o) N ()
Jo(.’Bo) 2
S
+——2x—opocm(Jo(:vo)N1(:n) — No(zo)J1(2)) (3.42)

The impedance can be calculated from the magnetic and electric fields at » = b

by noting that the impedance is

Z = —E,(r="b)/I (3.43)
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Real(Z) vs x

Figure 3.8: The real part of the impedance approaches 100 Ohms/m as x (proportional
to frequency) gets small :

while the beam current (I) is related to the magnetic field,

Bo(r=b) = -2%1 (3.44)

Combining these equations gives an expression for the impedance

to Eir =1b)

= Tonb By(r = b) (3.43)

Figures (3.8 - 3.9) show the real and imaginary parts of the impedance as a function
of z (which is proportional to the frequency) for £y = 2z, vacuum in the gaps between

the irises, a wall resistance of 100 Ohms/m and a wall radius () of 1 meter.

3.4.3 Low Frequency Limit

In the low frequency limit, we show that the irises have an impedance made up of a

resistor and capacitor in parallel like we use in WARPrz. Recall that a resistor and
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Imag(Z) vs x

Figure 3.9: The imaginary part of the impedance becomes linear as x (proportional
to frequency) gets small '

capacitor in parallel have the impedance

7 .
Z(w) = T onC (3.46)
Rationalizing the impedance gives
_n+ wwn?C .
Z(w) = 1T otnice (3.47)

We expect, then, that for low frequencies that the real part of the impedance
will be a constant equal to n and the imaginary part will increase linearly with
frequency. Figures (3.8 - 3.9) indeed show this since the real part approaches 100
and the imaginary part is linear with = which is proportional to the frequency. For
a more detailed look at the low frequency regime, we expand the Bessel functions to
get an analytic expression for the low frequency limit.

The leading terms of the Bessel functions we need are:

Jo(z) ~ 1 | (3.48)
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Ji(z) ~ z/2 (3.49)
No(z) >~ 2/x[y + In(z/2)] (3.50)
Ny(z) ~ =2/(=z) (3.51)

Keeping terms to first order in z and/or zq (7.e. to first order in frequency) in equations

(3.41) and (3.42), gives the electric and magnetic fields are » = b,

cnBg(r = b T ATgNW . .
——i(]—{————) = —pocmf +1 bzm (r2 = %) (3.52)
Ez(_;{=_b) = 27ron — tHoTow ln(%) (3.53)

We can use these expressions for the electric and magnetic fields to calculate the
impedance in equation (3.45)

_ _ Mo E(r=0)  pocm [27ron — iporow In(ro /i,)]
2= o B =) 2rb ranro/D) ¥ imron - D]

Simplifying

— Wi | b)/(2
7 = 1= koln(ro/b)/ (2) (3.55)
1 — iwnen(rg — b?)
At this point, we need to stop and consider our choice of units for the circuit

elements in this problem. In both WARPrz and the iris calculation, we have expressed

the resistance as a resistance per length (Ohms/meter) so that
n=R/h (3.56)

where R is the resistance (units of Ohms), 7 is the resistance per length (units of
Ohms per meter) and & is the distance between irises. As a consequence of this
choice, the capacitance used in WARPrz and the iris model is a capacitance times

the distance between irises,

C=Ch (3.57)
where C has units of Farad-meters and C has units of Farads. This choice keeps 5C
as the “RC” time. Although we don’t include inductance in the WARPrz code, the

expressing resistance per length leaves the inductance as

L=1L/h (3.58)
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where £ has units of henries per meter while L has units of henries.
We now want to identify the terms in equation (3.55) in terms of the resistance,
capacitance and inductance of the iris structure. The iris structure is a series of

parallel plate capacitors. The capacitance of a set of parallel plates is
C =¢(Area)/h (3.59)

where the area is just the area of the plates. For the irises, the area is 7(r3 — b?).

This leads to a capacitance C of
C = Ch = en(ri — V) (3.60)

So, we have identified the second term in the denominator of equation (3.55) as
—wwnC.

We can also calculate an inductance for the iris structure from the magnetic flux,
¢®=1LI (3.61)
where [ is the beam current. Using equation (3.44) we calculate the magnetic flux as
h rro /loh
o= / / Budrdz = I 1n(ro/b) - (3.62)
0 Jb n
The inductance per length (£) is then
L
L= 7= g:; ln(rq/b) : (3.63)
We can identify the second term in the numerator of equation (3.55) as —iwC.

We can re-write the impedance of the iris structure in the low frequency limit

using the expressions for the capacitance and inductance

7= n—wl

Comparing this with the expression for the impedance of a resistor and capacitor in

parallel (equation 3.46), we see that the iris structure has the impedance of a resistor
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and capacitor in parallel with an additional part coming from the inductance of the

iris structure. If we rationalize equation (3.64),

_ 4 iw(n’C - L)+ L

z
1 +win?C?

(3.65)

then to first order in w (which is the order to which we kept terms in the expansion of
the Bessel functions) the impedance has the same form as the impedance of a resistor
and capacitor in parallel, but with the inductance of the irises acting to decrease the

capacitance.

3.4.4 Connecting the Iris Model to the WARPrz Wall Model

We make a connection between the electric and magnetic fields at the inner iris radius,
r = b, that we calculated for the iris structure with the fields calculated in WARPrz.
We need to do a transformation because the fields for the iris structure were calculated
in the lab frame while the fields in WARPrz are calculated in the beam frame.

In the beam frame, the radial electric field at » = b is given by

poa?

E: pean ame &~ S 3.66
sbeamfr. 260() ( 6)

The surface charge can be related to the charge density by

ra?l

7T TP

So the radial field at the wall in the beam frame is

g

Er,beamframe = _6—0- (368)

We can express the surface charge used in WARPrz (equation (3.16)) in terms of

E. by
k(1 —i(w + kvy)nC)

7= 27by (W' + kvy)

where the prime on the frequency reminds us that the frequency is the beam frame

E. (3.69)

frequency. Combining these two equations gives the radial electric field from the
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WARPrz model.

k(1w + kvy)nC)
27bneg (W' + ko)

Er,beamframe = E, (3'70)

To compare this field with the iris model, we transform this beam frame electric
field into a magnetic field in the lab frame using a Lorentz transform,

Vg y
Bﬂ,la.bfra.me = 'c's Er,beamfra.me (3 71 )

where we assume that v = 1. Substituting the expression for the radial electric field

using the frequency in the lab frame and noting that w = kv, gives

1 1 . .
Bo WARPmodel = — —(1 —wnC)E, (3.72)

27bneg ¢
where F, is the same in both the beam and lab frame.

For the iris model, we substitute the expressions for the capacitance and induc-
tance (equations (3.60) and (3.63)) into the expressions for the electric and magnetic

fields (equations (3.52) and (3.53)) in the low frequency limit,

cByiris _ To :

K = hecy (1 = ¢wnC) (3.73)
Ez iris - .
—T;;— = 27ron(l — wl/n) (3.74)

In order to compare it with the magnetic field in the lab frame from the WARPrz
model, we substitute for the surface current (K') from the electric field, use goep = 1/c?
and assume vacuum between the irises to get,

1 1 (1-2zwnC)

" 2rbneo 2 (1 — iwlL/n) E- (3:75)

Boiris =

We then compare the magnetic field in the lab frame due to the wall model in
WARPrz (equation (3.72)) with the magnetic field from the iris model (equation
(3.75)) and see they are identical if the inductance of the irises is ignored.

In this section, we have proposed a device which is the physical analog of the wall

model we use in WARPrz. If the irises are close together, there is no radial electric
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field between the irises which corresponds to no radial electric field outside our wall
in WARPrz. The impedance of the iris structure is that of a resistor and capacitor in
parallel, like that of the wall in WARPrz, but also includes an inductive component.
The inductance comes into the impedance at the same order in frequency as the
capacitance does. Equation (3.65) shows that to lowest order in w this inductance
can be taken into account in WARPrz by reducing the capacitance by an amount
L/n?. We've also shown the magnetic field due to the iris structure at » = b is the
same as the magnetic field which comes about by transforming the radial electric field
used in the WARPrz model into a magnetic field in the lab frame. While the wall
we are modeling in WARPrz represents the impedance of the accelerating gaps in the
induction LINAC driver, the iris model shows that such a wall does not exist only in

the computer code, but could be built in the lab.

3.5 Dispersion Relation for Longitudinal Waves

Using a cold fluid approximation, the dispersion relation for longitudinal waves on a
beam of constant density ions can be calculated without assuming a long wavelength
approximation as was done in section 1.3.2. A more general form of this derivation
is presented by R. Davidson[8].

Assume we have a cold, cylindrical beam of ions of constant density in a perfectly

conducting pipe. The electrostatic potential for this system can be gotten from

19 ~d¢ 0 d¢ .

w e(r) 5 T 956 r) 5 = 0 (3.76)
where )

w «

e=1-— w_g (3.77)
If we write ¢(r, z) = é(r) exp(ikz), then we get
10 . a‘g 2 b —

~5 €(7 )E- —k*e(r)¢ =0 (3.78)

We notice that €(r) is constant inside (r < a) and outside (b < r < a) the beam so

that it can be pulled out of the derivatives in each region. So, in each region, we need
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to solve
—o o k¢ =0. (3.79)

This equation is a modified Bessel equation, so the solution is

. {A[o(kr), ifr <a, (3.80)

Blo(kr) + CKo(kr), ifa<r<h.
where we set the coefficient of Ky(kr) to zero for r < a because it is not finite at the
origin.

At the r = a boundary, we match ¢ and €(r)(04/dr). This gives the conditions

Alo(ka) = Blo(ka) + C Ko(ka) (3.81)
eAL(ka) = Bl,(ka) — CKi(ka) | (3.82)
where we use I = I; and k{, = — K. Rearranging these equations gives
% =1-(1 - €)kal,(ka)Ko(ka) (3.83)
% =(1- e)kafl(ka)lo(ka) (3.84)

where we use the relation,
Io(2)K:1(2) + L1(2)Ko(2) = 1/ = (3.85)

For a perfectly conducting wall, the boundary condition is simply that é =0 at

r=0b.
B C .. .

Substituting in the expressions for B/A and C/A gives the dispersion relation

fy(ka) (Ko(ka)Io(kb) — Io(ka)Ko(kb)) | (3.87)

2
0=1—ﬁka

w2 To(kD)
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3.5.1 Long Wavelength Limit

The dispersion relation must reproduce the results of the long wavelength approxi-
mation calculation. Since k¥ = 27 /), long wavelength means small k. In the limit
that ka and kb are much smaller than 1, we can expand the Bessel functions using

their small argument approximations.

I(z)~1 (3.88)
Ii(z) = Li(z) ~ z/2 (3.89)
Ko(z) ~ —In(z/2) (3.90)
Ki(z) = —Ky(z) ~ —-1/z (3.91)
Using these expansions in the dispersion relation yields
0=1- w—"ﬁk“)z In(b/a) (3.92)
When the density is constant, we can relate the line charge density to the charge
density by |
po = 7:\:2 (3.93)
So, the plasma frequency can be replaced by
e f e oo
Plugging this in to the dispersion relation and rearranging gives
= pp&olnlla) (3.95)

M )7"60 P

which is the dispersion relation that we get in the long wavelength limit when n = 0.

3.6 Dispersion Relation Including Capacitive and

Resistive Wall

We extend the dispersion relation of the previous section to include a wall with

resistance and capacitance as in the RZ thread of the WARP code. The wall is a
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boundary condition on the problem. The solution inside the pipe is the same as in

the previous section

- Aly(kr), if r < q,
_ (3.96)
Blo(kr) + CKo(kr), ifa<r<bh.
We still match ¢ and €(r)(04/0r) at r = a to give
% =1—(1 - €e)kali(ka)Ko(ka) (3.97)
% = (1 — €)kal (ka)lo(ka) (3.98)

and € =1 —w?/w?.

At the wall, we have a surface charge. In WARPrz, we advance the surface charge

e 1 arigos, 008 .
ot  27b0z [17 (62 + ncatb_; (3-99)

and then we advect the surface charge and the potential at the old time (used in

using

the time derivative on the right hand side) since our calculation is done in the beam
frame. We can add this advection to the above equation by noting that in the beam
frame, the surface charge is advected with velocity —vpeam. If we do this and Fourier

transform with respect to ¢ and z we get
_ —ik? (1 = inC(w + kwy)) +

= 3.1
2y (w4 kvy) (3-100)
The boundary condition is given by
(D —D;)-a=c (3.101)

where D3 is the field just outside the pipe and D1 is the field just inside the pipe. In
our case, we assume the radial electric field outside of the pipe is zero, so we are left
with
—¢E(r=0=0 (3.102)
Using our expression for ¢, B/A, and C/A gives
Io(kb) + :—’E-kafg,(ka) [Io(ka)Ko(kb) - Ko(ka)lo(kb)] - (3.103)

i27bneo (w + kvy)
E (1 —iC(w + kvy))

{Ig(kb) + Z—Ekal{,(ka) [Io(ka)l((’,(kb) _ Ko(ka)l(’)(kb)]}
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3.6.1 Long Wavelength Limit

In the long wavelength limit, ka, kb << 1 and we use the small argument expansions

for the Bessel functions.

Io(z) ~1 (3.104)

I(z) = L(z) ~ /2 (3.105)
Ko(z) ~ —In(z/2) (3.106)
Ki(z) = —Ky(z) ~ —1/z (3.107)

We also define v2 = Zelog/M and g = In(b/a)/27€o. Using these in our dispersion

relation gives

k2?2 (w + kvy) v2 k2% ka
e _% (i _ ka 2 )
! w? zTl(l — inC(w + kvs)) [ gw? (1 2 n 2 ) b 60] (3-108)

Next, we examine the magnitude of these terms. We compare

k252 In ka
2 2

E26® . fkb
— I

(3.109)

with 1 for ka, kb small, where we define the fraction of the pipe filled by beam,
f = a/b. In the limit that kb — 0, '

272 ,
-k—éiln % =0 (3.110)

lim
kb—=0

For kb small but not zero, we show that

252 kb
5'2—-111!2—' <1 (3.111)

by plotting as a function of kb and f. Figure (3.10) shows this quantity for values of
kb ranging from .001 to .2 and fill fraction, f ranging from .1 to .9. Over this range

of parameters
k2b? kb

and we can neglect that term compared with the 1.
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2 PR
R e s

Figure 3.10: A plot of |[(kb)?/2 In(fkb/2)| as a function of kb and the fraction of the
pipe which is filled, f, shows that this quantity is smaller than 1 for kb less than .2

Since w? = k?v2 and g = In(b/a)/2neo, we can write

2
v
—2 ~ 7bl¢,

2 2
3.11%
72 (e In(b]a) >> wbeg (3.113)

so that we can neglect the wb%¢, term relative to the v;‘:/ gw? term. This leaves us with

(3.114)

=1y

Kop . (wtkw) [ %}
w? (1 = inC(w + kvp))

—
which is the dispersion relation we got in section 1.3 by using the 1-d long wavelength

approximation to the problem.

3.7 Testing This Model in WARPrz

We wanted our particle code tests to be in the regime where the linear, cold beam,

fluid theory is valid. As a result, we wanted a cold beam so that the results would
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not be influenced By thermal effects which were neglected in the fluid theory and we
wanted to use very small perturbations so the results would not be influenced by any
nonlinear effects which were also not included in the fluid theory.

In order to use very small perturbations, we need to load the particles such that
there is as little noise in the calculation as possible. Any significant noise will mask
~ the very small perturbations that have been excited on the beam. Any time a particle
moves from one cell to the next, we can get noise since this can cause an imbalance
in the number of particles in each cell (cell @ now has 11 particles while cell b has 9).
One way to reduce noise is to use large numbers of particles. However, to get the low
levels of noise that we want, we would have to use a very large number of particles
which would make the simulations very long and costly.

Instead of using a very large number of particles to reduce the noise level, we use
a clever technique. If we give each particle a very large mass, then it will never move
very far. If we can keep particles from moving across cell boundaries, then the noise
level will be very low.

For our tests, we want to load the particles such that the charge density is a
constant. Implementing such a scheme in a cartesian coordinate system is easy. We
simply put one particle in the center of each cell. In a cylindrical system, things get
more complicated because the volume of each radial cell is larger than the last one if

we use a constant Ar. This introduces two problems:

1. The charge density at each gridpoint is determined by dividing the fraction of
the charge assigned to that gridpoint by the volume at that gridpoint. If we put
one particle in the center of a cell, it will contribute the same amount of charge
to the gridpoint at r; as it does to the gridpoint i3y, but the charge density
will be smaller at »;;; since the volume is larger there. This tells us that we
don’t want to put the particles at the center of the cells, but instead we want

to move them slightly closer to the gridpoint at the larger radius.

. Because the volume of a cell increases with radius, we need to put more particles

in the cells with larger radius than those with smaller radius in order to get a
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constant density if all particles have the same weighting. In the WARP code,

we have chosen to give the particles constant weighting.

3.7.1 Particle Loading for Linear, Cold Beam Test Runs

We need to load the particles such that the charge density, p, is a constant. This
gives us a linear radial electric field, F, o r. Since we are in cylindrical coordinates,
each radial cell has a larger volume than the last. To compensate for this, we need
more particles in each cell as we go away from the origin. The particles also have to
be moved from the cell center in the radial direction to compensate for the different
volume at the two gridpoints adjoining a cell.

First, we show that a constant charge density gives a linear radial electric field in

our difference equations. Recall equations (2.19) and (2.20) from section 2.2.3

%ﬁ = 2nAz2(ripp2Er a2k — Tic2Erjarp2n) +
( J+1/2 T -1/2)( z,5,k+1/2 — Ez,J,k—llz) (3-115)
for 7 # 0 and
Q"" = 2711282 E, 2y + 713 o Broerrsz — Ezpko1/2) (3.116)

where 74/, is the radius half way between the gridpoints, 7412 = 1/2(rj41 + 1'-)
The charge density is defined as p;x = @;«/V;r where the volumeis Vj; = n(Ar?);A
with (Ar?); = 7'?“/2 3 _1/2 for § > 0 and (Ar?)g = 71/2 for j=0. For E, =0 and

E: j+1/2 X Tj41/2, these equations simplify to

Q ‘ .
for 7 # 0 and
eo

for y = 0. The charge density is then

QJ (r '2+1/z - 7'?-1/2)
pi = Vv, x 27epAz N

= constant (3.119)

J+1/2 j—-l/2)
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for 7 # 0 and

po = Qo/Vo x ———<= = constant (3.120)
T1/2

2meoAzry )y
P]

If we load a beam which has constant charge density at each gridpoint, then our
difference scheme for the Poisson solve will produce a linear radial electric field.

Because the cell volume increases as we go away from the origin in a cylindrical
coordinate system, we need to put multiple particles in each cell to give a constant
charge density. This is necessary because we have chosen to give the particles equal
weights (z.e. each simulation particle represents the same number of real particles).

Given a constant density, po, then the charge at a gridpoint is given by @Q; = poV;,

where V; is the volume. This gives

0 = { (27rpoArAz)%, ifz=0,

3.121
(2rpoArAz)iAr, ifi> 0. ( )

This tells us that if we have one unit of charge at : = 1, then we want two units
of charge at z = 2 and so on. However, one unit of charge at : = 1 would give us
1/8 unit of charge at the origin. We can easily fix this by having one charge at 0,
eight charges at 1, 16 charges at 2, and 82 charges at gridpoint :. These charges are
distributed such that one half the charge at a gridpoint comes ffom the cell to the left
and one half of the charge comes from the cell to the right. If we number the radial
cells by the smaller of the gridpoints bounding it, the zeroth cell has 5 particles in it
(1 from ¢z = 0 and 4 from 7 = 1), the first cell has 12 particles, the second cell has 20
particles, and the i-th cell has 8z + 4 particles in it.

Once we know how many particles go in each cell, we need to determine where
they are placed within the cell. Placing the particles at the center of the cell would not
give equal charge density at the gridpoints surrounding the cell because the volume
is larger at the larger radius. First consider a single cell which is not at the origin.
The inner boundary of this cell will be taken to be at r; and the outer boundary of

the cell at r;;; = r; + dr. The charge density for gridpoint z is given by
Q;

(3.122)

pi= %‘iArAz
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where () is the charge that is distributed to the gridpoint from the particles. We place
a particle in the center of the cell with respect to z and a distance D from r = r; in
the radial direction. Using linear weighting, the charge for the two different radii is

then given by

g Az Q 19
= —“(Ar - 3.12.
and
=L B2 :
Qi = A2 D (3-124)
The charge densities are then
S q Ar—D ox
‘p, "~ 2Ar27rArAz (3.125)
and
o _ 4 D .
Pl = oAr 27(r + Ar)ArAz (3-126)
We set these densities equal to each other and solve for D to get
r+ Ar
D= oA (3.127)

This tells us where to place the particles radially within each cell. In the first cell,
the particles are placed at r = (4/5)Ar so the charge density at the 0th gridpoint
is twice that of the 1st gridpoint. This is necessary because the 1lst gridpoint also
receives charge from the next cell while the Oth gridpoint does not.

This scheme works up to the last cell. Call the last occupied cell the za-th cell.
This means that we have nonzero density for gﬁdpoints ta and ta+1, and zero density
beyond that. If we put 8za + 4 particles in the last occupied cell, we will have one
half the required density at the very last gridpoint (:a + 1) since it will not receive
a contribution from the cell beyond it. We can fix this by increasing the number of
particles in the last cell and moving them such that the density is constant out to the
last occupied gridpoint. If we do this, we find that we need 12:a + 8 particles in the
last cell and they should be located at D = (8ia + 8)/(12:a + 8).

So, if we wish to place particles in cells 0 through za, we do the following.

In the zeroth cell, put 5 particles at r = 4/5Ar
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In cells 1 through (za-1), put 8¢ + 4 particles at
t+1
2i+1

r =1Ar+ Ar (3.128)

In the last cell, ia, put 12ia + 8 particles at

8za + 8

r=2aAr+m r

(3.129)

We can get the total number of particles in one axial slice by doing the sum.

ta—1
Npstice =5+ 3 (8i +4) + 12ia + 8 (3.130)

i=1

and the total number of particles in iz axial slices is then

N, =iz(4(ia + 1)(ia + 2) + 1) (3.131)

3.7.2 Results using Linear Particle Loading

We ran the code with this linear particle loading so that we could compare our 2-d
particle code with the linear cold beam theory. In each of these runs, we made the
mass of the particles very large (M = 1 x 10'®amu) so that we would observe only
linear behavior. We compensate for the large mass by making the beam current very
large. This keeps the macroscopic quantities such as the wave speed, growth rate,
and plasma frequency all realistic. The special loading gives us a very quiet run for
very small perturbations. These beams were periodic and infinite in length.

We gave the beams a sinusoidal perturbation in the velocity. Since our model
assumes constant density, we used the condition V - u = 0 to determine our two

components of velocity, v, and v,. In these runs, these velocities were given by

V, = Upeam + U cos(kz) (3.132)

[+

vy = '6225- sin(kz) _ (3.133)

where ¥ is the size of the perturbation and is generally 0.0001v,. This causes a

perturbation in line charge density to grow. We did not attempt to separate the
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forward traveling wave from the backward traveling wave. Since the forward traveling
wave decays with resistance, we just allow it to decay and after a few e-folding times
are left with a pure backward traveling wave.

In each case, we made the resistance unrealistically large. This was done to speed
up the runs by making the growth rate larger than it will be in a heavy ion fusion
driver.

The cases that we ran are:

- Long wavelength with resistance only

This run had a resistance of 900 ohms/m and no capacitance. The wave number
times the pipe radius (kb) was .031 which is in the long wavelength limit. The code
gave a growth rate of 6.25 x 10°s~! which compares with the theoretical growth rate
of 6.169 x 10°s~! for an error of 1.3%.

Long wavelength with resistance and capacitance

This run had a resistance of 900 ohms/m and an RC time of 1.25 x 10~ seconds. This

run also had kb = .031 so that it was in the long wavelength regime. The code gave

4 -1

a growth rate of 1.11 x 10%s™! and the theory gave a growth rate of 1.093 x 10*s

which is an error of 1.5%.

Short wavelength perturbation with resistance only

Since the growth rate falls of sharply as the wavelength gets shorter, we increased
the resistance to decrease the run time. In this case, the resistance was 7200 ohms/m
and no capacitance. This run had kb = 1.26 which is well out of the long wavelength
regime. The code gave a growth rate of 3.06 x 106s™! and the theory gave a growth
rate of 3.047 x 10°s~!. The long wavelength theory (which should not be applicable

in this case) gave a growth rate of 4.870 x 10°s™1.
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Short wavelength perturbation with resistance and capacitance

Since capacitance decreases the growth rate, we had to increase the resistance even
further for this run. In this run the resistance was 5.76 x 10* ohms/m and the RC
time was 1.0 x 10~7 seconds. This run had kb = 1.26. The code gave a growth rate

of 3.62 x 10°s™! and the theory gave a growth rate of 3.670 x 10°s—1. The long

wavelength theory (which should not be applicable in this case) gave a growth rate

of 1.249 x 108s~1.




Chapter 4

Simulations with Module

Impedance

After verifying that our model agreed with cold beam fluid theory when tested with
a cold infinite length beam with a sinusoidal perturbation, we moved on to more
realistic simulations. Qur first simulations of the longitudinal instability were to
study a single perturbati;m launched from the beam head. By doing this, we can not
only watch the perturbation grow as it travels the length of the beam but also see
what happens when the perturbation reaches the beam end.

Since we currently have the capability to study drifting (not accelerating) beams
in WARPrz, parameters for the simulation were chosen to be those near the end of
a proposed driver-scale accelerator where the growth rate of the instability is the
largest. In a driver, the beam will not spend much time in this parameter regime and

so these simulations are a worst case. These parameters are shown in Table 1.
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Beam velocity c/3
Beam current 3000 Amps
Pulse length 10 meters
Beam radius/Pipe radius A4
Perpendicular temperature 10 keV
Parallel temperature ‘ 10 keV

Table 4.1: Beam parameters used in WARPrz simulation

4.1 Beam Temperature

We showed in the introduction that Ap/p = .1% leads to a maximum longitudinal
beam temperature of 10 keV because
Ap2 Ap 2 p2 :
Tz=———=(—-—-)———=10kV 4.1
S 2M p/ 2M € (4.1)
for p?/2M =10 GeV at the end of the accelerator.
In the perpendicular direction, there is a maximum beam emittance for focusing
of € = 3 x 10~° meter-radians. This leads to a perpendicular temperature

_{pl) _ p*sin’0  p?¢?
=M= ~n (4.2)

where the angle 8 is assumed to be small. This angle is approximately given by 8 = ¢/a
where a is the beam radius and ¢ is the emittance. For a beam with ¢ = 3 x 10~°
meter-radians, ¢ = .03 meters, and energy 10 GeV, the perpendicular temperature is
again 10 keV.

At the end of the accelerator, the maximum beam temperature we can focus on
target is 10 keV in both the longitudinal and perpendicular directions. In most of the
simulations in this thesis, the beam temperature is set to the maximum temperature
in both directions. The temperatures are kept equal because of a rapid exchange of
energy from the perpendicular direction to the longitudinal direction seen in simula-
tions. The temperature is set to 10 keV (the maximum temperature) to reduce the

numerical heating in the simmulations while keeping Az and Ar reasonably large. In

simulations of cooler beams, the Debye length is smaller and more cells are needed to
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keep the ratio of the grid spacing to the Debye length from getting too large. Using

a very large number of cells makes the simulations very long and time consuming.

4.2 Simulations with a Purely Resistive Wall

The presence of the resistive wall cai;ses the beam to lose energy and slow down. Since
we want the beam to travel at the same constant speed as the window in which field
calculations are done, we add an external accelerating field which just compensates
for the loss to the resistive wall. For simulations in which the wall impedance is purely

resistive, the external electric field applied was simply,
Ez,gxtema.l(r, z) = TIIO(Z) (43)

where Io(z) is the initial current profile as a function of z. Since the axial electric

field does not vary much across the beam radius, we applied the same external field |
at all radii. We found that this field was slightly in error in the beam ends. This
caused perturbations of roughly gaussian shape to be launched from the beam head

and tail. We used these perturbations as the seed for the instability.

4.2.1 Large Resistance Simulation (7 = 200 Q/m)

Figure (4.1) shows three snapshots of the electrostatic potential on axis vs z and z-
v, phase space for a simulation with 200 Q/m resistance. This is about twice the
resistance expected in a driver and shows how the instability can degrade the beam.
The perturbation launched from the beam head (right hand side of the plots) moves
towards the beam tail and grows. As the perturbation becomes large, the trailing
edge steepens as it enters a nonlinear regime.

A similar perturbation is launched from the beam tail, but it decays as it travels
forward.

By 17.5 ps (Figure (4.1 c)), some particles have gone off the scale in the z — v,

phase space plot. These particles will be lost in the accelerator since the confining
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Figure 4.1: A simulation with 200 £2/m resistance shows large amounts of growth.
(a) 6.6 us, (b) 10.9 us, (c) 17.5 us
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ear fields will not be large enough to reflect them. In these simulations, the axial
confining fields extend over the entire simulation window. As a result, all particles
are eventually reflected off the ear fields and no particles are lost. In an accelerator,
any particle which gains very large longitudinal velocity will be lost.

This simulation shows how the instability can cause major problems because large
numbers of particles can be lost. When perturbations become large, particles can
end up with axial velocities much different than the bulk of the beam. When these
particles hit the end of the beam, they are either lost because the ear field is not large
enough to turn them around, or they cause a larger spread of longitudinal velocities
if they are reflected. A large spread of longitudinal velocities is not acceptable for the
focusing system.

Large perturbations can also cause problems in more subtle ways. The beam tends
to remain incompressible (or near incompressible) as the perturba..tion moves by. This
means that the line charge density perturbation is made up mostly of a perturbation
in the beam radius. This puts particles at larger radii, closer to the focusing elements.
At these large radii, the focusing fields have larger higher order fields which can cause
momentum spread of the particles. The focusing field in WARPrz is linear with radius

and constant with z, so that such effects are not modeled.

4.2.2 More Moderate, More Realistic Resistance Simula-
tion (7 = 100 Q/m)

Figure (4.2) shows the same plots for a wall resistance of 100 ©/m. This is the
resistance expected in a driver. Again a perturbation is launched from the beam head.
In this case, the growth is more moderate and the perturbation never becomes large
enough to exhibit the extreme behavior seen in the previous case. The perturbation
remains roughly gaussian in shape but grows as it travels the length of the beam.
Measurement of the growth rate shows that it is about 15% smaller than the cold
beam theory results would predict. This will be discussed in more detail in chapter

5.
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Figure 4.2: A simulation with 100 £/m resistance shows moderate growth. (a) 6.6
ps, (b) 10.9 ps, (c) 17.5 us
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The perturbation slows down when it enters the beam “end” because the line
charge density becomes small and thus, the wave velocity (which is proportional to
the line charge density)-becomes small. It reaches the end of the pulse, reflects off
the end, and becomes a forward traveling wave. For a small sinusoidal perturbation,

continuity equation for line charge density gives

~

b i
" @h (4

So for a backward wave (w/k = —uv,), the line charge density perturbation and the

velocity perturbation have opposite sign, while those quantities have the same sign
for a forward wave (w/k = v,). From this, we expect to see the sign of one of these
quantities flip when the perturbation reflects off the beam end. Figure (4.3) shows
that in this case, the line charge density (which has the same profile as the electrostatic
potential on axis) has changed sign. Whether the line charge density perturbation
or the velocity perturbation will be the one to change sign seems to depend on the
exact details of the beam profile in the end. |

During the reflection, the perturbation tends to steepen and- become narrower.
This can be seen by comparing figure (4.2 c) which shows the perturbation just before
reflection, with figure (4.3 a) which shows the perturbation just after reflection. This
is believed to be a nonlinear effect, as the larger perturbation is as it enters the
beam end, the narrower it becomes. This same effect has been seen in 1-d particle
calculations[6]. As the line charge density falls off in the beam end, the perturbation
becomes a larger fraction of the “background” or zero-order line charge density. This
makes the perturbation look very large when it is in the beam end and nonlinear
effects can occur.

The narrowing of the perturbation can cause growth on a complete round trip
in some regimes. For a single wavelength, the growth and decay rates are the same.
Thus, a complete round trip results in no overall growth because the perturbation
grows by exp(717) from head to tail, reflects, then decays by exp(—v;7). The net effect
is no growth. However, if the perturbation narrows and thus changes “wavelength,”

the decay rate can be smaller than the growth rate for some wavelengths. When this
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Figure 4.3: The perturbation reflects off the beam end and decays as it travels forward.
(a) 28.4 ps, (b) 35.0 us, (c) 39.4 us
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is the case, a complete pass results in overall growth.
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Figure 4.4: Real part of the frequency as a function of wavenumber

While these waves are dispersionless at long wavelengths, there is some dispersion
at short wavelengths. The real part of the frequency versus wavenumber for a cold
beam is shown in figure (4.4). The plot shows that for small wavenumbers (z.e. long
wavelengths since k = 27 /}), the real frequency is proportional to the wavenumber
and is then dispersionless. For larger wavenumbers (short wavelength), however, the
frequency begins to roll over so that dw/dk is not independent of k. From this,
we expect that short wavelengths will have slower group velocities and thus will lag
behind the longer wavelengths.

This dispersion is seen clearly as the perturbation travels back towards the beam
head (figure (4.3)). Since our initial perturbation was roughly gaussian and thus con-
tains many wavelengths, we expect dispersion to affect the perturbation after enough
time has passed for the difference in group velocities to show up. This process has

been speeded up, however, by the narrowing of the perturbation during reflection.
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“When the perturbation narrows, more of the wavelengths present are in the wave-

length regime where dispersion is expected.

30 T T T r . . |
eta = 200 —
eta = 100 ______

~ 25 F ta = 100, RC = 2.0e-8 === |
Ll
i
<
wn
i 20 F |
<
o
—
¥
Z 15} B |
@ > L -~~~‘.~~--\.-~\-“-—‘-
+H ; B
Y H
o {
= 10 g |
S ;
2
5ol T
2
I |
0 -"‘J:“"-"‘I" - —t —_— 1 1
0 2 4 6 8 10 ” - J

Wavelength (m)

Figure 4.5: Growth rate of the instability vs wavelength for 3 values of the wall
impedance

4.3 Simulations with Resistive and Capacitive Com-
ponents

~ Cold beam theory predicts that a capacitive component of the module impedance will
reduce the growth rate[19] as well as increase the wavelength of the most unstable
mode. Figure (4.5) shows the growth rate as a function of wavelength from cold beam
fluid theory for the three values of wall impedance used in these simulations. |
Adding capacitance also changes the external electric field needed to keep the

beam from losing its energy to the wall to

dE; externa r,z =
’I]C =t l( ) + E::,extemal("'y Z) = 7110(2) (40)

dt
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Again this external field was slightly in error and a perturbation was launched on the
beam. In this case, the perturbation launched was very long wavelength (wavelength
~ beam length). The amplitude of the perturbation launched was about 5 times as
large as in the case without capacitance, however, as predicted by the cold beam
theory, very little growth is observed.

Figure (46) shows the electrostatic potential on axis vs zand the z-v, phase space

for a case with 100 }/m resistance and an “RC” time of 2.0 X 1078 seconds.

4.3.1 Summary

These simulations show the effects of the longitudinal instability of a single pertur-
bation launched from the beam head. In a case with a large resistance, perturbations
can grow very large and result in particles being lost. For a more moderate, more
realistic resistance, a perturbation launched from the beam head grows as it travels
the length of the beam, slows down at it approaches the end, and reflects. Nonlinear
effects in the beam end can cause a narrowing of the perturbation during reflection.
We see the expected decay of the forward traveling wave, along with dispersion caused
by the narrowing in the end.

Both theory and simulations point out the importance of the module capacitance
on the growth rate of the longitudinal instability. Including the effect of capacitance

greatly decreases the severity of the instability on the beam quality.




CHAPTER 4. SIMULATIONS WITH MODULE IMPEDANCE 69

Electrostatic Potential on Axis vs z v, VS 2
1.604 ¢ ~
1.892 I
-1.@
a
) 1.008 p
.998 |
.5 108 |
= = P o s «
' z LN z
Electrostatic Potential on Axis vs z v, VS Z
1.804 I -
1.882 | . 4
-1.e
b)
1.00€ | 4
.998 t
1¢°5 189 | 4
n L w |;\ é "
® z ® z
Electrostatic Potential on Axis vs 2 v, VS 2
1.824 -
1.882 -
-1.8
c
) 1.808 |
.998 |
+e's | 10496 | 4

- —
0 = n w n
' .

z

19'

Figure 4.6: When capacitance is added to the system, a larger perturbation is
launched, but little growth occurs (a) 6.6 us, (b) 10.9 us, (c) 17.5 us
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Chapter 5

Effects of Temperature on Growth
Rate

In the WARPrz simulations discussed in chapter 4, we noticed that the growth rates
measured were lower than the growth rates predicted by the cold beam dispersion re-

lation by 10-20%. The dispersion relation derived in chapter 3 assumes the following:
e The beam is periodic and infinite in length.
e The perturbation is sinusoidal.

e The perturbation is small so the calculation is in the linear regime (ie the line

charge density perturbation is small compared with the line charge density).

e The beam has no thermal spread in either the direction parallel or perpendicular

to the direction of travel.

The test cases described in section 3.7.2 satisfy each of these criteria and the growth
rates agree with the theory to within 1.5%.

The simulations shown in chapter 4 are not periodic, infinite beams and the pertur-
bations launched in those simulations are not sinusoidal. However, simulations with
periodic, infinite beams with sinusoidal perturbations that include thermal spread in

both the parallel and perpendicular directions also show growth rates lower than the
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cold beam theory predicts. This stabilization is due to the finite temperatures in the
beams in these simulations. Thermal velocities of the particles move them into and
out regions of the backward wave and thus smooth out some of the effects of the

instability.

5.1 Including Longitudinal Temperature

Our first attempt to quantify the stabilization due to finite temperature effects was
to include the longitudinal temperature in a long wavelength description of the beam.
This derivation follows that of Wang and Reiser[26]

We begin with the linearized Vlasov equation,

a dfo
)= -2 .1
(Bt )fl(z v,t) = El v (5.1)
In the long wavelength limit, the electric field is given by
3/\1
= g1 _ .2
E] dz 7]]1 (5 )

We assume that all perturbed quantities vary as exp(ikz — iwt)

0 fo/0v

= L (kg +ini) 22T
fr= m( kgh 4 Zn]l)(w — kv)

The continuity equation relates the perturbed current, /;, to the perturbed line charge

density, A;,

We also use

&:%/ﬁ@ (5.5)

to get the dispersion relation,

_ qho qw\ [ Bfg/dv .
l_m(k+ k) dv (5.6)

oow—-k’v
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This dispersion relation can be rewritten in a more useful form by integrating by parts
and assuming that the zero order distribution function goes to zero as the velocity

becomes very large.

] = "mﬁ(lﬁg _ inw) /_ °; (T-{OkT)‘zd” (5.7)

We can check this dispersion relation in the cold beam limit by using a delta

function distribution function.

Jo=96(v—w) (5.8)
This gives the dispersion relation
k22 2
=2 it d (5.9)

(w — kvy)? 1 g (w— kvy)?
where we’ve again introduced v? = glog/m. This agrees with the dispersion relation
that.we got in the cold beam, 1-d theory in the lab frame.

In the case of a Gaussian distribution,

fO — €xXp [—(:)/_7;‘]::))2/7)311] (5.10)

we use the derivative of the plasma dispersion function,

Z'(6) = \/‘/m (m e (5.11)

and the relationship between Z and Z’

Z'(&) = —2(1 + £2(¢)) (5.12)
Using these relationships gives the dispersion relation,
2v ) nk
2 , ¥ o
1= (kv )2[ k“+1 p (€Ut1x+vb)](1 +€Z(¢)) (0_13)

where ¢ = (w — kvy)/(kvy,) is the frequency in the beam frame divided by kvy,.
We can again compare with the cold beam theory by using the large argument

expansion of the plasma dispersion function.

Z(¢) ~ -1 (1+1/(26)) (5.14)
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in the case where &maginary > 1/|&reat|- Using this expansion, gives

1=

(kvth)z { k2 + z——(fvth -+ vb)] (2;) (5.15)

Using the definition of £ once again gives the cold beam dispersion relation in the

lab frame,

2
v )
= —P (k2 - zg—w) (5.16)
(w—kvb)2 g
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Figure 5.1: Growth rate as a function of longitudinal thermal speed. The vertical line
represents the largest thermal speed that can be focused to the necessary spot size.
We can evaluate the plasma dispersion function numerically and graph equation
(5.13) to see the effect of longitudinal temperature on the dispersion relation in the
long wavelength limit. Figure (5.1) shows the growth rate of the instability as a func-
tion of the longitudinal thermal speed for the parameters in table 5.1 and wavenumber
times pipe radius kb = .06. The vertical line in figure (5.1) indicates a thermal speed

of 6.8 x 10*m/s, which corresponds to the largest longitudinal temperature that can
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Ion mass 200 amu
Ion charge state +1
Beam velocity 1/3c
Beam current 3000 Amps
Beam radius/Pipe radius 4
Wall resistance 300 2/m
Perturbation wavelength 6 meters

Table 5.1: Parameters used in figure (5.1)

be focused on the target (10 keV). This shows that for acceptable thermal speeds,
there is no appreciable change in the growth rate of the instability.

If we run WARPrz with the same parameters used to calculate figure(5.1) and a
thermal speed of 6.8 x 10*m/s in both the parallel and perpendicular directions, we
measure a growth rate of 3 x 10° s™'. This growth rate is smaller than the cold beam
theory growth rate by' only about 15%. Figure (5.1) shows that to get this reduction
in the growth rate from longitudinal temperature alone, we would need a thermal
speed almost 4.5 times the size of the one we used in the WARPrz run.

From this theory, we conclude that a temperature spread parallel to the direction
of beam travel should have no appreciable effect on the growth rate of the longitudinal
instability. However, we do see an appreciable decrease in the growth rate of the
instability when the beam has finite temperature in the WARPrz runs. This leads
us to believe this decrease in growth rate is due to temperature in the direction

perpendicular to the direction of travel.

5.2 A Coupling Mechanism for Perpendicular Tem-
perature and Wave Damping

The complete theory including finite perpendicular temperature is a difficult problem
and so we have tried to come up with a simpler model which may describe the essential
physics of the damping observed.

The simple model only includes the radial direction. If we sit at one z value in




CHAPTER 5. EFFECTS OF TEMPERATURE ON GROWTH RATE 75

the beam frame, then as a sinusoidal wave passes by, we see the beam radius vary
sinusoidally in time. A particle moving in the radial direction will move towards the
edge of the beam (at the beam radius) and eventually reflect off that beam edge. In
reality, the beam does not have a sharp radial edge tov it, but a sheath. For a space
charge dominated beam, the width of this sheath is approximately the Debye length
so if the beam radius is large compared with the transverse Debye length, then we
can consider it a “hard” edge.

Our simple model consists of particles and a wall which oscillates in and out at
the wave frequency. If a particle reflects off the wall when the wall is moving inward,
it gains energy from the wall. Likewise, a particle which reflects off the wall when the
wall is moving outward loses energy to the wall. If a particle has the correct velocity
so that it was “in resonance,” it could reflect off the wall when the wall is moving
in, travel across the beam, and again reflect off the wall when the wall is moving in.
This could happen many times until the particle gains enough energy to be out of
resonance.

For a particle to be in resonance, the time it takes for the particle to cross the
beam diameter would have to equal a multiple of the period of the wave. The time

it takes for the particle to cross the beam radius is

2
Teross = 'ﬁ (517)
Vr

where @ is the beam radius and v, is the particle velocity. Setting this equal to the

period of the wave,

2 2
Teross = = = = = Twave (518)
v, W
Solving for the resonant velocity,
k
v, = 2 % (5.19)
i T

where the wave frequency has been rewritten in terms of the wave phase velocity, v,.

In fact, while particles traveling at the velocity described in equation (5.19), will gain

the largest amount of energy from the wave, particles at 1/2, 1/3, 1/4, etc of v, can
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Figure 5.2: The siniple model approximates the surface wave as an oscillating wall
which particles reflect off.

also gain energy from the wave. Particles with velocity (1/2)v, will bounce off the
wall every other wave period and particles with velocity (1/3)v, will hit every third

wave oscillation. So in general, the resonance condition is

kav,

. vr,n = nr

wheren =1,2,3, ...

A theoretical treatment of this model was done by Langdon[18]. This theory
showed the resonances described above and predicted an increase in particle energy
from the oscillating wall. Connecting this theory to the results of the simple code
described in the next section and to the results of WARPrz simulations will be done

in the future.
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5.3 A Code Using the Simple Model

We wrote a simple code to look for an increase in particle energy when the particle
reflects off an oscillating hard wall. This model is one dimensional and also neglects
collective interactions. Instead, we simply have particles which move with constant
velocity across the beam and only undergo changes in velocity when they hit the wall.

We can work out the change in velocity that the particle undergbes when it hits
the wall by considering two masses, m and M, with initial velocities, v and V. After
the perfectly elastic collision, the particles have velocities v and V’. There exists a

center of momentum frame such that
mv, + MV, =0 (5.21)

where the subscript denotes velocity in the center of momentum frame. We can
transform the center of momentum frame velocities into the lab frame using a Galilean
velocity shift, |

v =v,+ vy (5.22)

V = ‘/c + 'Uf (5.23)

where vy is the velocity of the frame. We can get the velocity of the center of mo-
mentum frame in terms of the particle masses and particle lab frame initial velocities
by substituting equations (5.22) and (5.23) into equation (5.21) and solving for vy,

_ V+]1u’iv

= 5.24
vy T (5.24)

We are interested in getting the velocity of the small mass after the collision. In the

center of mass frame,

oo~

So
v'=v+v; = —v.+ vy (5.26)

Using equation (5.22),
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In the limit that the large mass (M) becomes large compared to the particle mass

(m), the velocity of the center of mass frame (equation (5.24)) becomes jﬁst
v =V | (5.28)
So the particle reflecting off the wall has a velocity after the collision of
v = —v+2V (5.29)

where V is the velocity of the wall.

Using this result, we have written a simple code which tracks particles bouncing
off a moving wall. The particles are loaded uniformly across the beam radius and
given a Gaussian distribution of velocities. The particles move with constant speed
until they hit the sinusoidally oscillating wali. When they hit the wall, their velocity
is changed by the amount dictated by equation (5.29).

Velocity Change vs Initial Velocity
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Figure 5.3: Resonances are seen for particles which reflect off the oscillating wall
every 1,2,3, and 4 oscillations. Vertical lines indicate resonant velocities.
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If we run this simple “wall and ball” code, we expect particles with initial veloc-
ities near the resonant velocities (given in equation (5.20)) to undergo large velocity
changes. This can be seen clearly in figure (5.3) where we plot the change in the
speed each particle, |vanal] — |vinitial] against the particle’s initial speed, |vinitial- In
this run, the initial thermal spread was 2.0 x 10* m/s. The beam radius was .025 m
and the wall variation was 1% of the beam radius. The wall oscillated at a frequency
of 4.0 x 10°s~1. Putting these parameters into equation (5.20)), gives resonances at
(3.18 x 10*)/n m/s. In the figure, we can clearly see the large change in particle speed
forn=1,2,3,4.
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Figure 5.4: Sum of the square of the particle velocities (proportional to the total
energy) increases with time as the particles gain energy from the oscillating wall.
The increase in energy levels off as the distribution function is flattened in the region
surrounding the resonance. The oscillations are at the wall oscillation frequency.

Figure (5.3) shows that particles with velocities slightly lower than the resonant
velocity gain energy, while particles with velocity slightly higher than the resonant

velocity tend to lose energy. This means that total particle energy will increase only
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if the slope of the distribution function is negative at the resonances. If the slope
is negative, there the number of particles that gain energy will be larger than the
number of particles which will lose energy. Since we are using a Gaussian distribution
for particle velocities, the slope is, in fact, negative and we see an increase in the total
energy of the particles (figure (5.4)).

Figure (5.5) shows the distribution function of the particles as a function of velocity
at the beginning and the end of the run. We see that the distribution has flattened
out in the region surrounding the resonance at (3.18 x 10*) m/s. This resonance has
the largest effect on the particle energy because it represents particles which reflect off
the wall every time the wall oscillates. From the distribution function, we expect the
damping mechanism to saturate soon after this plot was made because the distibution
function has become flat in this region. This is also indicated in figure (5.4) as the
energy increase levels off near the end of the run. Longer runs show the particles stop
gaining energy altogether a short time later.

This saturation due to flattening of the distribution function occurs earlier in
time when the wall oscillations are larger. Large oscillations lead to large changes
in particle velocity at each reflection. These large changes in particle velocity cause
the distribution function change more rapidly and thus the saturation occurs more
rapidly.

With this simple model, we have shown that particles moving perpendicular to
the direction of wave motion can gain energy from the wave if the time it takes for
the particle to cross the beam diameter is an integer number of wave periods. This

increase in the particle energy must come at the expense of the wave energy.

5.4 Growth Rates with Finite Temperature from

WARPrz

We begin with one of the simulations which lead us to look for finite temperature

effects on the wave growth rate. This is the simulation discussed in the first section
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Figure 5.5: The distribution of particles as a function of velocity at the beginning of

the run (a) and the end of the run (b) shows the distribution flattens out at the n=1
resonance :
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of this chapter and the parameters are summarized in table (5.1). In this case, the
cold beam theory predicted a growth rate of 3.6 x 10°s~! but the measured growth

rate was 3.0 x 10°s™!. The growth rate was measured by the following procedure:
1. A sinusoidal velocity perturbation is excited in a periodic beam.

2. The corresponding perturbation in line charge density “grows” from the velocity

perturbation.

3. At specified intervals in time, we take the FFT of the line charge density with
respect to space. We then select the coeflicents of the mode that was excited

and save these coeflicients until the end of the run.

When we FFT, we are expressing

Mz, t) = SN A (ki t)es* (5.30)

where A and A are complex quantities and N is the number of discrete modes
allowed. If we have a backward traveling wave moving with velocity w/k and

growing exponentially with growth rate 4 then A can be written as

Mz, t) = cos(kz + wt)e™ _ (5.31)

So that
Areal = cos(wt)e™ (5.32)
;\imag = —sin(wt)e (5.33)

If we take the sum of the squares of the real and imaginary parts of the FFT,
Mo Mg = € (5.34)
4. Using equation (5.34), the coefficients from the FFT are squared and then the

natural log is taken. This is plotted against time and the slope of the resulting

straight line is twice the growth rate.
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5. Equation (5.34) assumes only a backward wave. By starting a perturbation in
velocity only, we have excited both a backward and a forward wave. Since the
forward wave damps, we simply wait an e-folding or two for the forward wave
to become very small compared to the backward wave and then measure the

slope of the straight line to get the growth rate.

In(AZ, + :\?mag) vs Time

] L

10°

® t (sec) -
Figure 5.6: The slope of the straight line is equal to twice the growth rate

Figure (5.6) shows the natural log of the square of the FFT coefficients as a
function of time for the parameters in table (5.1). In about the first microsecond,
the amplitude of the line charge density grows very rapidly. This happens because
the perturbation was initially started in ‘the velocity only and the corresponding
perturbation in line charge density grows up from that. In the next 4 microseconds,
the forward traveling wave is decaying. After about 5 microseconds, we see a straight

line emerge. One half of the slope of this straight line is the growth rate for the

backward wave.
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If the simple “wall and ball” model is correct, we expect the temperature to
stabilize the mode more completely when the wave frequency is higher. This is true

because

1. A higher wave frequency means more wall oscillations in a given amount of time
and thus, more chances for the particles to bounce off the wall and gain energy

from it.

2. A higher wave frequency means a higher resonant velocity for the particles.
Since we’ve seen that the slope of the distribution function determines whether
the particles gain energy overall, we expect that the particles will gain the most

energy when the resonant velocity is close to the thermal speed.

Run A Wreal vrfvm | kb | v calculated | v measured
a |[6.000]51x10°| .06 |0.07| 3.6x10° 3.0 x10°
b 1.500 { 2.0 x 10° .24 0.26 4.2 x 10° 2.2 x 10°
c 0.750 | 4.1 x 10° .48 0.53 4.0 x 10° =~ 0.0
d [0375182x10%| .96 |1.06| 3.0x10° ~ 0.0

Table 5.2: Varying the wavelength (and thus, the wave frequency) increases the sta-
bilization of the mode

We can increase the wave frequency most easily by changing the wavelength since
Wreal = kv,. Table (5.2) shows the results of four runs. The cold beam theory predicts
the most unstable wavelength for these parameters at about A = 1.5 meters. At this
wavelength, the warm beam WARPrz simulations show the growth rate is close to
half the calculated cold beam value! In the higher frequency cases, the mode is almost
completely stabilized!

Figure (5.7) shows the log of the modulus squared of the FFT of the line charge
density as a function of time for case (c). Unlike case (a) (shown in figure (5.6)), there
is no growth seen. If the growth rate predicted by the cold beam theory were correct,
this system would have undergone three e-foldings of growth in the time shown in

figure (5.7). The humps in figure (5.7) occur at twice the wave frequency and are the
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In(A2,, + A2,,,) vs Time

1
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Figure 5.7: No growth is seen in case (c)

result of the backward and forward waves interfering constructively and destructively
with each other.

This figure brings up another question-why is the forward wave no longer damp-
ing? In these runs, not only is the growth rate of the backward traveling wave reduced,
but the decay rate of the forward traveling wave is also reduced. We first thought
that somehow energy was being transfered from the backward wave into the forward
wave. However, a run which had only a backward wave (no forward wave) also showed
almost no growth for the same parameters.

If the “wall and ball” model is correct, then we expect the particles to be gaining
energy in the direction perpendicular to the beam motion. If the particles gain large
amounts of thermal velocity from the damping of the wave, it could prevent us from
being able to focus the beam onto the target at the end of the heavy ion fusion driver

which was the reason we were worried about the longitudinal instability in the first

place. However, if we plot the perpendicular particle energy as a function of time for
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Perpendicular Kinetic Energy vs Time
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Figure 5.8: Although the wave is not growing, the increase in perpendicular particle
kinetic energy (Joules) is less than 1% over more than 7 microseconds.

case (c) (figure (5.8)), we see that the energy increases by less than 1%.

If the “wall and ball” model is correct, we also expect without resistance present,
waves should damp. We tried to maximize this effect by making the perturbation as
large as we could without having nonlinear effects. We started an 8% perturbation
in the particle velocity and let that perturbation split into a 4% forward wave and a
4% backward wave. Figure (5.9) shows the field energy as a function of time for this
run. Since there are two waves present, we again see the constructive and destructive
interferring of the waves which gives the field energy oscillations at twice the wave
frequency. We see the field energy decrease by about .01 Joules. Figure (5.10) shows
the perpendicular kinetic energy. A change in perpendicular energy of .01 Joules
would be visible over the noise in this plot, however, we do not see such an increase.

It appears that our simple “wall and ball” model is too simplistic to explain the

results of the WARPrz simulations. In the last simulation in which there was no
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Figure 5.9: When no resistive wall is present, we expect the wave to decay. Here we
see the field energy decrease when a 4% forward and a 4% backward wave are excited.

resistive wall present, we see a decrease in wave energy of only .01 Joules. We do not
see an increase in perpendicular kinetic energy corresponding to this decrease in field
energy. Could energy be transferred from the perpendicular direction to the parallel
direction? If so, this would not be accounted for in the “wall and ball” model. Can
we observe this?

Currently, the answer is no. When the wave is excited, half the energy in the wave
goes into field energy and half goes into particle energy and the wave energy oscillates
between these two. This is also true in a Langmuir wave and the physics is easy to
see in that case. If we think of a Langmuir wave as an electron oscillating about
an ion, then when the electron is farthest away from the ion and turning around,
the electric field (and hence the field energy) is largest but the kinetic energy is the

smallest. When the electron is close to the ion, it is traveling at its highest speed

so the kinetic energy is large, but the field energy is small because the separation
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Perpendicular Kinetic Energy vs Time
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Figure 5.10: Although the field energy is decreasing, the increase in perpendicular
kinetic energy is not large enough to compensate.

between the ion and electron is small. This is also true for our space charge waves. If
we plot the z kinetic energy of the particles as a function of time (figure (5.11)), the
particle kinetic energy varies by the same amount that the field energy varies, but is
out of phase. The fact that the wave causes these changes in the z kinetic energy of
the particles makes it difficult to see any increase in z kinetic energy coming from the
wave damping, especially since the amount of energy we are looking for is so small
(.01 Joules). In fact, it may be impossible to trace this energy because it is so small
compared to the total energy of the system (about .1%). The total energy of the
system (shown in figure (5.12)) is only conserved to about .1%.

Although we don’t have a neat and tidy explanation for the damping of the in-
stability due to finite temperature effects, it is an important observation. We have -
seen the growth rate of the most unstable mode decreased by almost 50% when finite

temperature is included in the system. We've also seen that high frequency, short
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Figure 5.11: The energy of the wave is split between the field energy and the Z kinetic
energy. ’ ‘

wavelength perturbations undergo almost no growth at all. We have shown that fi-
nite longitudinal temperature alone does not explain the decrease in the growth rate
observed in WARPrz. We have shown that damping of the longitudinal wave via
transverse temperature is possible in the simple 1-d “wall and ball” model. We be-
lieve, however, in the 2-d WARPrz runs that energy is being coupled between the

radial (transverse) and longitudinal directions. A complete two dimensional theory

remains to be done.
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Figure 5.12: The total energy of the system is conserved to within .1% but the amount
of energy lost by the field energy is also about .1%
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Chapter 6

Intermittently-Applied Axial
Confining Fields

To get a realistic look at the effects of the longitudinal instability we need to con-
sider not only the growth rate of the instability but also sources of finite amplitude
perturbations which will be amplified. The intermittency of the axial confining fields
(“ear” fields) is a leading candidate as a source of perturbations. In the simulations
done in the previous sections, the ear fields used to keep the beam confined axially
are applied at every time step and hold the beam at a constant length. In an accel-
erator, however, these fields will be applied at discrete intervals along the accelerator
(e.g. every 100 meters). The beam will expand and contract axially as it travels
down the accelerator. Each time the beam head is hit by the ear field, it may cause
a perturbation to be launched in the beam and so we can picture a beam with a
train of perturbations being launched from the head and traveling towards the tail.

In this chapter, we discuss simulations of intermittently applied ear fields as a source

of beam perturbations.
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6.1 1-d Fluid Model

We first study intermittently applied ears in the simpler 1-d fluid equations. Our
mental picture of a beam with intermittently applied ears is a breathing beam. The
beam expands freely when the ears are off and then is compressed by the ears fields.
Since the beam will expand and contract, we use a Lagrangian representation for the
fluid equations. In the Lagrangian representation, the grid moves with the fluid and
is especially suited for problems of this type. The Lagrangian scheme used is given
by the following set of equations:

Motion of the grid:

2P = 28+ ulAL (6.1)
Conservation of charge:
Conservation of momentum:
n+l __ . mn AR —_ A:”_ Fr
i i(EE‘ - gt~ "2) +=L (6.3)
At M Az? M
Circuit equation for a resistor:
Ap+1 S+ n+l ]
¥ = =y (SRS (4 e )] (6.4)
where
Az,’-fn/z =zl — (6.5)
Az} = (2} — 212,)/2 (6.6)

and F is the externally applied force which includes the ears fields.

Our first attempt at the ears fields was to apply a force which was a linear function
of z in the region which was expanding and was constant in time during the interval
when the ears were “on”. By varying the magnitude of the external force and the
axial distance over which it was applied, we were able to get the error in velocity u/v,

down to about 1%. When this was applied many times, the errors tended to add up
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Fluid velocity vs Z

812 —————p———r—r———r—r7r—r7—r—r

818

.8e2

l‘i/"’p 8

-.8e2

-.o0s || 1
-.e08 .

-.818 it -1

-.812 't ] I i 2 1 2 I d L 1 I I .l 1 1 A 1

Figure 6.1: Fluid velocity (scaled to v,) as a function of axial position after 10 appli-
cations of the ear fields

so that after 5 applications of the ears, the error was about 5%. This would result in
an error that was fairly large over the length of a driver.

We next tried the following. We make the applied force proportional to the integral
over time of the force that was present during the free expansion stage (t = 0 to t = t,,

where t,, i1s the time the ears are turned “on”) -

F(z)=-F Oton M@%th = —FMu(z,to,) — u(z,0)] (6.7)

where F is a factor which we vary in order to get the minimum error. We apply the
ears from time t,; t0 fon + Tears- F" should be approximately equal to 2/7e,s. We
assume that there is no velocity at time zero so that we can set u(z,0) = 0. We then
save this external force and use the same force each time the ears are applied.

The motivation for using a force of this form is this: during the free expansion,

the particles experience a particular force. If we were to apply the negative of that

force back on the particles over the same length of time, the net force would be zero.
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Figure 6.2: Line charge density as a function of axial position after 10 applications

of the ears fields

What we’d like to do instead is to apply the same force over a shorter time interval
(the interval during which the ear fields are turned on). Integrating the force applied
during the free expansion stage gives us a kind of “total” force which is then applied
back on the beam during the shorter time interval Teas. The factor of 2 in the F
comes about because we want to reverse the expansion velocities.

We tested this on a beam which would be similar to a beam near the end of a
driver. The ears fields were applied every 100 meters and kept on for a duration of
10 meters. The ear fields were applied to both ends of the beam simultaneously.

We then varied the parameter F until we minimized the error in velocity. This
gave an error of approximately 0.2% after one application of the ears. After 10
cycles, however, the error in velocity was only 0.4%. Figures (6.1), (6.2) show the
fluid velocity and line charge density after 10 applications of the ears fields. Figure
(6.1) shows the error generated in the velocity (scaled to the wave phase velocity, v, ) is

less than 1%. In fact, the larger peaks near z = &1 occur because the errors coming
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Figure 6.3: Position of grid points near the beam head shows the expansion and
contraction of the beam.

off the beam head and tail have now overtaken each other and are constructively
interfering. When resistance is included in the problem, the interference is a small
effect because errors generated at the beam tail decay as they travel forward and
become very small compared to the backward traveling waves, which grow. The line
charge density is shown in figure (6.2). The tiny ripples are the errors.

Since we are using a Lagrangian scheme, the mesh expands and contracts along -
with the beam. In figure (6.3), we plot the position of the cell which is at the head

of the beam. This shows the expansion and contraction of the head of the beam as a

function of time.
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6.2 Particle Simulations

With the experience gained by using the 1-d fluid code under our belt, we move on
to simulations of intermittent ears with the particle code. As our first attempt, we
tried to apply the ears with as little damage to the beam as possible. To this end, we

used the same form of the ears fields that we used in the fluid code-namely,

. [ton .
F(z) = —FA Md—ug—’t—)dt = ~FMu(z,to)

where F is a factor which we vary in order to get the minimum error. In the particle
code, the velocity, u, used to calculate the force was the average velocity of the
particles as a function of z in the beam frame.

As in the 1-d fluid runs, these fields are applied simultaneously to the head and
tail of the beam. The ears fields are calculated on the same mesh we use to calculated
the fields. This means during the short time that the ear fields are “on,” they ride
along with the beam. This is, of course, an approximation, since the fields will be
applied at fixed locations in the lab frame in an experiment. This approximation is
valid because the ear fields are on for such a short time for each beam particle that
nothing can happen on this timescale. We have tested this with the WARPrz code
by shortening the time the ears were on until it was only one or two timesteps (about
.4 meters of distance). We found the results were the same as when the ears were
applied for 10 meters.

In each of the runs in this series, we used pa.rérneters like those near the end of the
accelerator section of the induction linac. In this portion of the accelerator, we have
beém current of 3000 Amps, beam velocity of .33¢, pulse length of 10 meters. In our
simulations, the beam pipe was 40% filled. For the simulations shown here we have
again used the largest temperature that we can focus on the target (10 keV) to keep
the amount of numerical heating small. This same temperature was used in both the
perpendicular and parallel directions. A simulation with “perfect” ears (like the one
described below) was done using a temperature of 2.5 keV and gave the same results

as as the 10 keV case shown here. All of these simulations had a resistance of 100
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ohms/meter and no capacitance.

The ears were applied every 100 meters and kept on for 10 meters. Each cycle
of the ear fields is made up of three parts— allow the beam to freely expand for 50
meters, apply the ear fields for 10 meters compressing the beam, then allow the beam
to expand for another 50 meters. By choosing the cycle in this way, the beam should
look the same at the end of the cycle as at the beginning. Figure (6.4) shows one

cycle.

Standard “perfect” ears run

The first simulation in this series was an attempt to apply the intermittent ears with
as little damage to the beam as possible. Figure (6.5) shows the potential vs axial
position of the beam after 14 and 22 applications of the ears. By 14 applications,
the perturbation launched at the beam head (the right hand side of the beam in our
plots) has traveled about 7 meters and can be seen as a broad, shallow dip in the
potential. After 22 applications, the beam looks similar. In this ruﬁ, we do not see
a trail of perturbations being launched off the beam head and growing towards the
tail. The beam remains very émooth.

The electric field that we are applying in this case is fairly large. Figure (6.7 a)
shows the applied ear field as a function of z. The maximum electric field that we
needed to apply every 100 meters to contain the beam is on the order of 17.5 MV /m.
This tells us that on average we need to apply 1.59 MV/m over the 110 meter cycle
((17.5 MV/m) x 10 m/110 m). This is not acceptable because the total accelerating
gradient that we have available is about 1 MV/m of which we’d like to use about
5% for confining the beam and 95% for accelerating it. All is not lost, however,
because in our calculations, we have included the total beam current in one beam.
In experiments, we will divide the current among multiple beams (16 for example)
so that the confining fields are not so large. Calculations show that for 16 beams,

the ear field is reduced by a factor ~ 10 — 16 depending on the location of the wall

(which affects the g-factor). This tells us that at the end of the accelerator we need
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Figure 6.4: One cycle of intermittently-applied ears. (a) Initial phase space (b) Beam
expands (c) Ear Field is applied (d) Beam is compressed (e) Beam expands back to
its initial state
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Electrostatic Potential on Axis vs z
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Figure 6.5: Applying “perfect” ears

to use 10-15% of the available accelerating field just to confine the beam. Techniques
for reducing these fields further are being considered. It is comforting, however, to
see that even though we are hitting the beam with a field like a sledgehammer, the
beam behaves nicely.

A simulation like this one was done with a beam temperature of 2.5 keV in both
directions to look for any temperature effects. The results were the same as in the 10

keV case.

“Perfect” ears applied less frequently

To get a handle on the effects of applying the ears too infrequently, we simulated the
-same situation as the “standard perfect” ears, but now we let the beam expand for
200 meters between ear applications. The ears were still applied over a distance of 10
meters. Figure (6.6 a) shows the potential on axis after 7 applications of these ears.
In this case, we see the perturbation that was launched by the first few sets of ears is
nearing the tail of the beam and has grown fairly large.
Figure (6.6 b) shows the potential after 12 applications. We see the expected

trail of perturbations being launched from the beam head and growing as they move

towards the beam tail. Similar perturbations are probably being launched off the
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Figure 6.6: Applying ears every 200 meters excites a train of perturbations on the
beam.

beam tail, however, they decay because they are forward propagating and so they are
not seen. The wavelength of these perturbations is measured to be about 1 meter.
If one perturbation were being launched with each application of the ears, we would
expect that the wavelength would be approximately 7TearsUphase Where 7ears is the time
between ear applications and vppase is the wave phase velocity. In fact, this product

yields a length equal to 1.02 meters.

Imperfect Ears—ears too large

Our first attempt at studying imperfect ears was to add a “bump” to the ear fields
used in the case of perfect ears. Figure (6.7 b) shows the error added to the ears. The
bump had the algebraic form of one half the period of a sine wave. This bump has
the effect of making the ear fields too large. We applied these imperfect ears every
100 meters and left them on for 10 meters. We believed that by applying an error
in the same direction every time, we would see a worst-case scenerio because there
was no way for the errors to cancel one another out. We found that this was not a

worst-case.
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Figure 6.7: Ear field and error introduced

When we applied these ears, we found that the first few applications caused a per-
turbation to be launched from the beam head. Figure (6.8 a) shows this perturbation
after 14 applications as it nears the beam tail after undergoing amplification by the
longitudinal instability. Interestingly, if we look later in time (figure (6.8 b)), we do
not see a trail of perturbations coming off the beam head as we expect. In fact, the

beam has adjusted itself to the error in the ears.

Electrostatic Potential on Axis vs z

. Y4
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Figure 6.8: Applying ears that are always too large
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This phenomenon has also been seen in experiments done by A. Faltens at LBL[10].
These experiments were designed to test longitudinal bunch control in the beam tail
in the single beam transport experiment (SBTE) at LBL. In these experiments, no
attempt was made to match the waveform of the applied ear fields to the beam
profile. Instead, fields with the waveform 1 — exp(—at) were applied. They saw that
mismatches in the ear fields caused waves to be launched from the beam tail in the

early pulsers, but at later times the beam reached a new steady state configuration.

Imperfect Ears—alternating too large and too small

Once we found that the beam could adjust to an error in the ears that was always the
same, we tried alternating the error. In this simulation, we applied the same size and
shape error as in the previous run, but we alternated the sign of the error with each
application. This amounted to applying ears that were too large on one application

followed by ears that were too small on the next application.

Electrostatic Potential on Axis vs z
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a) 14 applications a) 22 applications

Figure 6.9: Applying ears that alternate too large and too small

Figure (6.9) shows that we generated the expected train of perturbations coming
off the beam head and moving towards the tail. Again we expect a similar train
" of perturbations coming from the beam tail, but these perturbations decay as they

travel towards the beam head and are not seen. The wavelength of the perturbations
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is measured to be about 1 meter. We calculate 27.,sVpnase = 1.07 meters. This

indicates the cycle going on is:
1. hit the beam too hard and cause a enhancement region
2. this region moves away from the beam head in the time between ear applications
3. hit the beam too softly and cause a depletion region
4. this region moves away from the beam head in the time between ear applications

5. repeat

Such a cycle implies a perturbation wavelength of 27¢arsUphase-

Imperfect ears—an error of random size and sign

An extension of alternating the sign of the error in the ear fields was to add an error
of random size and sign. The error had the same shape as the previous two cases, but
now the amplitude of the error varied randomly from 5% too large to 5% too small
(+5% > error > -5%). Figure (6.10) shows the random variation of the ear fields as
a function of application number. The result is the expected train of perturbations
launched from the beam head and growing as they approach the tail. The width
of the perturbations is measured to be approximaﬁely the wavelength of the most
unstable mode of the longitudinal instability. Figure (6.11 a) shows the electrostatic
potential on axis vs z after 15 applications of the ears, while figure (6.11 b) shows

the same plots after 23 applications.

6.3 Summary

These simulations show how the intermittently applied ear fields and errors in the
intermittently applied ear fields can generate perturbations on the beam which then

grow via the longitudinal instability. The largest perturbations were generated when

the amplitude of the error was allowed to vary randomly between -5% and +5%. This
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Figure 6.10: An error of random amplitude was introduced on each application by
multiplying the error ear field by the random amplitude

excited the most unstable mode of the longitudinal instability and generated errors
of Av/v, of 15-20% in the presence of 100 2/m resistance. This translates into a
Ap/p of .073-.098% for v,/Vbeam = 4.88 x 1073, For final focus on the ICF target,
Ap/p < .1% at the end of the accelerator is needed.

These simulations did not include the effects of module capacitance. The simula-
tions done in chapter 4 suggest that including the module capacitance would reduce
the growth rate considerably and make the perturbations generated by errors in the

intermittently applied ear fields even less severe.
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Electrostatic Potential on Axis vs z
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Figure 6.11: A random error in the ears excites the most unstable wavelength of the
longitudinal instability
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

For more than 10 years, the longitudinal instability has been a threat to the success of
heavy ion driven inertial confinement fusion for energy production. Early calculations
included only the resistive part of the module impedance and predicted 10’s of e-
foldings of growth. This would be disastrous because chromatic aberrations in the
magnetic lens focusing system cause particles with different longitudinal velocities to
be focused at different locations. Thus, large perturbations in longitudinal velocity
decrease the power delivered to the target.

The low growth rate of this instability makes it difficult to study. In present day
ion beam experiments, the instability is not seen because the amount of growth is
too small. The University of Maryland group will attempt to increase the growth
rate of this instability by passing a space-charge dominated electron beam through
a glass tube with a high resistance coating. However, theory predicts an increase in
wave amplitude of only about 25% in the UM experiment because the resistive tube
is only 1 meter long. This instability must be understood before a heavy ion fusion
driver can be built.

In this thesis, I have studied the longitudinal instability using an axisymmetric

particle-in-cell code. This code includes a model for the impedance of the accelerating
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modules as a continuum of resistors and capacitors in parallel. Using this code, we
bave simulated ion beams over several kilometers and observed growth from this
instability. We find that growth is mainly limited to the growth that occurs as a
beam perturbation travels from head to tail. Some additional growth can occur on
successive passes if the perturbation steepens during reflection off the beam tail.

Cold beam theory predicts the capacitive component of the module impedance
partially stabilizes the longitudinal instability. The capacitive component of the
impedance was neglected in the early calculations and plays an important role in
the effect of the instability on an HIF driver. Our simulations confirm that including
capacitance decreases the growth rate considerably.

It has long been known that longitudinal temperatures which are acceptable for
the focusing system have little effect on the longitudinal instability. A 20% decrease in
the growth rate from longitudinal temperature requires a longitudinal thermal speed
more than three times what is acceptable in the magnetic focusing system.

Our two dimensional simulations have shown decreases in growth rate of 20% or
more even with longitudinal temperatures acceptable for the focusing system. This
decrease in growth rate is due to transverse temperature which was neglected in
previous calculations. In chapter 5, we propose a. simple mechanism for coupling
transverse thermal motion to the observed decrease in growth rate. From this model,
we expect that acceptable levels of transverse temperature can decrease the growth
rate of the longitudinal instability.

We have also investigated sources of beam perturbations. The most likely source of
perturbations is the “ear” fields used to confine the beam ends. The voltages required
to produce the ear fields will have fairly complicated waveforms and must be timed
correctly in order to keep the beam confined and prevent large perturbations from
being launched. These perturbations are ampliﬁéd by the longitudinal instability.

Our simulations have shown that ear fields can be applied every 100 meters without

/ generating large perturbations on the beam. Adding a systematic 5% error to the ear

fields generates a perturbation from the first few ear applications, but the beam is




CHAPTER 7.. CONCLUSIONS AND FUTURE WORK , 108

able to adjust to the error. This is important for the HIF program because it means
that the waveforms used to generate the ear fields do not need to be closely matched
to the beam profile. This has also been seen in experiments at Lawrence Berkeley
Laboratory.

Adding a random 5% error to the ear fields excites the most unstable mode of
the longitudinal instability. The simulations shown in chapter 6 do not include the
capacitive component of the module impedance. From our earlier simulations with
and without capacitance, we believe that the capacitive component will reduce the
growth these perturbations considerably.

The longitudinal instability is no longer a threat to the heavy ion fusion program.
The simulations in this thesis have shown that the instability will not be as severe
as was once thought. We have shown that growth is mostly limited to one pass
from beam head to tail and that the capacitive component of the module impedance
reduces the growth rate of the instability considerably. In addition, we have shown
that transverse temperature can also decrease the growth rate of the instability. The

longitudinal instability is no longer a “show stopper” for the heavy ion fusion program.

7.2 Future Work

Once the longitudinal instability experiment at the University of Maryland is oper-
ational, we will compare these experimental results with the WARPrz results. Al-
though comparisons between WARPrz and other electron beam experiments at UM
have been successful[13], this will be the first experimental confirmation of the longi-
tudinal instability results from WARPrz.

One improvement we would like to make to WARP1z is to add a discrete model for
the accelerating gaps. This will allow us to study accelerating beams and the effect
of errors in the accelerating fields on the beam. These gaps will be used to supply
both the main accelerating pulse and the ear fields as will be the case in experiments.

Adding accelerating gaps will allow us to improve our understanding of allowable
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tolerances in errors in the voltages applied to the gaps and will give us a closer tie
with experiment.

We plan to use WARPrz for simulations other than those relating to the longi-
tudinal instability. Near the end of the accelerator, the pulse must be shaped with
a long, low “foot” required by the ICF target designs. This shaping can be done by
changing the velocity profile of the beam such that the beam drifts into the correct
shape, or by stacking pulses which have traveled through different path lengths, or
some combination of both. We plan to model this pulse shaping with WARPrz.

We will use WARPrz to continue studying an instability which causes rapid heat-
ing in the longitudinal direction when the beam is initially much colder in the lon-
gitudinal direction than in the perpendicular direction. This mode appears to be
similar to the Harris mode in magnetized plasmas{15, 23]. This instability has been
seen in both WARPrz and WARP3d simulations[12] and may limit the amount of
temperature anisotropy allowed in heavy ion fusion driver beams.

We also plan to use WARPrz as part of the HIF source-to-target modeling project.
This project will use a variety of codes to model a beam through the entire HIF
driver, into the reactor chamber, and finally onto an ICF target. The majority of

these simulations will need to be done in 3 dimensions using WARP3d, but WARPrz

will be used when 3-d effects are not important because of its speed.
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Appendix A

List of Symbols

Quantities used in this thesis and in WARPrz are in MKS units. Bold face indicates
a vector quantity while scalars are set in italics.

-,

~me Qo @ e

Fmag‘net.ic
Felectric
g

Iy

o1,
Is(2)
1o, Ko
I, K,
Jo, No
Ji, Ny
k

K,
L

M

q
Qs

Beam radius

Pipe radius

Areas used for interpolating particle data to the grid
Magnetic field

Speed of light in vacuum

Module capacitance (units of Farad-meters)
Elementary charge

Electric field

Distribution function

Force on a particle due to the magnetic field
Force on a particle due to the electric field
Geometric factor (defined in eqn 1.10)
Beam current :

Perturbed beam current

Initial current profile as a function of z
Modified Bessel functions

Modified Bessel functions

Bessel functions

Bessel functions

Wave number

Surface current on the wall

Module inductance (units of henries/meter)
Ion mass

Ion charge

Charge at gridpoint (3, k)
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pj’k
Pj.k

Tears

Pik
&5k

Wreal

Surface charge on the wall

Radial coordinate

Outer radius of metal irises

Pipe radius

Time that ear fields are turned on
Longitudinal temperature

Longitudinal fluid velocity in the beam frame
Perturbed longitudinal fluid velocity
Particle velocity

3 components of particle velocity

Beam velocity

Wave phase velocity

Thermal speed

Volume at gridpoint (j, k)

Number of particles that each simulation particle represents
Longitudinal coordinate

Ion charge state

Module impedance

Growth rate

Longitudinal momentum spread divided by beam momentum
Cell size in r '

Cell size in z

Permittivity of free space

Module resistance (units of Ohms/meter)
“RC” time

Azimuthal coordinate

Line charge density

Zeroth order line charge density
Perturbed line charge density
Permeability of free space

Charge density

Charge density at gridpoint (j, k)

Fourier transform of charge density
Surface charge density on the wall

Time duration of ear fields

Electrostatic potential

Electrostatic potential at gridpoint (j, k)
Fourier transform of electrostatic potential
Real wave frequency

Wave frequency
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